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Pharmacodynamic and Pharmacokinetic Properties
of Full Phosphorothioate Small Interfering RNAs
for Gene Silencing In Vivo
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State-of-the-art small interfering RNA (siRNA) therapeutics such as givosiran and fitusiran are constructed from
three variable components: a fully-modified RNA core that conveys metabolic stability, a targeting moiety that
mediates target-cell uptake, and a linker. This structural complexity poses challenges for metabolite character-
ization and risk assessment after long-term patient exposure. In this study, we show that basic phosphorothioate
modification of a siRNA targeting the oncoprotein Lin28B provides a useful increase in metabolic stability,
without greatly compromising potency. We found that its stability in vitro matched that of nanoparticle-free
patisiran in serum and surpassed it in liver tritosome extracts, although it did not reach the stability of the fitusiran
siRNA core structure. Liver and kidney were the main sites of accumulation after its subcutaneous administration
in mice. Despite the lack of a delivery agent-free antitumor effect, we anticipate our study to be a starting point to
develop alternative siRNA scaffolds that can be degraded into naturally-occurring metabolites and help alleviate
the aforementioned challenges. Furthermore, Lin28B is a promising target for cancers, and the development of

such simplified siRNA analogs, possibly together with novel targeting units, holds potential.
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Introduction

THERAPEUTIC OLIGONUCLEOTIDES have emerged as a
third pillar of modern pharmacotherapy, expanding the
portfolio of traditional small molecule drugs and biologics
[1,2]. A key advantage of this new drug class is its inherent
potential to regulate the expression of any gene of interest
through the rational design of a complementary oligonucle-
otide, including disease-causing genes that have been previ-
ously considered undruggable. The relatively straightforward
design and predictable pharmacokinetic properties of oligo-
nucleotides have enabled the development of a customized
treatment for a single patient in <1 year [3], delivering on the
promise of personalized medicine.

Small interfering RNAs (siRNAs) are one of the primary
modalities in the field of RNA therapeutics, harnessing the
endogenous RNA interference machinery for pharmaco-
logical interventions. In its classical format, siRNAs are
duplexes of 21 nucleotide (nt) RNA strands with a 19nt
complementary stem and a 2nt overhang on the 3’-end of
each strand [4]. Several groups have reported the use of a

diverse set of chemically modified siRNAs for in vivo si-
lencing [5—11]. The clinical potential of this approach has
been demonstrated through the recent approval of two siRNA
therapeutics, patisiran [12,13] and givosiran [14]. Patisiran
is only modestly chemically modified and therefore depends
on its lipid nanoparticle (LNP) encapsulation for nuclease
protection and efficient tissue delivery. However, givosiran is
administered as a nanoparticle-free solution. For this pur-
pose, this siRNA relies on complex chemical modification
of the natural oligoribonucleotide in three main structural
ways: (1) modification of every nucleoside with 2’-OMe or
2’-F moieties and terminal phosphorothioate (PS) linkages, (2)
conjugation through a binary linker to (3), a trivalent N-
acetylgalactosamine ligand for targeted delivery to hepato-
cytes [15]. The structural complexity of such molecules poses
an additional challenge in terms of metabolite characterization
and risk assessment with respect to long-term exposure.

As a minimalistic alternative to this complexity, we
are exploring full PS substitution of otherwise unmodified
siRNAs to increase their stability against nucleases, to extend
their lifetime in vivo, and their delivery into target cells.
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While unconjugated phosphodiester (PO) siRNAs are known
to be rapidly degraded and/or cleared from circulation by renal
filtration [16-20], single stranded PS oligonucleotides are
protected and shielded against urinary excretion due to their
binding to serum proteins [21]. In fact, PS substitution was
considered for the use in siRNA therapeutics early on, but was
largely dismissed due to reports on reduced potency [22,23]
and in some [24,25] but not all cases toxicity [26]. However,
the behavior of cultured cells often does not reflect the in vivo
situation, particularly in light of several reports highlighting
the contribution of delivery agents to cellular toxicity [27,28],
indicating that naked injection of synthetic siRNAs is less
likely to trigger an immune response than LNP encapsulated
siRNAs [29]. Moreover, full PS substitution of the passenger
strand or the inclusion of single stranded PS tails in combi-
nation with full 2’-modification and an asymmetric SiRNA
design have been recently reported to favor a broad biodis-
tribution without causing significant toxicity in vivo [19,30,31].

We have previously shown that the silencing activity of PS
siRNAs is almost equal to that of their PO counterparts [32]
and, surprisingly, can be modulated through the choice of
activator used for the phosphoramidite coupling step to
modestly bias the stereochemistry at the PS linkages toward
the Rp configuration. In addition, we previously showed that
Lin28B, a prominent oncoprotein, is a key factor for the
maintenance of cancer stem cells and a main driver in the
development of prostate cancer [33]. We therefore first in-
vestigated the in vitro and in vivo activity of a PS siRNA
directed against Lin28B after complexation with Lipofecta-
mine or in vivo jetPEL respectively. We then assessed the
metabolic stability of the PS siRNA in different biological
environments and compared it to that of current state-of-the-
art chemically-modified siRNAs. We found that this sim-
plistic modification pattern provided a substantial increase in
metabolic stability compared to the classical PO siRNA
without significantly compromising its silencing activity.
Moreover, the nuclease stability of the PS siRNA matched the
stability of nanoparticle-free patisiran in mouse serum and
surpassed it in rat liver tritosome extracts, but did not reach the
nuclease resistance of the fully chemically stabilized siRNAs.

Finally, we conducted a label-free biodistribution study in
mice and evaluated the antitumor effect of phosphate-
buffered saline (PBS)-formulated PS siRNA in a xenograft
model of aggressive prostate cancer. The PS siRNA was re-
covered from several tissues after a single subcutaneous (s.c.)
injection of the PBS-formulated siRNA in mice, with liver
and kidney being the main sites of accumulation. Although an
antitumor effect in a prostate cancer xenograft model could
be demonstrated after delivery of the jetPEI-formulated PS
siRNA, no inhibition of tumor growth was observed after a
short-term treatment with the free siRNA.

Materials and Methods
Oligonucleotide synthesis

Chemicals for oligonucleotide synthesis were purchased
from Sigma Aldrich (Steinheim, Germany), Fluorochem
(Hadfield, United Kingdom), and TCI (Eschborn, Germany).
Phosphoramidites were obtained from Thermo Fisher Sci-
entific (Waltham, MA). Oligonucleotides were synthesized
on a MM12 synthesizer from Bio Automation (BioAuto-
mation Corp., Irving, TX) using 8 mL synthesis columns
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(BioAutomation), 300mg of 500 A UnyLinker CPG
(ChemGenes, Wilmington, MA), and standard 2’-O-tert-
butyldimethylsilyl (2”-O-TBDMS), 2’-OMe (Thermo Fisher
Scientific), or 2’-fluoro-2’-deoxy phosphoramidites (Chem-
Genes). Phosphoramidites were prepared as 0.08 M solutions
in dry acetonitrile (ACN); the activator 5-(Benzylthio)-1H-
tetrazole (Biosolve BV, Valkenswaard, Netherlands) was
prepared as a 0.24 M solution in dry ACN. Coupling time was
300s. Oxidizer was prepared as a 0.02M I, solution in
tetrahydrofuran (THF)/pyridine/H,O (70:20:10, v/v/v); sul-
furization was carried out using a 0.1 M solution of
((dimethylamino-methylidene)amino)-3H-1,2,4-dithiazoline-
3-thione (Glen Research, Sterling, VA) in dry pyridine/ACN
(9:1) with a contact time of 600s. Capping reagent A was
THF/lutidine/acetic anhydride (8:1:1), and capping reagent
B was 16% N-methylimidazole/THF. Detritylations were
performed using 3% dichloroacetic acid in dichloromethane.

Oligonucleotides were cleaved from the solid support, and
the protecting groups on the exocyclic amino groups and the
backbone were removed using a 1:1 mixture of 40% aqueous
methylamine and 25% aqueous ammonia for 1 h at 65°C. 2’-
O-TBDMS groups were removed using a freshly-prepared
mixture of N-methyl-2-pyrrolidone (120 pL), triethylamine
(TEA; 60 pL), and TEA.3HF, (80 pL) at 70°C for 2 h. Desi-
lylation was quenched with trimethylethoxysilane (400 pL);
then diisopropyl ether (200 pL) was added to precipitate the
oligonucleotide. The precipitate was dissolved in H,O and
purified whilst still 4,4-dimethoxytrityl (DMT)-protected
(DMT-on) on an Agilent 1200 series high performance liquid
chromatography (HPLC) fitted with a Waters XBridge Oli-
gonucleotide BEH C18 column (10x50mm, 2.5 pum) at
65°C. Fractions were pooled, dried in a SpeedVac, and
treated for 15 min with 40% acetic acid at room temperature.

After drying in a SpeedVac, oligonucleotides were dissol-
ved in H,O and subjected to a second purification on
reversed-phase HPLC. Gradient for DMT-on purification:
10%—-50% eluent B in 5 min, flow rate =5 mL/min. DMT-off
purification: 2%—-20% eluent B in 8 min, flow rate =5 mL/min.
Eluent A was 0.1 M triethylammonium acetate, pH 8.0.
Eluent B was ACN. The integrities of purified oligonucleo-
tides were confirmed by liquid chromatography—mass spec-
trometry analysis on an Agilent 1200/6130 system fitted with
a Waters acquity UPLC OST C-18 column (2.1 x50 mm,
1.7 um) at 65°C, with a gradient of 5%-35% eluent B in
14 min with a flowrate of 0.3 mL/min. Eluent A was aqueous
hexafluoroisopropanol (0.4M) containing TEA (15mM).
Eluent B was methanol.

Nuclease stability assays

siRNAs (11.5 uM) were incubated in 50% mouse serum
(S-25M; Sigma Aldrich) or rat liver tritosome extracts
(Xenotech LLC Kansas City, KS) for the indicated time
points and analyzed by ion-exchange HPLC. UV-absorption
was monitored at 260 nm. Peak areas were normalized to the
respective 0O min time point. Rat liver tritosomes were stan-
dardized to 0.5U/mL acid phosphatase in 20mM citrate
buffer (pH=35) as previously described [15,34]. Incubation
was quenched through digestion in MasterPure tissue lysis
solution (Epicentre, WI) containing 0.8 mg/mL proteinase K
(Roche) at 65°C for 30 min and stored at —80°C until analysis.
Shortly before analysis, sodium dodecyl sulfate (SDS) was
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precipitated through addition of 3M KCl to a final concentra-
tion of 0.6 M and centrifugation at 4°C, 12g for 10 min. Cleared
supernatants were analyzed on a Hitachi VWR LaChrom Elite
HPLC fitted with a DNA Pac PA200 (4 X250 mm) anion ex-
change column and a DNA Pac PA200 (4x50mm) guard
column at 30°C. The gradient was 100% A for 2 min, followed
by 54% eluent B within 5 min, increase to 100% B within
2 min, hold 100% B for 1 min, switch to 100% A within 2 min,
and hold 100% A for 5 min. Eluent A was a 1:1 mixture (v:v) of
buffer A and ACN. Buffer A was an aqueous solution of 1 mM
ethylenediaminetetraaceticacid (EDTA) and 25 mM Tris HC1
(pH=8.5). Eluent B was a 1:1 mixture (v:v) of buffer B and
ACN. Buffer B was an aqueous solution of 1 mM EDTA,
25mM Tris HCI, and 1.6 M NaClO, (pH=38.5).

Peptide nucleic acid hybridization assay

Peptide nucleic acid (PNA) hybridization assays were
performed based on literature protocols [35-38]. Tissues
were pulverized in liquid nitrogen and homogenized in 1 mL
MasterPure tissue lysis solution (Epicentre) supplemented
with 0.8 mg/mL Proteinase K (Roche) in a tissue lyser
(Qiagen, Germany) using Qiagen stainless steel beads (5 mm)
for 6 min with a frequency of 30Hz. Tissue homogenates
were centrifuged at 10g, 4°C for 5 min, and supernatant was
transferred to clean Eppendorf tubes. Then, proteinase K
digestion was performed at 65°C for 30 min. SDS was pre-
cipitated as described for nuclease stability assays. To 100 uL
of cleared lysate was added 95 pL hybridization buffer and
SuL atto425-PNA probe (8 uM in 20% ACN; Panagene,
Korea). Hybridization buffer was an aqueous solution of
50mM Tris (pH=28.8) containing 10% ACN.

PNA hybridization was performed on a thermocycler ac-
cording to the following temperature program: 95°C for
15 min followed by 20°C for 15min. After hybridization,
supernatants were pooled and centrifuged again (10g, 4°C for
15 min). Cleared supernatants were subjected to anion ex-
change HPLC as described for nuclease stability assays, but
with a column temperature of 50°C, and fluorescence at
484 nm (excitation at 436 nm) was monitored on a Hitachi
VWR LaChrom Elite L-2485 detector.

Cell culture and transfections

HEK293T cells were maintained in Dulbecco’s modified
Eagle’s medium GlutaMAX (31966, Gibco®; Life Technolo-
gies) supplemented with 10% of fetal bovine serum. Transfec-
tions were performed according to the manufacturer’s protocol
with Lipofectamine 2000 (11668027; Thermo Fisher Scien-
tific). Control siRNAs are listed in Supplementary Table SI.
Experimental details for western blotting and the albumin
binding assay are described in the Supplementary Methods.

SYBR Green reverse transcription—quantitative
polymerase chain reaction

Total RNA was extracted using TRIzol (15596026;
Invitrogen) according to the manufacturer’s protocol. RNA
concentrations were measured on a NanoDrop 2000 spectro-
photometer. For mRNA analysis, 1 g of total RNA was reverse
transcribed using the High Capacity cDNA Reverse Tran-
scription Kit (4368814; Applied Biosystems) according to the
manufacturer’s protocol. Reverse transcription was performed
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on a thermocycler S1000 (Bio-Rad) according to the following
program: 25°C, 10 min; 37°C, 120 min; and 85°C, Smin.

SYBR Green quantitative polymerase chain reaction was
performed on a LightCycler 480 instrument (Roche) using
KAPA SYBR FAST for Roche LightCycler 480 (KK4610;
Sigma-Aldrich). PCR primers were designed using the
Universal ProbeLibrary System Assay Design (Roche) and
were ordered from Microsynth (Balgach, Switzerland). Pri-
mer sequences (5-3") were: Lin28B GAAAAGAAAACCA
AAGGGAGATAGA (forward), GAGGTAGACTACATTC
CTTAGCATGA (reverse); GAPDH AGCCACATCGCTC
AGACAC (forward), GCCCAATACGACCAAATCC (re-
verse); and ACTB CCAACCGCGAGAAGATGA (forward),
CCAGAGGCGTACAGGGATAG (reverse). Cycling con-
ditions were 95°C, 10 min and 40 cycles of 95°C, 15 s; 60°C,
1 min. Each reaction was carried out in three technical
replicates. Cp values were extracted with the LightCycler
software V1.5 (Roche).

Animal experiments

All procedures involving animals were conducted in con-
formity with the institutional guidelines for animal experi-
mentation of the Institute of Oncology Research Bellinzona
and in compliance with national and international policies.
Study protocols were approved by the Swiss Veterinary
Authority. Athymic nude mice were purchased from Charles
River and the Harlan Laboratories and maintained under
pathogen-free conditions with food and water ad libitum. The
general health status of all animals was monitored daily. For
the biodistribution study, five athymic nude mice (Balb/c
nu/nu, 4-6 weeks old; Charles River laboratories) received a
single s.c. injection of 50mg/kg siRNA II in PBS. As a
control, two mice received a single s.c. injection of PBS
alone. Mice were sacrificed 4 h after the injection, and the
following tissues were collected: liver, kidney, spleen, lung,
heart, skeletal muscle, prostate, and blood.

For the tumor xenograft study using in vivo jetPEI formu-
lated siRNA II (DU145 xenografts), mice were purchased
from the Harlan Laboratories. DU145 cells were mixed with
Matrigel and injected (5 x 10° cells/site) in the flank of athy-
mic nude mice (Balb/c nu/nu, 4-6 weeks old; n=4/group).
Mice with s.c. tumor xenografts (ca. 100 mm3) received in-
traperitoneal injections of siCon III, siRNA I, or siRNA II,
each formulated with in vivo jetPEI (Polyplus Transfection) at
the dose of 2mg/kg thrice a week (Monday, Wednesday,
Friday) for 3 weeks. For the xenograft study using PBS-
formulated siRNA II, each cohort consisted of seven mice
(PC3 xenografts). PC3 (3x 10° cells/site) cells were inocu-
lated with Matrigel in the flank of NSG mice (Charles River
laboratories), and treatment was started when tumors were
ca. 100mm’. Mice received three s.c. injections (Monday,
Wednesday, Friday) of siRNA II (50 mg/kg, in PBS), siCon II
(50 mg/kg, in PBS), or siRNA I (5§ mg/kg, formulated with
in vivo jetPEI) per week for 2 weeks. Tumor growth in both
studies was monitored twice a week by caliper. Tumor vol-
ume and weight were measured at the end of the treatment.

Results

We synthesized three siRNA constructs directed against
Lin28B mRNA (Fig. 1A); namely, an unmodified siRNA
encompassing a classical two nt dT overhang (siRNA 1), a PS
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FIG. 1. In vitro and in vivo silencing activity of siRNAs in this study. (A) Chemical architecture of siRNA variants
investigated. (B) Reverse transcription—quantitative polymerase chain reaction of Lin28B, ACTB, and GAPDH after
transfection of 40 nM siRNAs I-III (Lipofectamine 2000) in HEK 293T cells. Results normalized to ACTB and siCon 1.
siCon I and II are scrambled siRNA I and II, respectively. Asterisks indicate statistical significance to mock treatment
calculated by one-way analysis of variance and Dunnett’s post hoc test. ***P <0.001; ****P <0.0001, n=3. (C) Tumor
weight and (D) tumor volume at the end of treatment. DU145 prostate cancer cells (5% 10° cells/injection site) were
implanted subcutaneously in athymic nude mice, and treatment started when tumors were 100mm?. Mice (n=4/group)
received intraperitoneal injections of siCon III, siRNA I, or siRNA II (three injections/week for 3 weeks) at a dose of
2 mg/kg, formulated with in vivo jetPEI [data from (C)], and (D) was previously published in part (siRNA I) [32] and is

included here for comparison. siRNA, small interfering RNA.

analog thereof (siRNA II), and a fully 2’-OMe, 2’-F stabilized
variant (siRNA III) that was modified according to recently
published design guidelines [39]. We have previously de-
scribed the in vitro and in vivo targeting properties of siRNA
sequences siRNA I and siRNA II [32,33,40,41]. We also
prepared two reference siRNAs, corresponding to the re-
cently approved patisiran [12,13] without its LNP formula-
tion (siRNA IV) and the currently clinically investigated
fitusiran [42,43] without the GalNAc group (siRNA V)
(Table 1 and Supplementary Fig. S1).

Transfection of siRNAs I-III into HEK293T cells that
express detectable levels of Lin28B revealed that siRNA 11
was marginally less active than the unmodified siRNA I
(Fig. 1B and Supplementary Fig. S2). Surprisingly, the loss in
silencing activity in the HEK293T cells was more pro-
nounced for siRNA III (Fig. 1B), possibly due to the change
of the aforementioned asymmetric modification pattern to a
classical siRNA format and the presence of 2’-OMe nucleo-
sides in positions 9/10 (antisense strand), which are often
modified with 2’-F as in vutrisiran [44] or fitusiran (Table 1).
An alternative explanation could be a poor intracellular
phosphorylation efficiency of the modified RNA [34,45]. In a
previous investigation, we described how jetPEI-formulated
siRNA I inhibits tumor growth in a mouse DU145-xenograft

Color images are available online.

model [33]. When the fully PS-modified siRNA II was tested
under the same conditions, it showed a modestly reduced
level of inhibition of tumor growth compared to siRNA I
(Fig. 1C, D) [33]. We therefore questioned whether the full
PS backbone might provide sufficient stabilization and suit-
able pharmacokinetic properties to enable in vivo activity
also in the absence of a delivery vehicle.

Upon s.c. injection, siRNAs are exposed to a diverse set of
nucleases during circulation, extravasation, and cell entry.
Although our understanding of the cellular uptake of thera-
peutic oligonucleotides is limited, siRNAs are thought to be
transported in endosomal vesicles that are subsequently fused
with lysosomes [46—48]. While several nanoparticle or
polymer based formulations have been developed to facilitate
endosomal escape [49], nuclease stability during endosomal
trafficking is required for the administration of oligonucleo-
tides formulated in PBS and has been identified as a key
determinant of the in vivo efficacy of GalNAc-conjugated
siRNAs [15]. Rat liver tritosomes are an in vitro surrogate for
cellular lysosomal compartments [50]. We therefore inves-
tigated the nuclease resistance of siRNAs [-V in two different
biological matrices: mouse serum (Fig. 2A and Supplemen-
tary Fig. S3) and rat liver tritosome extracts (Fig. 2B and
Supplementary Fig. S4). As expected, unmodified siRNA I
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TABLE 1. SEQUENCES OF SMALL INTERFERING RNAS

siRNA Strand Sequence (5°-3') M calc M found Target

siRNA 1 AS AAAUCCUUCCAUGAAUAGUTT 6599.07 6598.83 Lin28B
S ACUAUUCAUGGAAGGAUUUTT 6656.09 6655.29

siRNA II AS AAAUCCUUCCAUGAAUAGUTT 6920.38 6919.45 Lin28B
S ACUAUUCAUGGAAGGAUUUTT 6977.40 6976.11

siRNA III AS aAaucCuuccaugAaUaguuu 6913.65 6912.87 Lin28B
S acuauuCaUGGaaggauuuuu 6970.65 6969.91

siRNA IV AS AUGGAAuACUCUUGGUuUACTT 6660.07 6659.25 TTR
S GuAAccAAGAGuAuuccAuTT 6764.32 6763.61

siRNA V AS uUgAaGuAaAuggUgUuAaCcag 7675.03 7674.09 Serpinc 1
S GgUuAaCaCCAuUuAcUuCaA 6784.26 6783.30

Upper case is RNA, upper case underlined is 2’-F, lower case is 2’-OMe, PS linkages are in bold. Sequences of siRNA IV and V
retrieved from patents US20170307608A1 and US20170159053A1, respectively.

siRNA, small interfering RNA; PS, phosphorothioate.

was largely degraded within 24 h in mouse serum and within
30 min in tritosome extracts, whereas fully-modified siRNAs
IIT and V showed superior stability. In contrast, the nuclease
stability of siRNA II was markedly increased compared to
that of siRNAs I and IV. Particularly the stark difference
between siRNAs II and IV in the tritosome assay, despite
similar serum stability profiles, encouraged us to further in-
vestigate siRNA II as an alternative scaffold for nanoparticle-
free delivery. In addition, an electrophoretic mobility shift
assay based albumin binding study suggested a moderately
increased albumin binding of siRNA II compared to siRNA I
(Supplementary Fig. S5). The albumin binding appears to be
transient as indicated by an albumin-dependent smear instead
of an increase of the slow migrating band and might con-
tribute to a more favorable pharmacokinetic profile.

Hence, we conducted a label-free biodistribution study
for which nude mice received either a single s.c. injection
of 50 mg/kg siRNA 1II or PBS (Fig. 3A and Supplementary
Fig. S6, S7). A range of tissues were harvested 4h after
the injection and analyzed by a PNA hybridization assay
[35-38]. Main sites of accumulation were liver and kidney, in
line with previous reports of naked administration of chem-
ically modified siRNAs [18,26,31,51]. Lowest levels were
found in blood, consistent with a fast excretion and tissue
distribution of circulating siRNAs. Total amounts of siRNA in
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tissues were 10xlower compared to a previous study that
used Dynamic Polyconjugate™ formulation [35] and ~ 10—
100 xlower compared to GalNAc- or lipid-conjugated fully
modified siRNAs [15,31]. As amounts of siRNAs in the cy-
tosol are generally much lower than the total tissue deposition
[15], we wondered if the observed tissue accumulation led to
productive cellular uptake [52]. Previous reports have indi-
cated that PS-modified oligonucleotides can stimulate the
uptake of co-delivered siRNAs in trans [53]. We therefore
hypothesized that the full PS backbone chemistry of siRNA II
might also facilitate cellular uptake in a comparable manner.
To investigate this, we conducted a mouse xenograft study in
which each animal received six injections of either PBS-
formulated siRNA II or siCon II. In vivo jetPEI formulated
siRNA I served as a positive control, and tumor growth was
monitored over a period of 2 weeks. Although tumor growth
was generally slower than expected, no reduction in tumor
growth was observed after administration of PBS-formulated
siRNA II compared to the corresponding scrambled control
(siCon 1II) (Fig. 3B, C), whereas some activity was observed
after administration of siRNA 1. The animal weight at the end
of treatment was not significantly different between the groups
(Supplementary Fig. S8B).

We therefore concluded that either the metabolic stability
(Fig. 2A, B) or protein binding abilities (Supplementary
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FIG. 2. Nuclease stability in different biological matrices. Stability of siRNAs I-V in (A) 50% murine serum and (B) rat liver
tritosome extracts. siRNAs were incubated either in 50% murine serum or standardized rat liver tritosome extracts (pH=>5), and
aliquots were analyzed by ion-exchange high performance liquid chromatography at the indicated time points (n = 3).
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FIG. 3. Biodistribution and in vivo silencing activity of phosphorothioate siRNA II. (A) Biodistribution profile of siRNA
II. Nude mice received a single subcutaneous injection of 50 mg/kg. Mice were sacrificed 4 h after the injection. Quantification
via PNA hybridization assay. Symbols indicate individual mice. Median is indicated by a horizontal mark. The edges of each
box mark the 25" and 75" percentile. Whiskers extend to lowest and highest values. One femtomole per milligram tissue
corresponds to 0.014 ng/mg. (B) Tumor weight and (C) tumor volume after repeated injections of siRNA II (50 mg/kg in PBS),
siCon II (50 mg/kg in PBS), or siRNA I (5mg/kg, in vivo jetPEI) in PC3 xenograft bearing mice. Mice received three
injections per week for 2 weeks, n="7. NB: The response of the PC3-xenografts toward jetPEI formulated siRNA I was weaker
than for DU145 xenografts (Fig. 1C, D). PBS, phosphate-buffered saline; PNA, peptide nucleic acid hybridization assay.

Fig. S5) of siRNA II did not produce sufficient tissue accu-
mulation or that the double-stranded format did not stimulate
productive cellular uptake in a comparable manner as has been
described for single-stranded PS oligonucleotides. Never-
theless, as particularly the use of 2’-F building blocks has
recently been questioned due to a potential risk of genotoxicity
[54], further research will focus on other alternative strategies
that allow the construction of siRNAs for systemic delivery
without the need for extensive chemical modification.

Discussion

To be efficient in patients, state-of-the-art siRNAs are
constructed from three essential components: a fully modi-
fied RNA core that conveys metabolic stability, a targeting
moiety which mediates uptake into the desired cell popula-
tion, and a linker which provides optimal spacing for inter-
action with the designated cell surface receptors. However,
the increasing complexity of the siRNA core poses a chal-
lenge in terms of risk assessment of secondary effects orig-
inating from the long-term exposure to chemically modified
RNA metabolites. In particular the use of 2’-F building blocks
has recently come under scrutiny because of the potential
incorporation of modified nucleosides into host DNA and
RNA [44,54].

In this study we show that uniform PS modification of a
siRNA directed against the oncoprotein Lin28B leads to
a substantial increase in metabolic stability compared to a
classical PO siRNA, without greatly compromising the gene
silencing activity. We found that the nuclease stability of PS
siRNAs was not only increased compared to the PO variant
but also matched the stability of nanoparticle-free patisiran
in mouse serum and surpassed both in rat liver tritosome
extracts. However, it did not reach the stability of a fully
chemically stabilized siLin28B analog or that of the fitusiran
siRNA core structure. A label-free biodistribution study re-
vealed liver and kidney as the main sites of tissue accumu-
lation after s.c. administration of the PS siRNA formulated in
PBS. However, no inhibition of tumor growth was observed

after naked delivery of the PS siRNA in a PC3 xenograft
study. Possible reasons could be a low penetration and uptake
of the siRNA into the tumor tissue or that the observed level
of metabolic stability was not sufficient to support the treat-
ment regimen but would require a more frequent dosing. To
gain further insights into the ability of siRNAs to penetrate
into tumor tissues, it will be of value to investigate the uptake
into different sections of the tumor in an orthotopic model.

Despite the lack of a delivery agent-free antitumor effect,
we anticipate our study to be a starting point to develop al-
ternative siRNA scaffolds that can be degraded into naturally
occurring metabolites to minimize the risk of genotoxicity
after long-term exposure to non-natural RNA metabolites.
For example, the insertion of PS linkages of defined stereo-
chemistry in hotspot regions for nuclease degradation offers a
possibility to modulate the pharmacokinetic profile without
the formation of additional metabolites. Recent develop-
ments regarding the use of heavily-modified siRNAs have led
to a reduction of the 2’-F content in favor of 2’-OMe nucle-
osides, which also limits patient exposure [39,44]. Further-
more, Lin28B is a promising target in different cancers, and
the development of new siLin28B analogs, possibly in con-
junction with novel targeting units, holds great potential for
future antitumor therapies.
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