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Mitochondrial Monoamine Oxidase: Another Player in
Pulmonary Hypertension?

Pulmonary hypertension (PH) is a multifactorial disease caused by
pulmonary vascular remodeling, which subsequently leads to right heart
hypertrophy and ultimately right heart failure. Despitemajor advances in
therapy with specific pulmonary vasoactive substances, most forms of
PH, particularly those related to precapillary vascular remodeling, remain
incurable diseases. A plethora of mechanisms leading to pulmonary
vascular and right heart remodeling have been described in animal
models. However, the transfer of novel therapeutic concepts into the
treatment of patients has so far been limited (1). Reactive oxygen species
(ROS) have been suggested to play a key role in the activation of
proliferative and antiapoptotic pathways underlying pulmonary vascular
remodeling and also the adaptation and maladaptation of the right heart
to increased afterload (2, 3). Specifically in the pulmonary endothelium,
ROS may promote migration and proliferation (4). In addition,
serotonin (5-hydroxytryptamine [5-HT]) has long been assigned an
important role in the development of PH. This is because anorexigens,
which increase the availability of 5‐HT by inducing its release from
platelets and inhibiting its degradation by monoamine oxidases (MAO),
were noted to increase the risk of PH (5). MAOs are mitochondrial
enzymes involved in production of hydrogen peroxide via the
catabolism of monoamines such as catecholamines and 5‐HT; thus, it is
of the greatest interest to elucidate the role of MAOs for development of
PH. Two isoforms of MAO exist, namely MAO-A and MAO-B, which
differ in their expression among species, organs, and cell types
(6). Interestingly, expression of MAO-A or MAO-B within an organ
such as the heart differs with age (7), and upregulation of a specific
isoform might occur under pathophysiological conditions (8).

The study in this issue of the Journal by Sun and colleagues
(pp. 331–343) addresses this important topic and clearly
demonstrates that MAO-A contributes to pulmonary vascular
remodeling and intimal proliferation in the rat model of PH,
induced by the VEGF-inhibitor Sugen 5416 in combination with
hypoxia (SuHx) (9). The authors found a slight but significant
decrease of hemodynamic parameters characterizing PH and
histological features of vascular remodeling in SuHx rats treated
with the selective MAO-A inhibitor clorgyline in a curative
approach. Moreover, the study reveals that MAO-A does not seem
to have a direct effect on right ventricular remodeling, as in the rat
model of isolated right heart pressure overload induced by
pulmonary artery banding, MAO-A inhibition by clorgyline did
not affect right heart function or remodeling determined by
hemodynamics and histology (Figure 1). Importantly, this study
clarifies the role of MAO-A in the development of pulmonary
vascular and right heart remodeling. In contrast to the right

ventricle, the relevance of MAO-A inhibition for left ventricular
pressure overload–induced heart failure and other left ventricular
pathologies was previously shown in various experimental models
(10). This study thus fills the gap between the right and left ventricles
and provides more evidence that the right and left heart respond
differently to pressure overload, as suggested by previous studies
regarding the source of ROS and antioxidant defense mechanisms in
right and left heart hypertrophy and failure (2, 11, 12). Moreover, this
study adds another piece to the puzzle to understand the multifactorial
pathogenesis of PH, and it supports previous findings that increased
ROS contribute to pulmonary vascular remodeling. Over the past
decade, there has been controversy in the field as to whether increased
or decreased ROS promote proliferation of pulmonary vascular cells
(3, 4, 13). In particular, in chronic hypoxia–induced PH, the relevance
of increased ROS has recently been challenged (14). In this regard, the
SuHx-PH model, in contrast to the hypoxic PH model that uses
hypoxia as a single trigger, can activate other, particularly
endothelium-related, mechanisms and thus may reflect human
idophathic pulmonary arterial hypertension better than the hypoxia
model. However, the current study is limited in this respect, as they
unfortunately did not look more deeply into the mechanisms of
clorgyline-dependent inhibition of pulmonary vascular remodeling.
Most importantly, it did not prove the causality between MAO-A–
dependent ROS release and intimal proliferation. Although
clorgyline has a high specificity for MAO-A compared with MAO-B
(15), other potential off-target effects of clorgyline should be
addressed in further studies by use of MAO-A–deficient mice.
Although the authors focused on MAO-A in the present study,
which is indeed the dominant isoform under physiological
conditions in the rat, a possible contribution of MAO-B, which
might be upregulated under pathophysiological conditions such as
hypoxia or pressure overload, was not ruled out. Thus, both the
expression of MAO-B and the importance of deprenyl as a specific
MAO-B inhibitor need to be assessed in future studies.

Finally, one has to ask about the relevance of the findings for
human disease. Two questions are important in this regard: first,
how is MAO-A regulated in human disease and what happens to
MAO-B expression, and second, how robust is the therapeutic effect
in the animal model? The first question needs to be answered with
caution. Although the authors show increased staining ofMAO-A in
lung samples of PH patients by immunohistochemistry, neither in
lung homogenate nor in isolated endothelial cells could upregulation
of MAO-A be detected by Western blot, and MAO-B was not
assessed. Using MAO-A knockout mice to test the specificity of the
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antibody would also have been helpful in this regard. The second
question is naturally more difficult, as animal models in general
only partially reflect human disease. To address this limitation,
several animal models should be used in the future to test the
reproducibility of the clorgyline effect in different disease
mechanisms. Moreover, the exact mechanism of clorgyline needs to
be deciphered, particularly against the background that previous
clinical trials inhibiting 5-HT receptors were not successful,
although their study design has been questioned (1). Moreover, one
has to keep in mind that clorgyline only produced a slight
attenuation of PH in the current study. This finding needs to be
further evaluated in other animal models that may respond more
strongly to clorgyline.

Thus, the study from Sun and colleagues (9) opens a very
interesting view on the role of MAO-A for development of PH and
right heart remodeling, and further studies in different animal
models are warranted to assess the potential of MAO-A (and/or
MAO-B) inhibition for human disease. n
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Figure 1. Monoamine oxidase A (MAO-A) is located at the outer mitochondrial membrane and catalyzes the deamination of monoamines by use of
oxygen, which results in production of hydrogen peroxide. Inhibition of MAO-A by the selective, irreversible inhibitor clorgyline attenuated pulmonary
hypertension (PH) in the rat model of PH, induced by the VEGF-inhibitor Sugen 5416 in combination with hypoxia (SuHx). Clorgyline did not affect right
heart remodeling induced by PAB, a model that induces right heart pressure overload independent of PH. Future questions that should be addressed are
related to the cell type and mechanism that underlies the protective effect of clorgyline as well as the contribution of MAO-B. Furthermore, clorgyline
should be tested in other animal models of PH to test its relevance for human pulmonary arterial hypertension. PAB=pulmonary artery banding;
VEGF= vascular endothelial growth factor.
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