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Abstract
Hyperviscosity syndrome (HVS) recently emerged as a complication of coronavirus disease 2019 (COVID-19) and COVID-
19 vaccines. Therefore, the objectives of this critical review are to establish the association between COVID-19 and COVID-
19 vaccines with the development of HVS. HVS may develop in various viral infections due to impairment of humoral and 
cellular immunity with elevation of immunoglobulins. COVID-19 can increase blood viscosity (BV) through modulation 
of fibrinogen, albumin, lipoproteins, and red blood cell (RBC) indices. HVS can cause cardiovascular and neurological 
complications in COVID-19 like myocardial infarction (MI) and stroke. HVS with or without abnormal RBCs function in 
COVID-19 participates in the reduction of tissue oxygenation with the development of cardio-metabolic complications and 
long COVID-19. Besides, HVS may develop in vaccine recipients with previous COVID-19 due to higher underlying Ig 
concentrations and rarely without previous COVID-19. Similarly, patients with metabolic syndrome are at the highest risk 
for propagation of HVS after COVID-19 vaccination. In conclusion, COVID-19 and related vaccines are linked with the 
development of HVS, mainly in patients with previous COVID-19 and underlying metabolic derangements. The possible 
mechanism of HVS in COVID-19 and related vaccines is increasing levels of fibrinogen and immunoglobulins. However, 
dehydration, oxidative stress, and inflammatory reactions are regarded as additional contributing factors in the pathogenesis 
of HVS in COVID-19. However, this critical review cannot determine the final causal relationship between COVID-19 and 
related vaccines and the development of HVS. Prospective and retrospective studies are warranted in this field.
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Introduction

Hyperviscosity syndrome (HVS) is a group of symptoms 
induced by high blood viscosity (BV) including bleeding, 
headache, visual disturbances, seizure, vertigo, and coma 
[1]. HVS is characterized by the triad of mucosal bleed-
ing, visual changes, and neurological deficits [1]. The main 
cause of HVS is Waldenstrom macroglobulinemia, which 
is an abnormal proliferation of plasma cells and lymphop-
lasmacytoid cells [2]. HVS is also caused by polycythemia, 
leukemia, multiple myeloma, sepsis, and sickle cell anemia 
[3]. As a result, HVS is caused by an increase in the number 
of red blood cells (RBCs) or a deformity in RBC shape, as 
well as an increase in serum proteins [3]. Normal BV is typi-
cally between 1.4 and 1.8 centipoise (cp), and symptoms of 
HVS develop when BV exceeds 4.0 cp [4].

HVS recently emerged as a complication of coronavi-
rus disease 2019 (COVID-19) and COVID-19 vaccines 
[5]. Therefore, the objectives of this critical review are 

 * Maisra M. El-Bouseary 
 maysra_mohamed@pharm.tanta.edu.eg

 * Gaber El-Saber Batiha 
 gaberbatiha@gmail.com

 Hayder M. Al-kuraishy 
 Hayderm36@yahoo.com

 Ali I. Al-Gareeb 
 Dr.alialgareeb78@yahoo.com

 Fatma I. Sonbol 
 fatma.sonbol@pharm.tanta.edu.eg

1 Department of Clinical Pharmacology and Medicine, 
College of Medicine, Al-Mustansiriya University, Baghdad, 
Iraq

2 Department of Pharmaceutical Microbiology, Faculty 
of Pharmacy, Tanta University, Tanta, Egypt

3 Department of Pharmacology and Therapeutics, 
Faculty of Veterinary Medicine, Damanhour University, 
Damanhour 22511, AlBeheira, Egypt

http://orcid.org/0000-0001-6503-0719
http://crossmark.crossref.org/dialog/?doi=10.1007/s10238-022-00836-x&domain=pdf


 Clinical and Experimental Medicine

1 3

to determine the association between COVID-19 and/or 
COVID-19 vaccines with the development of HVS.

Hyperviscosity syndrome and viral 
infections

HVS can occur in a variety of viral infections, including 
human immunodeficiency virus type 1 (HIV-1) infections, 
as a result of impaired humoral and cellular immunity and 
an increase in immunoglobulin (IgG) [6]. The underlying 
mechanisms of HVS in patients with HIV-1 are related to the 
direct activation of B cells by HIV-1, alteration of T cells-
mediated B cell regulation, chronic exposure to the antigens 
of HIV-1 and high IL-6 [6]. However, hyper-activation of B 
cells with high production of IgG could be the main mecha-
nistic pathway of HVS in HIV-1 infection [7]. According 
to Jin et al., HVS was linked to the formation of myeloma-
associated IgG1paraprotein against HIV-1 p24 antigen in 
HIV-1 patients [8].

As well, HVS has been demonstrated in patients with 
acute respiratory viral infections, including influenza com-
plicated by pneumonia [9]. A study involving 232 patients 
with influenza and acute respiratory viral infections showed 
significant alterations in the microcirculation, intravascular 
homeostasis, hypercoagulation, augmentation of fibrinolytic 
activity, and an increase in BV [9]. Generally, Sloop and col-
leagues revealed that severe infections increase BV with the 
development of HVS due to inflammation-induced hyper-
gammaglobulinemia and elevation of acute-phase reactants 
that increase BV [10]. High BV or HVS fosters aggregation 
of RBCs with an increasing risk of thrombosis due to aug-
mentation of vascular resistance, which impedes peripheral 
tissue perfusion [10]. Of note, previous acute infection and 
chronic bronchitis within two months caused by influenza 
infection predispose to the risk of acute ischemic stroke, and 
influenza vaccine did not offered a protection against the 
development of acute ischemic stroke [11]. This observa-
tion suggests that HVS could be a possible risk factor for 
the development of acute ischemic stroke in patients with 
influenza infection.

Furthermore, indices of blood viscosity are increased in 
patients with hepatitis B virus (HBV) infection who are at 
risk for the development of HVS [12]. A study of 55 patients 
with HBV infection illustrated that RBCs aggregation index, 
hematocrit, and whole BV were higher compared with con-
trol groups and unrelated to the state of oxidative stress and 
hemorheology indices [12]. Of interest, HVS is implicated in 
the pathogenesis of septic shock in parallel with high fibrin-
ogen levels [13]. Van et al. reported that soluble fibrinogen-
like protein 2 (sFGL2) is increased in patients with HBV 
infection [14]. Therefore, high sFGL2 plasma levels could be 
the potential cause of HVS in HBV infection. These findings 

indicated that HVS may be developed in various viral infec-
tions and contribute to the development of complications.

Hyperviscosity syndrome 
and immunoinflammatory disorders

It has been reported that HVS is linked with acute inflamma-
tory disorders since BV is sensitive to acute-phase reactants 
[15]. Therefore, HVS is high in subpopulations with high 
C-reactive protein and erythrocyte sedimentation rate (ESR) 
as compared with subpopulations with low CRP and ESR 
[15]. HVS has been shown to develop in patients with rheu-
matoid arthritis due to the formation of immunocomplexes 
which affect RBCs deformability and vascular resistance 
[15]. HVS in rheumatoid arthritis can be developed with a 
level of IgG less than in Waldenstrom macroglobulinemia 
[16]. It developed in patients with rheumatoid arthritis due 
to the formation of an intermediate complex from the aggre-
gation of Ig, RBCs aggregation, and high fibrinogen levels 
[17]. However, HVS in rheumatoid arthritis is rare in treated 
patients, so treating with plasmapheresis and immunosup-
pressive agents can reduce the risk of development of HVS 
[17]. Likewise, HVS in rheumatoid arthritis is significantly 
correlated with high activity of rheumatoid factor [18].

Furthermore, HVS may be the presenting feature in 
patients with systemic lupus erythematosus (SLE) due to 
hyper-paraproteinemia and monoclonal gammopathy [19]. 
Besides, HVS is also developed in IgG4-related disorders, 
which are systemic fibro-inflammatory disorders character-
ized by elevation of Ig, including IgG4 [20].

Of interest, CD169 macrophages contribute to the process 
of bone marrow erythropoiesis and maturation of RBCs. 
Over-activation of CD169 macrophages may be associated 
with the development of polycythemia [21]. Thus, depletion 
of CD169 macrophages reduces bone marrow erythroblasts 
and prevents erythropoietic recovery from anemia [21]. 
According to Asano et al., CD169 macrophages control and 
modulate immunological responses in the circulating fluid 
by recruiting monocytes and producing chemokines [22]. 
CD169 macrophages are activated during immunological 
disorders, tumor growth, and viral infections to produce 
immunological tolerance and antiviral effects [23–25]. As 
a result, in immunological diseases, activated CD169 mac-
rophages may increase BV via boosting erythropoiesis.

Indeed, there is a close relationship between HVS and 
inflammation due to the increase in acute-phase reactant 
fibrinogen, whose level is correlated with increasing blood 
viscosity [26]. Gordy et al. revealed that fibrinogen-related 
proteins are increased during the immune response to vari-
ous inflammatory stimuli [27]. Fibrinogen and fibrinogen-
related proteins play a critical role in neutralizing invading 
pathogens [28]. In turn, exaggerated immune responses and 



Clinical and Experimental Medicine 

1 3

high levels of fibrinogen-related proteins are associated with 
the development of HVS.

These observations indicated that high BV or HVS is 
linked with underlying immunoinflammatory disorders.

Hyperviscosity syndrome and COVID‑19

Effects of COVID‑19 on blood viscosity

COVID-19 is a pandemic disease caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) leading 
to worldwide crisis with high morbidity [29]. Till late Janu-
ary 2022, the total number of infected cases reached more 
than 370 million, with about 5 million confirmed deaths. In 
general, the clinical presentation of COVID-19 is mild in the 
majority of cases, though 15% of COVID-19 patients pre-
sented with pulmonary and extra-pulmonary manifestations 
including headache, fever, dry cough, sweating, and fatigue 
[30, 31]. About 5% of COVID-19 patients may develop 
severe and critical outcomes due to the development and 
propagation of acute lung injury (ALI) and acute respiratory 
distress syndrome (ARDS) that require intensive care unit 
admission [32].

SARS-CoV-2 exploits different receptor types to enter 
the affected cells. The angiotensin-converting enzyme 
2 (ACE2) is a pioneer one related in the pathogenesis of 
SARS-CoV-2 infection [33]. This interaction induces down-
regulation of ACE2, which is necessary for conversion of 
pro-inflammatory/vasoconstrictor angiotensin II (AngII) to 
vasodilator/anti-inflammatory Ang1-7 [34]. In severe cases, 
SARS-CoV-2 infection may result in an exaggerated immune 
response, hyperinflammation, and hypercytokinemia, as well 
as a cytokine storm [35, 36]. Therefore, SARS-CoV-2-in-
duced upregulation of AngII may provoke the development 
of HVS in COVID-19 through the induction of inflammatory 
changes and vasoconstriction.

It has been shown that SARS-CoV-2 infection is associ-
ated with microcirculation failure in hospitalized patients 
with severe COVID-19 characterized by weak peripheral 
pulses, cold extremities, and metabolic acidosis [37]. Micro-
circulation dysfunction/failure has been linked to severe sep-
sis because of increased RBC aggregation, decreased RBC 
deformability, and alterations in RBC physiology/morphol-
ogy [38, 39]. Endothelial dysfunction, coagulation prob-
lems, and cytokine storm were observed to contribute to the 
development of microcirculation failure in septic COVID-
19 patients by Colantuoni et al. [40]. A study that included 
7 hospitalized COVID-19 patients compared to 7 non-
COVID-19 septic patients and 7 healthy control illustrated 
that RBCs deformability was reduced in both COVID-19 
patients and non-COVID-19 septic patients compared to the 
controls (P < 0.05) [41]. Moreover, RBCs aggregation was 

higher in COVID-19 patients compared to 7 non-COVID-19 
septic patients without significant changes in BV and fibrin-
ogen levels [37]. This small sample study does not give any 
concrete clues about normal BV and fibrinogen levels in 
COVID-19. A retrospective study involving 41 COVID-19 
patients revealed that estimated BV was higher in COVID-19 
patients than in the control group [41].

Enhanced RBCs aggregation with reduction of RBCs 
deformability in COVID-19 is increased in both stasis and 
low-shear flow [37] that together with increasing fibrino-
gen level may increase BV and development of HVS. Of 
note, acute viral infections are linked with development 
of HVS due to hypergammaglobulinemia and elevation of 
acute-phase reactants which might cause thromboembolic 
disorders and cardiovascular complications [42]. Increas-
ing of BV and development of HVS in COVID-19 could 
be related to different mechanisms including exaggerated 
immune response, endothelial dysfunction, hypoxia, coagu-
lation disorders [41].

Similarly, changes in RBCs morphology/function, plate-
let hyper-reactivity, high ferritin, and P-selectin activity in 
COVID-19 could contribute in the development of HVS 
[43]. As well, psychological stress, fever, and dehydration 
may increase BV and compensatory increment in the release 
of arginine vasopressin in COVID-19 patients [44]. High 
arginine vasopressin triggers release of pro-inflammatory 
cytokines through activation of nuclear factor kappa B (NF-
κB) and nod-like receptor pyrin 3 (NLRP3) inflammasome 
which participate in increasing of BV [44]. Both of NF-κB 
and NLRP3 inflammasome induce asymmetry of RBCs 
membrane with reduction of RBCs deformability in normal 
and sickle RBCs [45, 46]. In addition, NF-κB and NLRP3 
inflammasome are highly activated in COVID-19 [47] and 
could a potential causes for reduction of RBCs deformability 
in COVID-19.

Of note, CD169 macrophages are involved in the matura-
tion of RBCs and development of polycythemia [21]. CD169 
monocytes are expressed in 93.7% of COVID-19 patients 
and could be of diagnostic benefits [48]. Therefore, SARS-
CoV-2-induced CD169 macrophages/monocytes may cause 
polycythemia and elevation of BV in COVID-19.

Exaggerated immune response and release of pro-inflam-
matory cytokines mainly IL-6 are linked with development 
of cytokine storm and multi-organ injury [49]. Panigada 
et al. observed that IL-6 is regarded as a powerful activator 
for synthesis of fibrinogen in COVID-19 [50]. Also, dysreg-
ulation of RAS with high AngII in COVID-19 may induce 
expression and synthesis of fibrinogen [35, 51]. Fibrinogen 
activates RBC membrane integrinαvβ3 receptors result-
ing in the activation of RBCs aggregation with subsequent 
development of HVS [50]. As well, hypoalbuminemia is 
linked with increasing of blood viscosity and development 
of HVS [52]. Serum albumin is inversely correlated with 
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D-dimer and CRP, and hypoalbuminemia is associated 
with an increased risk of development of coagulopathy in 
COVID-19 patients by a reduction in the anticoagulant and 
antiplatelet effects of albumin [53]. A retrospective study 
involving 113 COVID-19 patients illustrated that a high 
fibrinogen/albumin ratio was associated with a high risk 
of thrombosis, disease severity, and poor clinical outcomes 
[54]. As a result, the BV is augmented and reaches 4.2 cp. 
Therefore, hyperfibrinogenemia and hypoalbuminemia may 
increase BV and participate in the development of HVS and 
thrombotic events in COVID-19. Notably, severe COVID-19 
is associated with the development of arterial and venous 
thromboembolic events due to direct SARS-CoV-2 cyto-
pathic effects and associated endothelial dysfunction, plate-
let activation, coagulation activation, and inhibition of the 
fibrinolytic pathway [55]. Furthermore, downregulation of 
ACE2 with dysregulation of RAS together with exagger-
ated pro-inflammatory cytokines may initiate endothelial 
dysfunction by reduction of prostacyclin and nitrous oxide 
(NO) [56]. Felicetti et al. recently illustrated that thrombotic 
events may increase the risk of development of HVS [57]. 
These observations suggest a mutual interaction between 
HVS and thrombotic events in COVID-19.

Moreover, SARS-CoV-2 may directly affect RBCs mor-
phology through binding of membrane CD147 receptor and 
Band3 protein on the RBCs [58, 59]. These changes hamper 
functional capacity for oxygen transport by RBCs leading 
to development of tissue hypoxia [59]. Besides, Foy and 
colleagues revealed that RBC distribution width and other 
indices were severely affected in SARS-CoV-2 infection and 
linked with COVID-19 severity and poor clinical outcomes 
[60]. In addition, extreme hypoxia and acidosis induce alter-
ation in RBCs morphology [61]. These observations suggest 
that direct SARS-CoV-2-induced RBCs dysmorphology and 
associated metabolic acidosis and hypoxia may induce pro-
gression of HVS in COVID-19.

Furthermore, lipoproteins can affect blood viscosity since 
low-density lipoprotein (LDL) is positively correlated, while 
high-density lipoprotein (HDL) is negatively correlated 
with BV [62]. HDL is necessary for RBCs morphology and 
deformability; thus, reduction of HDL may reduce RBCs life 
span by increasing osmotic fragility and reduction of RBCs 
deformability [63]. In COVID-19, there is a noteworthy 
alteration in lipoprotein serum levels, and low HDL levels 
are associated with COVID-19 severity [64, 65]. Therefore, 
reduction of HDL in SARS-CoV-2 infection can increase BV 
with the development of HVS in COVID-19.

Moreover, SARS-CoV-2 infection-induced oxidative 
stress may trigger elevation of BV [66]. It has been reported 
that high oxidative stress can induce abnormal hemorheo-
logical changes with a reduction of RBCs deformability and 
the induction of thrombotic changes [67]. In COVID-19, 
severe oxidative stress triggers endothelial dysfunction and 

thromboembolic complications [66]. Thus, alterations in 
RBC fragility and deformability together with endothelial 
dysfunction by SARS-CoV-2 infection-induced oxidative 
stress could cause HVS in COVID-19.

Interestingly, RBCs morphology and functions are 
affected in COVID-19 with the development of abnormal 
erythrocrine function [68]. Development of abnormal RBCs 
may contribute to the progression of endothelial dysfunc-
tion and vascular injury by increasing oxidative stress [69]. 
RBCs from COVID-19 patients induce expression and 
upregulation of endothelial arginase with the production 
of reactive oxygen species (ROS), reduction of endothelial 
NO and development of endothelial dysfunction [69]. There-
fore, SARS-CoV-2 infection-induced oxidative stress could 
in part be mediated by the development of abnormal RBCs 
in COVID-19.

Moreover, COVID-19 is commonly associated with psy-
chological stress and sympathetic outflow [70]. Of interest, 
psychological stress increases circulating AngII as well, 
AngII promotes psychological stress through augmentation 
of sympathetic activation [71]. Likewise, AngII receptor 
blockers attenuate stress pressor in young adults [71]. Thus, 
COVID-19-induced psychological stress may augment the 
dysregulated RAS by increasing AngII with subsequent 
development of HVS.

Taken together, COVID-19 can increase BV through 
modulation of fibrinogen, albumin, lipoproteins, and RBC 
indices (Fig. 1).

Complications of hyperviscosity in COVID‑19

COVID-19 HVS has been linked with various cardiovas-
cular and neurological complications such as myocardial 
infarction (MI) and stroke [72, 73]. The incidence of MI 
in COVID-19 has increased by up to 5% [74]. That could 
be due to the development of HVS. In addition, increasing 
of RBCs aggregation and SARS-CoV-2 infection-induced 
endothelial dysfunction and immunothrombosis may elevate 
BV in COVID-19 [75]. These changes increase the risk of 
the development of MI in surviving COVID-19 patients due 
to the development of coronary microangiopathy [76].

HVS in COVID-19 causes poor tissue perfusion, 
peripheral vascular resistance, and thrombosis [77]. Low-
shear areas are susceptible to thrombosis due to reduction 
in dispersion of clotting factors and attenuation of shear-
induced release of antithrombotic molecules like NO and 
prostacyclin [77]. Remarkably, most of the COVID-19 
patients with BV greater than 3.5cp had coagulation dis-
orders [78]. Herein, there is a close relationship between 
HVS and thrombotic events in COVID-19. Maier and 
coworkers reported 15 critical COVID-19 with thrombotic 
complications. All patients had a BV greater than 3.5cp 
(the normal range is 1.4–1.8 cp) as tested by a traditional 
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capillary viscometer. The high BV was correlated with 
thrombotic events (r = 0.84, P < 0.01) [78]. Further, a case 
series reported by Truong et al. showed symptoms of HVS 
were more evident in COVID-19 patients with BV greater 
than 4.2 cp [75]. These findings suggest that higher BV is 
linked with more severe HVS in COVID-19.

Furthermore, HVS may lead to complications like 
acute kidney injury, glucose intolerance, skeletal muscle 
ischemia, and myocardial necrosis [79]. As well, HVS 
leads to pulmonary hypoperfusion and the development 
of ventilation-perfusion mismatch. These changes cause 
silent hypoxemia with the propagation of high pulmonary 
vascular resistance [80].

Indeed, HVS is linked with the development of post-
COVID-19 syndrome (long COVID-19), which is the 
persistence of symptoms like dyspnea, fatigue, cogni-
tive dysfunction, and headache following recovery from 
COVID-19 [81]. Long-term COVID-19 is associated with 
immunosuppression and cardio-pulmonary fibrosis due to 
upregulation of transforming growth factor beta (TGF-β) 
[82]. Prolonged inflammatory changes and high blood 
viscosity in patients with long COVID-19 can reduce tis-
sue perfusion and cellular metabolism [83]. As mentioned 
above, prolonged abnormal RBCs function following 
COVID-19 may cause tissue hypoxia and subnormal cell 
metabolism with accentuation of long COVID-19 [69].

Taken together, HVS with or without abnormal RBCs 
function in COVID-19 participates in reduction of tissue 
oxygenation with the development of cardio-metabolic 
complications and long COVID-19 (Fig. 2).

Hyperviscosity and COVID‑19 vaccination

COVID-19 vaccine was developed on the 8th of April 
2020 to control the spread of SARS-CoV-2 infection and 
limit morbidity and mortality caused by COVID-19 [84]. 
Following COVID-19 vaccination, some reports showed 
that the BV was increased because of the induction of 
Ig [85]. HVS may develop after COVID-19 vaccination, 
leading to immunopathological changes [86]. HVS is cor-
related with the concentration of Ig, though the lowest 
normal Ig concentrations are 545 mg/dl, while the lowest 
BV is 1.5 cp [86]. The BV will be 2.6 cp when Ig concen-
trations reach 6160 mg/dl [85]. Of note, symptoms of HVS 
are developed when BV exceeds 4.0 cp [4].

Surprisingly, HVS can develop in vaccine recipients 
who have previously received COVID-19 due to higher 
underlying Ig concentrations, and only rarely in those 
who have never received COVID-19 [85]. Thus, screen-
ing for previous COVID-19 is essential before induction of 
COVID-19 vaccination to prevent the development of HVS 
and related hemorheological adverse effects. Alongside, 
use of contraceptives may augment the risk of develop-
ment of HVS after COVID-19 vaccination [87]. There-
fore, we suggest taking the risk into consideration for 
patients taking contraceptives at the time of COVID-19 
vaccination.

Different studies revealed that metabolic alterations in 
patients with metabolic syndrome increase BV and the 
risk for development of HVS [88]. Metabolic syndrome 

Fig. 1  Proposed mechanism 
of hyperviscosity syndrome 
in COVID-19: SARS-CoV-2 
through induction of the 
downregulation of angiotensin-
converting enzyme 2 (ACE2), 
psychological stress, hyperin-
flammation, oxidative stress 
(OS), abnormal morphology 
of red blood cells (RBCs), and 
reduction of high density lipo-
protein (HDL). These changes 
increase fibrinogen, angiotensin 
II (AngII), and the induction of 
erythrocrine dysfunction with 
the subsequent development of 
hyperviscosity syndrome (HSV)
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is linked with systemic inflammation and oxidative stress 
which affect the microcirculation by increasing of BV 
due to reduction of RBCs deformability [89]. Therefore, 
patients with metabolic syndrome are at the highest risk 
for propagation of HVS after COVID-19 vaccination. 
Joob and Wiwanitkit confirmed that COVID-19 vaccina-
tion increases the risk of development of HVS in patients 
with metabolic syndrome [90]. The BV is increased by 
2.7 times in healthy subjects and by 2.99 in patients with 
metabolic syndrome following COVID-19 vaccination 
[91]. This increment in BV did not reach the state of HVS 
in both healthy subjects and patients with metabolic syn-
drome, which might be due to the validity of the method 
in the assessment of blood viscosity [91].

Generally, BV in healthy COVID-19 vaccine recipients 
is increased by 2.4 cp [92]. However, COVID-19 vaccine-
induced HVS is common in patients with metabolic syn-
drome due to high underlying metabolic disorders which 
increase BV [93]. Sookaromdee et al. proposed that under-
lying chronic liver diseases with high bilirubin levels may 
cause HVS after COVID-19 vaccination since hyperbili-
rubinemia is linked with the development of HVS [93]. 
Patients with underlying metabolic disorders have a higher 
chance of developing HVS following COVID-19 vaccina-
tion. Thus, close monitoring of blood viscosity in COVID-
19 vaccine recipients is necessary to prevent post-vaccine 
complications [94].

Interestingly, oxidative stress can induce a reduction in 
RBCs deformability with a subsequent elevation of BV [95]. 
In obesity, high oxidative stress and fibrinogen together with 
prolonged low-grade inflammation are linked with the devel-
opment of HVS [96, 97]. Therefore, depending on these find-
ings, obese patients are at high risk for the development of 
HVS after COVID-19 vaccination. Pivonello and colleagues 

suggested that the immune response in obese patients against 
the COVID-19 vaccine is low due to impaired reactivity of T 
and B cells [98]. Therefore, a delay in immune response may 
reduce Ig concentrations following COVID-19 vaccination, 
and this may affect the development of HVS in obesity. Of 
note, the immune response in obese patients was low follow-
ing the influenza vaccine [99]. These findings are premature 
to draw a final association between COVID-19 vaccination 
and the risk of HVS, and thus, prospective and retrospective 
studies are warranted in this regard.

The present review had many limitations, including the 
rarity of prospective studies that evaluate BV in COVID-19 
at the time of admission and discharge. Also, most studies 
were speculative in their explanation of HVS in COVID-19 
and COVID-19 vaccination. Despite these limitations, the 
present critical review revealed that HVS is an important 
mechanistic pathway in the development of complications 
in COVID-19 and related vaccines.

Conclusions

COVID-19 and related vaccines are linked with the develop-
ment of HVS mainly in patients with previous COVID-19 
and underlying metabolic derangements. The possible mech-
anism of HVS in COVID-19 and related vaccines is increas-
ing levels of fibrinogen and immunoglobulins. Dehydration, 
oxidative stress, and inflammatory reactions are regarded as 
additional contributing factors in the pathogenesis of HVS in 
COVID-19. However, this critical review cannot determine 
the final causal relationship between COVID-19 and related 
vaccines and the development of HVS. Prospective and ret-
rospective studies are warranted in this field.

Fig. 2  Complications of 
hyperviscosity in COVID-
19: Hyperviscosity (HVS) in 
COVID-19 induces the develop-
ment of endothelial dysfunction, 
microangiopathy, and hypoper-
fusion with the development of 
thrombosis and tissue hypoxia, 
which ultimately cause organ 
dysfunction
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