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Abstract
Understanding factors that influence observation processes is critical for accurate 
assessment of underlying ecological processes. When indirect methods of detection, 
such as environmental DNA, are used to determine species presence, additional lev-
els of uncertainty from observation processes need to be accounted for. We con-
ducted a field trial to evaluate observation processes of a terrestrial invasive species 
(wild pigs‐ Sus scrofa) from DNA in water bodies. We used a multi‐scale occupancy 
analysis to estimate different levels of observation processes (detection, p): the prob-
ability DNA is available per sample (θ), the probability of capturing DNA per extrac-
tion (γ), and the probability of amplification per qPCR run (δ). We selected four sites 
for each of three water body types and collected 10 samples per water body during 
two months (September and October 2016) in central Texas. Our methodology can 
be used to guide sampling adaptively to minimize costs while improving inference of 
species distributions. Using a removal sampling approach was more efficient than 
pooling samples and was unbiased. Availability of DNA varied by month, was consid-
erably higher when water pH was near neutral, and was higher in ephemeral streams 
relative to wildlife guzzlers and ponds. To achieve a cumulative detection probability 
>90% (including availability, capture, and amplification), future studies should collect 
20 water samples per site, conduct at least two extractions per sample, and conduct 
five qPCR replicates per extraction. Accounting for multiple levels of uncertainty of 
observation processes improved estimation of the ecological processes and provided 
guidance for future sampling designs.
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1  | INTRODUC TION

A primary challenge to understanding ecological processes and the 
patterns they produce (e.g., survival, abundance, distribution) is that 

they are rarely, if ever, observed perfectly. Understanding variation 
in the ability to detect a target species in the wild is necessary for dis-
entangling the noise in observation processes (i.e., detection) from 
the signal of ecological processes of interest. The need to account 
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for observation processes is well recognized in ecology, and many 
factors are known to impact these processes including observer 
error (Nichols, Hines, Sauer, Fallon, & Heglund, 2000), environ-
mental conditions (Simons, Alldredge, Pollock, & Wettroth, 2007), 
detection method (Digby, Towsey, Bell, & Teal, 2013), and species 
behavior (Diefenbach, Marshall, Mattice, & Brauning, 2007). In mo-
lecular ecology, there are additional levels of uncertainty in obser-
vation processes dealing not just with species availability and human 
observation error but also with DNA availability and assay specific-
ity and sensitivity (Willoughby, Wijayawardena, Sundaram, Swihart, 
& DeWoody, 2016). To effectively use molecular techniques to make 
inference to underlying ecological processes, it is necessary to eval-
uate and account for the various levels of uncertainty in observation 
processes (Bohmann et al., 2014; Hunter et al., 2015; McClintock 
et al., 2010; Spear, Groves, Williams, & Waits, 2015). Because the 
sources of error for genetic methods span multiple levels of biolog-
ical organization, the overall error structure should be hierarchi-
cal—that is total error should be equivalent to a series of conditional 
probabilities.

Detection rates of individuals in the field may be influenced by 
vegetation or weather conditions such as dense foliage or rain that 
create visual obstructions, or road or stream noise that cause audi-
tory disturbance, or time of day or season that may cause behav-
ioral differences in detection rates (Christy, Yackel Adams, Rodda, 
Savidge, & Tyrrell, 2010; Farnsworth et al., 2002). Observation pro-
cesses for molecular tools are unique because there are additional 
levels of observation (e.g., availability of DNA, DNA capture rate, and 
amplification success). Environmental conditions (pH, temperature, 
substrate, etc.) may strongly influence the observation processes at 
these different levels. Incorrectly accounting for multi‐level influ-
ences could lead to biases in estimates of the underlying ecological 
process (Gu & Swihart, 2004). It is possible to get unbiased estimates 
of the cumulative detection process without accounting for the dif-
ferent levels of uncertainty (Schmidt, Kéry, Ursenbacher, Hyman, & 
Collins, 2013). However, identifying the observational processes by 
level allows for the optimization of sampling effort to increase over-
all detection probability. Thus, an understanding of both the factors 
affecting observation as well as the level they act on is critical for 
accurately quantifying ecological processes such as species distri-
bution (invasive or endangered) or pathogen spread using molecular 
methods such as environmental DNA (eDNA; DNA collected from 
the environment rather than directly from a target species).

Detection of a target species’ eDNA from water bodies is 
emerging as a potentially valuable method to infer the distribu-
tion of species and pathogens (Bohmann et al., 2014; Hunter et al., 
2015; Takahara, Minamoto, & Doi, 2013). Efforts have been largely 
focused on aquatic and semi‐aquatic species such as amphibians 
(Biggs et al., 2015; Pilliod, Goldberg, Arkle, & Waits, 2013; Schmidt 
et al., 2013), reptiles (Hunter et al., 2015; Piaggio et al., 2014), inver-
tebrates (Doi et al., 2017; Thomsen et al., 2012), and fish (Takahara 
et al., 2013; Thomsen et al., 2012). As more recent work has applied 
eDNA detections in water bodies to terrestrial mammals (Rodgers & 
Mock, 2015; Ushio et al., 2017; Williams, Huyvaert, & Piaggio, 2017), 

the method could be especially useful for detecting new invasions 
of terrestrial species in the early stages. To maximize the utility of 
eDNA in understanding landscape‐level ecological processes (e.g., 
occupancy, distribution), it is important to determine the observa-
tion processes (i.e., detection rates) at many levels (Willoughby et al., 
2016) that may influence the probability of detecting DNA in the 
environment. Once cells are shed, abiotic and biotic factors begin 
to degrade DNA (Barnes & Turner, 2016). Previous work has shown 
that the influence of microbial communities, temperature, pH, UV, 
and other environmental factors will impact the availability of DNA 
in the environment (Barnes & Turner, 2016) and therefore should be 
accounted for when assessing the detection probability of eDNA.

Occupancy models (MacKenzie et al., 2006) are well suited for 
quantifying species distributions in space and time while accounting 
for levels of uncertainty across observation processes, and have been 
used to assess species presence through eDNA (Hunter et al., 2015; 
Schmelzle & Kinziger, 2016; Schmidt et al., 2013; Valentini et al., 2016). 
When using eDNA as a passive detection method, there is the added 
complexity over a classical occupancy model because, even when 
the species of interest is present, the DNA in a given sample may not 
be present (Furlan, Gleeson, Hardy, & Duncan, 2016; Williams et al., 
2017). Therefore, the detection process (p) of a species by eDNA can 
be split into three levels: the probability that DNA is present and can 
be detected, “available”, in the water sample (θ), the probability of cap-
turing DNA in an extraction procedure (γ) given it is available in the 
sample, and the probability of amplifying DNA in a qPCR run (δ) given 
it has been captured in an extract. Separating these probabilities allows 
evaluation of factors that influence observation of DNA across each of 
these levels as well as their influence on overall detection probability. 
By separating the observation process out in this manner, we can iden-
tify the level that will improve the most by increased sampling and thus 
ensure resources are optimally allocated. Enhancing overall detection 
probability will result in better inference of underlying ecological pro-
cesses using this approach for the detection of cryptic (Bickford et al., 
2007) or elusive (Rogala et al., 2011) species.

We sampled for eDNA of wild pigs (Sus scrofa), an invasive terres-
trial species in North America and other parts of the world. They are 
capable of rapid geographic expansion (Snow, Jarzyna, & VerCauteren, 
2017) and cause high levels of damage to ecosystems and the econ-
omy (Anderson, Slootmaker, Harper, Holderieath, & Shwiff, 2016; 
Chavarria, Lopez, Bowser, & Silvy, 2007; West, Cooper, & Armstrong, 
2009). Because they are reliant on water bodies for drinking and wal-
lowing, and their distribution and densities vary widely, they are a 
good model system for evaluating the potential application of eDNA 
for assessing the presence of terrestrial species, understanding spatial 
expansion of invasive species, and developing protocols for monitor-
ing the effectiveness of invasive species control programs. As elimina-
tion programs for wild pigs occur in many countries across the globe, 
there is great need for cost‐effective methods for evaluating success 
and guiding decisions (Hone, 1983; Korn & Bomford, 1996; Saunders 
& Bryant, 1988). Further, in areas without wild pigs, the ability to 
evaluate reports of sightings or sign is critical to implementation of 
early control measures that could curb the establishment of a newly 
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invasive population. Environmental DNA is a promising tool to aid in 
these monitoring efforts because it has the potential to be an effi-
cient field method (Williams et al., 2017). Yet, application of eDNA in 
terrestrial species is currently limited by a poor understanding of the 
observation processes and inferences of ecological processes.

Our objectives were to: (a) examine factors that influence obser-
vation processes across several levels: availability of eDNA in water 
sampling, the capture rate of DNA in the extraction process, and 
the amplification probability during qPCR, (b) evaluate our ability 
to correctly assess target species presence at sampling sites given 
our observation process, and (c) develop an adaptive approach to 
eDNA collection and analysis to balance field and laboratory effort 
for efficiency. By accounting for multiple levels of uncertainty in the 
observation process, we aim to improve estimation of ecological 
processes and provide guidance for future sampling designs using 
eDNA for detection of a target species.

2  | METHODS

2.1 | Study area

One way to understand the detection probability of a method, such as 
eDNA, is to evaluate the ability to detect a target species in a setting 
where the species is known to be present. Typically, the presence or 
absence of a species is of primary interest and the detection probabil-
ity is often thought of as a nuisance parameter that must be accounted 
for to obtain unbiased estimates of species occupancy (MacKenzie 
et al., 2002). However, to get precise estimates of detection probabil-
ity based on the detection method alone, we can reframe the prob-
lem to eliminate the “nuisance” parameter of occupancy probability 
(MacKenzie et al., 2006) by sampling in an area where the presence 
of the species is known. This allows for the assessment of factors that 
might influence detection such as environmental (abiotic and biotic) 
factors or laboratory processes.

Our study was conducted at Camp Bullis Training Site (112.9 km2), 
in northern Bexar County, Texas, USA operated by Joint Base San 
Antonio (Figure 1). Camp Bullis is a restricted access property with pe-
rimeter fencing and high densities of pigs. This property is located in 
the Edwards Plateau ecoregion of the south‐central semi‐arid prairies 
of Texas (Bailey, 1980, 1998). Vegetation is primarily comprised of an 
oak woodland and grassland matrix (Wills, 2006). Topography consists 
of rolling hills with limestone outcrops, rocky soils, and caves typical 
of the Edwards Plateau (Kastning, 1983). Semi‐ephemeral streams and 
pools fluctuate throughout the year, usually peaking during the wet-
test month of May. Camp Bullis reports that >140 guzzlers are scat-
tered throughout the property as catchments of rainwater for wildlife, 
although not all of these guzzlers are maintained and hold water.

2.2 | Cameras

Remote cameras (Reconyx® PC900, Holmen, WI, USA) were 
mounted on trees overlooking the focal sampling sites (water bodies) 

where obvious sign of animal visitation had occurred (e.g., tracks, 
trails, or scat). Cameras were mounted ≤10 m from the water and 
were programed to record motion‐activated images. Upon motion, 
the cameras took three photos that were 30 s apart, followed by 
a quiet period of 15 min. The memory cards and batteries of cam-
eras were refreshed once per month, and the camera positioning 
adjusted depending on water level. From the camera trap data lo-
cated at each water body at the time of sampling, we recorded: the 
number of hours since the last pig visit to the water body; the num-
ber of images in the last day, week, and month with pigs; and the 
average group size of pigs in pictures with pigs using the Colorado 
Parks and Wildlife Photo Database (v3.0) for image processing (Ivan 
& Newkirk, 2016). These data were collected to help us assess our 
ability to successfully collect wild pig eDNA after a documented visi-
tation to the site.

2.3 | Field eDNA collection

Previous studies some of us developed (Williams, Huyvaert, & 
Piaggio, 2016; Williams, Huyvaert, Vercauteren, Davis, & Piaggio, 
2018; Williams et al., 2017) a method for detecting pig DNA in water. 
Typically, wild pigs use smaller bodies of water or edges of water 

F I G U R E  1  Map of study area, Camp Bullis, Texas. Sampling 
locations are shown as colored circles (pond‐yellow, stream‐green, 
and wildlife guzzler‐black)
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bodies. The activity of pigs and the nature of the water bodies they 
use mean that the target water bodies are often very turbid with 
high degree of suspended sediment and floating debris. Thus, we 
specifically tested methods for capturing DNA from such systems 
(Williams et al., 2017). Further, to meet our agency’s goal of detect-
ing wild pigs, we had some practical considerations to build into our 
method development: (a) our field personnel could not transport 
extra equipment such as filters, (b) field personnel did not have time 
to conduct filtering of samples in the field, (c) field samples could not 
require a cold chain for field preservation, and (d) samples collected 
had to be made small and light. Thus, the collection implemented 
in this study reflects these practical considerations as incorporated 
into the optimized collection and lab assay we developed for wild pig 
detection (Williams et al., 2016, 2017, 2018).

We selected 12 sites within Camp Bullis for water sample col-
lection (Figure 1). We stratified the sites by three water body types 
(natural ponds, streams, and wildlife guzzlers). We randomly se-
lected four sites from each of three water body types: natural ponds, 
stream (broken into 100 m segments), and wildlife guzzlers. Water 
samples were collected once a month for 2 months (September and 
October 2016). We focused on this time period to avoid camera 
damage (i.e., March–May) associated with spring flooding and be-
cause our access was restricted to some of the sites during hunting 
season (i.e., November–December).

Each sampling event consisted of taking 10 water samples from 
each of 12 sites. Sampling was evenly spaced in wildlife guzzlers, 
and spread around ponds and along streams. The goal of taking 
multiple samples was to get a diverse selection of water from the 
site to maximize the chance that the samples would contain wild 
pig DNA and overcome the heterogeneous distribution of eDNA 
in the environment (Furlan et al., 2016). Samples were collected 
by submerging a 60 ml Nalgene bottle ten centimeters below the 
surface of the water (when possible) until the bottle was filled to a 
line marked on the bottle at 45 ml. Then, 15 ml of Longmire’s lysis 
buffer was added to the sample (1 part Longmire’s: 3 parts sam-
ple water as in Williams et al., 2016). With the collection of each 
sample, our intent was to collect as little sediment as possible to 
avoid colloidally bound DNA that may not have been shed recently 
(Barnes et al., 2014). A negative control (15 ml tap water carried 
by sampler with 5 ml of Longmires buffer added) was collected 
during each sampling session at each site. Gloves were worn at all 
times while sampling and were changed between sites. Collectors 
were instructed not to walk in the water body to avoid contam-
ination between sites. Each bottle was labeled with a unique ID 
relating to site, field replicate number, and date collected. The lo-
cality information, number of samples, type of water body (i.e., 
wallow, moving, artificial waterer/tank, other), approximation of 
size of water body (i.e., small (<10 m2), medium (10–1,000 m2), 
large (>1,000 m2)), pH, approximation of depth where the sample 
was collected (cm), if it was collected along a transect or randomly, 
and whether there was evidence of pig activity in the area (i.e., 
tracks, rooting, wallowing) were all recorded as site‐level charac-
teristics. Samples were stored in a box at ambient temperature 

until being shipped to the United State Department of Agriculture 
(USDA) Animal and Plant Health Inspection Service (APHIS) 
National Wildlife Research Center (NWRC) within a week of col-
lection. Once received at NWRC, the samples were placed in a 
−80°C freezer until further processing.

2.4 | eDNA capture, extraction, and amplification

We compared two strategies for our extraction and amplification 
procedures. For the first procedure, we followed protocols that rec-
ommend pooling samples by site (Biggs et al., 2015) and conduct-
ing three extractions from the pooled sample (Piaggio et al., 2014). 
From each extraction, we ran five qPCR replicates before inhibitor 
removal and 5 qPCR replicates after inhibitor removal (Figure 2; de-
tails on inhibitor removal below). This method was more efficient 
for laboratory work; however, it produced few positive water sam-
ples despite camera data showing pigs at sampled water bodies. 
We suspected that pooling all 10 samples from each site diluted the 
DNA below detectable levels. Therefore, for our second strategy, 
we examined the 10 samples by site separately and conducted two 
extractions per sample. From each extraction, we ran three qPCR 
replicates before inhibitor removal and three qPCR replicates after 
inhibitor removal (Figure 2). Therefore, each individual sample was 
split in half, with one half being pooled by site and the second half 
being treated separately.

The analyses of the separate water samples by site increased 
the detection probability substantially (see results) but proved bur-
densome for laboratory personnel and resources. Therefore, for the 
second month (October), we compared the amplification for pooled 
samples as in the previous month, but we additionally used a re-
moval sampling approach on the separate samples to reduce labo-
ratory costs. For the removal sampling approach, we analyzed one 
water sample at a time (conducting two extractions per sample and 
three qPCR replicates per extraction), per site and stopped once a 
positive detection occurred. For each sample, we proceeded as for 
the standard sampling design in which we took two extractions per 
sample and ran six qPCR replicates per extraction (three pre‐inhibi-
tor removal and three post‐inhibitor removal).

Each field sample for both months had a total volume of 60 ml 
(45 ml sample water + 15 ml Longmires = 60 ml). Therefore, 30 ml 
from each of the field samples were pooled and 30 ml were kept 
separate. Each extraction for both pooled and separate samples was 
conducted on 15 ml subsamples. We conducted three extractions of 
15mls from our pooled water samples and two extractions of 15 ml 
for our separate samples.

We followed an optimized eDNA extraction protocol for detect-
ing wild pig DNA in turbid waters (Williams et al., 2017). Briefly, this 
involved centrifuging each 15 ml subsample at 9,000 g for 15 min at 
room temperature, extracting DNA from the pellet with the DNeasy 
mericon Food Kit (Qiagen) in triplicate. We included a negative con-
trol in each set of extractions to monitor for contamination.

The number of qPCR replicates varied by month for pooled sam-
ples (first month of study: five replicates, second and third month 
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of study: six replicates) and were conducted on a CFX96 (BioRad) 
following Williams et al. (2017). Each qPCR reaction was a 30 μl re-
action. Each reaction contained 15 μl Taqman environmental mas-
termix (Life Technology), 1 μl BSA, 6 μl distilled water, 1 μl of each 
primer (10 μmol/L), 1 μl of the probe (2.5 μmol/L), and 5 μl of tem-
plate DNA. Amplificarions were performed on a Biorad real‐time 
PCR thermocycler (Biorad, Hercules, CA, USA). The real‐time ther-
mocycling was a single cycle for 10 min at 95°C, then 50 cycles of 
95°C for 15 s, and a final extension of 1 min at 52°C. A standard 
curve was run in triplicate with each run using dilutions of a syn-
thetic sequence of our target amplicon (gBlocks® Gene Fragments, 
IDT). We included three negative controls with each qPCR reaction 
and also attempted amplification from extraction and field‐collected 
negative controls to monitor for contamination.

For analysis of each of the 10 samples per site (no pooling), we 
performed two extractions per sample (15 ml each) for September 
and October with three qPCR technical replicates per extraction. 
Further, each extraction, from both pooled and individual water 
samples, was amplified with qPCR before and after OneStep 
Inhibitor Removal kit (Zymo Research) to determine the influence of 
removing inhibitors. All instruments and bench tops were decontam-
inated after each run with 10% bleach and all steps associated with 
pre‐PCR, PCR, and post‐PCR were conducted in different labora-
tory rooms, each dedicated to the processing of low quality/quantity 
DNA. Our assay was sensitive enough to detect down to 1 copy/μl 
of DNA (LOD—limit of detection). DNA extracts may be heteroge-
neous in the distribution of DNA and since only 5 μl out of the 150 μl 
elution of extract is used, we may not have transferred enough 

template DNA to be successfully amplified successfully. Inhibitors 
are humic substances that may be coextracted with DNA and inter-
fere with downstream processing (PCR), and are therefore can affect 
the probability that PCR will be successful (Matheson, Gurney, Esau, 
& Lehto, 2010; McKee, Spear, & Pierson, 2015).

2.5 | Analytical methods

To estimate the presence of wild pig DNA at each level of sampling, 
we adopted the multi‐scale occupancy framework developed by 
Nichols et al. (2008) and was first proposed for use with eDNA by 
Schmidt et al. (2013) to include multiple levels in the observation 
process to the classic occupancy model (Figure 2; MacKenzie et al., 
2002, 2006). When using eDNA to detect a species, we considered 
the following levels of the observation process (Figure 2): (a) the 
sampling process level which describes the probability that DNA 
of the study species is available for detection at the sample level, j, 
given that the species is present at site i (θij), (b) the capture process 
level which describes the probability DNA is captured at the extrac-
tion level, k, given DNA is in sample j (γijk), and (c) the amplification 
process level which describes probability of amplification in a qPCR 
assay, l, of the sample given DNA is captured in extraction k (δijkl; 
Kendall & White, 2009; Schmidt et al., 2013). The multi‐level occu-
pancy model can be written as a series of Bernoulli random variables 
such that zi represents the true presence/absence status of the spe-
cies of interest at site i; aij is the availability status of the DNA in sam-
ple j given the species is present at site i; dijk is the capture status of 
DNA in extraction k, of sample j, at site i; and yijkl is the amplification 

F I G U R E  2  Schematic showing the different levels of uncertainty. On the right hand side is the classic two‐level occupancy model 
structure (MacKenzie et al., 2002) with the occupancy of the species at the site level (ψ i) and the overall detection probability by sample “j” 
at site “i” (pij). On the left, the detection probability is split into different levels (similar to: Schmidt et al., 2013): availability of DNA by sample 
(θij) given pigs are at the site, capture rate of DNA by extraction (γijk) given DNA was available in the sample, and amplification probability by 
qPCR replicate (δijkl) given DNA was captured in the extraction. Covariates are shown by the level they are modeled on
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status of the qPCR assay, l, given DNA is present at site i, available in 
sample j, and captured in extraction k.

 

 

 

Since we knew the true occupancy status at all of our sites was 
1 (confirmed by camera data and pig sign at all sites), we fixed the 
top level (�i=1) and conducted a three‐level multi‐scale occupancy 
analysis (Nichols et al., 2008) to parse out the variability associated 
at the levels of water samples, extractions, and qPCR replicates. 
Detection data include only detections (y = 1) and non‐detections 
(y = 0). To estimate each parameter in the three level model, we need 
replication at each level in the hierarchy (θij, γijk, δijkl). We only had 
replicates at each level in the months where we kept the water sam-
ples separate, thus only data from months 2 and 3 were used in this 
analysis.

For the multi‐scale analysis, we examined the potential re-
lationship of DNA availability and the pH of the water, the water 
body type (i.e., wildlife guzzler, pond, and stream), and the water 
sample depth (all of these were site‐level characteristics; Figure 2). 
Additionally, we allowed availability to vary by month. The only fac-
tor we examined on the capture rate by extraction was the inhibitor 
removal treatment. In addition, we had several covariates from the 
camera data that we thought might predict DNA availability by sam-
ple including: hours since last pig visited the water body, the number 
of pictures with pigs within the last month, and the average group 
size when pigs visited the water body. We examined DNA availability 
both with and without the camera data. The camera data were used 
to provide a better understanding of the biological processes that 
relate to DNA availability.

We used the three level multi‐scale occupancy model to under-
stand which factors influence the observation processes at differ-
ent levels, satisfying our first objective. By better understanding 
the observation process, we should be better able to evaluate the 
biological state of interest (i.e., occupancy of the species). Our sec-
ond objective was to determine whether we could accurately as-
sess the status of animal presence in an area with known wild pig 
populations. Therefore, we used a standard two‐level occupancy 
model (classic occupancy) where the detection parameter (pij here) 
is the product of the DNA availability probability by sample (θij), the 
capture probability by extraction (γijk), and the DNA amplification 
probability (δijkl); the species detection status is given by wij. We 
used the information gained regarding important covariates from 
the three‐level, multi‐scale analysis to inform the detection process 
in this analysis.

For the classical occupancy analysis, we condensed the detec-
tion data such that if any qPCR replicate in any extraction had a de-
tection, the detection history would be a 1, otherwise, it would be 
a 0. We used the pre‐ and post‐ inhibitor removal treatment periods 
as our two detection occasions. We used this approach to compare 
occupancy estimates between pooled and separate samples and 
among months.

Our third objective was to evaluate the power to correctly detect 
animal presence under different conditions and provide guidance on 
eDNA sampling design that would be most reliable and efficient in 
the field and laboratory. We used estimates from the multi‐scale 
occupancy analysis (where ψ = 1). These provided us with realis-
tic estimates of the probability of detecting wild pigs at different 
water body types, under different water conditions, and pre‐ and 
post‐ inhibitor removal treatment. We ignored information from the 
cameras as this type of data would not be available in most eDNA 
based field studies. To estimate the cumulative probability of detec-
tion (denoted with an “*”), given sampling effort (number of samples/
extractions/replicates, n) for the availability of DNA by sample (θ), 
capture probability of DNA through extraction (γ), and the ampli-
fication probability of qPCR (δ), we used equation 6. The variance 
for the cumulative probability was calculated using the delta method 
(equation 7; Powell, 2007). We used the cumulative probabilities to 
determine the minimum number of samples per site, extraction rep-
licates, and qPCR replicates to achieve 90% detection probabilities 
at those respective levels. We used the cumulative probabilities of 
detection to determine the minimum number of samples per site, ex-
traction replicates per sample, and qPCR replicates per extraction to 
achieve 90% detection probability for each level of the observation 
process/observation hierarchy. Using equations 5 and 6, we calcu-
lated the cumulative probability of detection given sampling effort 
for different ranges of effort (Supporting Information Appendix S1).

 

 

We analyzed all data using occupancy models in Program MARK 
(Cooch & White, 2016; White & Burnham, 1999). We used the sin-
gle‐season, multi‐scale occupancy option (Nichols et al., 2008) for 
the multi‐scale analysis. We used the standard occupancy estima-
tion method for the classic occupancy analysis. For both analyses, 
we treated the sites across months independently as we were inter-
ested in the independent assessments for each month to determine if 
there was a temporal component to the estimates of occupancy, and 
because the estimation of extinction and colonization parameters 
would be extraneous nuisance parameters. Model comparison was 
conducted using Akaike’s Information Criterion corrected for small 
samples sizes (AICc, Burnham & Anderson, 2002; Doherty, White, & 
Burnham, 2012). For the multi‐scale occupancy model investigating 

(1)zi∼Bernoulli(�i)

(2)aij|zi∼Bernoulli(zi�ij)

(3)dijk|aij∼Bernoulli(aij�ijk)

(4)yijkl|dijk∼Bernoulli(dijk�ijkl)

(5)pij=�ij ∗ �ijk ∗�ijkl

(6)x∗ =1− (1−x)n

(7)var(x∗)=n2(1−x)2∗(n−1)var(x)
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relationships with availability of DNA and qPCR amplification suc-
cess, we examined all additive combinations of covariates (including 
the inhibitor removal on capture rate and pH, month, water body 
type, water depth, pictures of pigs per month, average group size 
per picture, and hours since last visit on availability). The cumula-
tive covariate weights, covariate weights >0.5 were considered to be 
important (Doherty et al., 2012). When model uncertainty (multiple 
models within 2 ΔAICc of the top model) existed, we used model 
averaging to estimate occupancy and detection rates (Burnham & 
Anderson, 2002).

3  | RESULTS

In month one, one stream site was dry and was not sampled. All 
sites were sampled in month two. During the study, there were 
12,842 photographs taken from the 12 cameras (one at each site). 
There were 1,003 photographs of wild pigs (264 at pond sites, 428 
at stream sites, and 311 at wildlife guzzler sites; examples shown 
in Figure 3). For the laboratory analyses, we had both positive and 
negative controls in all reactions and at all steps and we did not get 
amplification in any of our negative controls.

The results from the multi‐scale occupancy analysis (objective 
1) showed that DNA availability at the individual sample level was 
influenced by the month in which the sampling was conducted and 
the pH and the type of water body (Table 1, Supporting Information 
Appendix S3). September had a higher availability of DNA than 
October (β = 1.31, SE = 0.05; Figure 4). The availability of DNA was 
higher in sites with pH values closer to 7 than 8 (β = −1.65, SE = 0.52; 
Figure 4). The average pH value in our study was 7.6 (SD = 0.47; 
Supporting Information Appendix S2). DNA availability tended to 
be higher for stream samples than for ponds or wildlife guzzlers, 
however, the 95% confidence intervals overlapped (βguzzler = −1.18, 
SE = 0.60; βpond = −1.34, SE = 0.55; Figure 4). We examined a linear 
trend with pH but demonstrate the estimated availability associ-
ated with two values of pH to avoid extrapolation past of this trend 
outside the range of data we examined (Figure 4). The depth of the 
water sample was not strongly related to DNA availability (Table 1). 
Sample depths averaged 8.6 cm (SD = 2.8, Supporting Information 
Appendix S2). Confidence intervals for point estimates in figures 
rely on the asymptotic normality of maximum likelihood estimates 
and are back transformed from the logit link estimates and standard 
error.

When camera data were included, the month of sampling and 
pH was still important predictors of availability but water body type 
was not (Table 1, Supporting Information Appendix S4). Instead, the 
number of photographs with pigs within the last month was related 
to DNA availability (β = 0.09, SE = 0.03; Table 1) and was substan-
tially higher when more photographs with wild pigs were observed 
within the last month (Figure 5). The average number of photo-
graphs with pigs in the last month was 25.5 (SD = 49.8, Supporting 
Information Appendix S2). Neither of the other covariates from the 
camera data was strongly related to DNA availability. The average 

number of hours since the last pig detection was 319 (SD = 434, 
Supporting Information Appendix S2), and the average group size in 
photographs was 1.48 (SD = 0.37, Supporting Information Appendix 
S2).

F I G U R E  3  Example images of wild pigs at pond sites (a), stream 
sites (b), and wildlife guzzler sites (c). Images are from camera traps 
located at eDNA collection sites on Camp Bullis, TX
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The impact of the inhibitor removal treatment did not have a 
substantial effect on capture rate by extraction (β = −0.16 SE 0.34). 
The estimated capture rate without treatment was 0.49 (SE 0.07), 
whereas the estimated capture rate with treatment was 0.43 (SE 
0.07). However, there were several instances where wild pig DNA 
was only captured without the inhibitor removal treatment and 
several instances where wild pig DNA was only captured from ex-
tractions with the inhibitor removal treatment. Therefore, even 

though capture rates were similar either before or after the inhibitor 
removal treatment, the combined capture rates including both cap-
tures before and after the inhibitor removal did increase the over-
all apparent detection (raw samples without treatment that had a 
detection = 0.6; raw samples with treatment had a detection = 0.5, 
raw samples with or without treatment that had a detection = 0.79). 
No covariates were examined with reference to the qPCR amplifica-
tion rate. The estimated amplification rate was 0.38 (SE 0.04).

To determine if we could correctly detect pig presence (objective 
2), we used the important covariates from the previous analysis as 
covariates on detection (p) to estimate overall occupancy (exclud-
ing camera data as they would not be present in a true field study). 
When only the pooled data were considered, the occupancy esti-
mates were biased low for all months, but the estimates were highest 
in September (Figure 6). Occupancy was correctly estimated to be 1 
when separate samples per site we examined for both the standard 
sampling design (all 10 water samples were analyzed, month 2) and 
for the removal sampling design (processing samples ceased once 
a detection was found by sample, month 3; Figure 6). For compar-
ison, we also examined how the estimates in September may have 
changed had we used a removal sampling approach and not the full 
data set. We found that occupancy was estimated to be the same 
as when the standard sampling design was used, but the detection 
probability was lower (p = 0.22, SE = 0.09 for removal sampling com-
pared to p = 0.29, SE = 0.07 for standard sampling).

We used the probabilities of DNA availability under each of the con-
ditions (month, pH, water body type), while holding the other values 
constant at their mean, to examine the cumulative probability of avail-
ability under different numbers of water samples. To achieve a mean 
90% cumulative availability probability in September, we only would 
have needed five separate samples (95% CI: 3–8 samples), whereas in 
October we would have needed 15 (95% CI: 5–25+ samples; Figure 7, 
using equations 6 and 7). Water pH had a strong influence the number 

TA B L E  1  Cumulative covariate weights from multi‐scale 
occupancy model selection procedure comparing relative covariate 
relationships between DNA availability at the sample level (θ) and 
capture rate at the extraction level (γ) from eDNA samples at Camp 
Bullis, TX Sept–Oct 2016. Covariates are separated by parameter 
(availability or detection). Covariate weights are shown for models 
including and excluding camera data

Covariate by parameter

Cumulative covariate weight

Excluding camera 
data

Including 
camera data

Availability (θ)

pH 0.98 0.98

Month 0.92 0.97

Pictures per month — 0.95

Group size — 0.42

Water body type 0.80 0.23

Hours since last visit — 0.30

Water sample depth 0.35 0.28

Capture rate (γ)

Inhibitor removal 0.31 0.31

F I G U R E  4  Relationships of covariates with the probability of 
DNA availability at the sample level (θij). Average probability of 
availability from the model containing important covariates (top 
model) by month with 95% confidence interval. The relationship 
between pH of the water body and the DNA availability with 95% 
confidence intervals. The relationship between water body type 
and eDNA availability with 95% CIs. Each estimate per covariate 
(month, pH, and water body type) is given as an average across 
other covariates

F I G U R E  5  The relationship between DNA availability and the 
number of pictures with pigs in the month prior to sampling and the 
DNA availability with 95% confidence intervals
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of water samples as when pH is 7 we would need five samples (95% 
CI: 3–7 samples) to ensure at least one detection but if pH was 8 we 
would need 18 samples (95% CI: 6–25+ samples) per site. The influence 
of water body type demonstrated that wildlife guzzlers and ponds re-
quired 9 (95% CI: 4–14 samples) and 10 (95% CI: 5–15 samples) samples 
per site, respectively, but streams would only need four samples (95% 

CI: 2–5 samples) for 90% cumulative probability of availability. The cu-
mulative capture probability at the extraction level was slightly higher 
without inhibitor removal than with this treatment, requiring only four 
extractions per sample (95% CI: 3–5) compared to five (95% CI: 3–6) to 
achieve a 90% cumulative capture probability. Conducting qPCR ampli-
fications on both types of samples (with and without inhibitor removal) 
showed a substantial improvement on DNA capture rates (Figure 7) 
requiring only two extractions to achieve 90% cumulative probability 
(95% CI 2–3 samples). Five qPCR replicates per extraction were re-
quired to achieve a 90% cumulative amplification probability.

4  | DISCUSSION

Understanding the observation process is an important first step for 
quantifying species distribution processes, especially for practical 
purposes in low‐density populations (i.e., early detection of invasive 
species or timely detection of endangered species). When detection 
does not occur, it does not confirm that the species is absent—there 
is the possibility that the species is present but that detection prob-
ability was below 100% due to variability in observation processes 
(Schmidt et al., 2013). Our results showed that for observation pro-
cesses that span multiple levels of uncertainty (e.g., non‐invasive 
detection methods such as eDNA), it is important to understand 
the role of different factors across these levels and which environ-
mental factors may have the strongest influence on ecological infer-
ence. Dissecting the observation process not only allowed for better 
inference of ecological processes but also provided a platform for 

planning sampling adaptively, in a way that minimizes laboratory 
costs and time while maximizing species detection probability.

We expected differences in detection probabilities of wild pig 
eDNA (p) among water body types due to variations in pig behav-
ior and visitation rates, and abiotic conditions that affect DNA. 
Detection rates were similar between wildlife guzzlers and ponds, 
which might retain DNA more similarly when compared to streams. 
We expected streams to have a lower detection rate assuming that 
the movement of water would relate to a lower retention rate of 
DNA. However, streams had the highest detection rates of all water 
bodies in our study while ponds and guzzlers had similarly lower de-
tection rates. Our study was conducted between the seasonal end 
of the summer and the beginning of the fall, when water levels were 
lower and thus streams were intermittent with pooling and low flow. 
These areas of multiple pools along a streambed proved conducive 
for DNA retention and detection, perhaps due to their attractive-
ness to pigs for multiple wallowing sites in proximity to one another 
(suggested by photographic evidence).

The probability of detecting DNA is likely affected by water qual-
ity (Barnes & Turner, 2016; Barnes et al., 2014). If sampling was con-
ducted when water resources were plentiful, detection probability 
would have been lower as the DNA would have been more diluted. 
The probability of availability of DNA was highest in September 
when temperatures in the area were higher with less rainfall (water 
was scarcer) than in October when detection rates were lower. If 
sampling were conducted during cooler times of year, when there 
is more standing water, the detection rates would likely have been 
lower than we observed. Lower detection rates would mean that 
more field samples would need to be collected, and thus when de-
signing an eDNA monitoring method seasonally varying detection 
rates will be important to incorporate in practice.

Consistent with previous studies, we found pH to be a strong indi-
cator of DNA availability in water samples. Lorenz and Wackernagel 
(1987) found that DNA has a higher rate of adsorption to sand, and 
thus is more available, when the pH is neutral (pH 7). Additionally, 
DNA is known to degrade more rapidly or adsorb to certain soil parti-
cle types when pH deviates from neutral (Barnes et al., 2014; Lorenz 
& Wackernagel, 1987). In particular, Strickler, Fremier, and Goldberg 
(2015) and Seymour et al. (2018) found that degradation rates were 
higher in more acidic conditions, and degradation rates were lower 
or similar in alkaline compared to neutral conditions (respectively). 
Interestingly, we found higher detection rates in neutral conditions 
compared to slightly alkaline conditions. The fact that pH had such 
a strong relationship with DNA availability was surprising given the 
range we observed was narrow (7–8.4). Considerably, more samples 
would need to be collected to ensure a cumulative availability rate 
>90% when the pH of the water body was close to 8 compared to 7 
(18 samples would be required compared to 5). In addition, pH may 
also be correlated with other factors we did not measure that influ-
ence wild pig behavior (e.g., plant community composition, turbidity 
of the water). Regardless, it appears that pH is an important factor 
in the probability of detecting eDNA and the variability in observa-
tion processes using this method. Thus, if pH is not appropriately 

F I G U R E  6  Occupancy estimates (with 95% confidence intervals) 
of wild pigs from eDNA samples at sites at Camp Bullis, TX 
Sept–Oct 2016. Estimates by month are shown for pooled versus 
separate samples
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accounted for across geographic sites and seasons, species distribu-
tions based on eDNA could be biased.

We found the observation processes (detection probability) of 
wild pig from eDNA to be variable during our study. One possible 
explanation for that variability is that the behavior of wild pigs in 
the area may influence the detection probability. We used cameras 
to examine how detection related to pig behavior. It was surprising 
that the time period since camera detection was not strongly re-
lated to DNA availability given that wild pig eDNA degrades with 
time (Williams et al., 2018). Despite the fact that degradation rates 
are higher for a single wild pig relative to a group (Williams et al., 
2018), group size also did not strongly correlate with DNA avail-
ability. However, the number of pictures of wild pigs visiting our 
sampled water sites was strongly related to detection probability, 
suggesting that the general level of wild pig activity influenced de-
tection. Thus, higher level of use may act similarly to larger group 
sizes in terms of DNA degradation rates. Since we are particularly 
interested in detecting pigs at low densities using eDNA, our actual 
detection probability may be lower than calculated in this study 
when implemented for detections of wild pigs in newly invaded 
areas or areas where control has reduced the population to low 
densities. Therefore, larger number of samples should be taken in 
the field to offset the lower levels of DNA availability that may 
occur.

Replicates that do not provide the same detection (some are pos-
itive, and some are negative) may arise from qPCR instrumentation 
variability when at the lower limits of DNA quantity (Hunter et al., 
2017). The assay we applied for detection of wild pig eDNA has a 
limit of detection of 10 copies/μl (>95% of 8 qPCR replicates of our 
standard curve amplified; Bustin et al., 2009). Thus, one level of vari-
ability in our observation process involves the detection probability 
of low quantity/quality DNA. We accounted for this by including am-
plification probability with qPCR in our model and considering any 
positive as a detection (assuming no false positives). This is a risk 
if the specificity of our test has the possibility for false positives. 
We tested for false positives due to cross‐reactivity and found high 
specificity in our assay for wild pigs (Williams et al., 2017). Issues 
with specificity would lead to incorrectly declaring species present 
when it is absent (Type I error) and issues with sensitivity would 
lead to declaring a species absent when it is present (Type II error). 
Generally, with early detection for an invasive species, the risk of de-
claring a non‐detection when the species is present (low detection 
probability or poor sensitivity) is a considerably worse type of error 
than poor specificity due to the potential damage that may occur if 
an invasion went undetected.

We were particularly focused on the issues of false negatives 
(which may be very costly in our case), and we were confident that 
false positives were not an issue in our study. However, there are 

F I G U R E  7  Cumulative probabilities given a hypothetical number of replicates for three levels of the multi‐scale analysis on detection 
using eDNA. The cumulative detection probability is the product of the different levels of uncertainty (Supporting Information Appendix 
S1). The cumulative availability of DNA (θ*, the probability that DNA is observed in at least one sample given the site is occupied) by water 
sample (a) is shown by the number of separate water samples collected based on estimates in September (dashed black line) and October 
(solid black line), for water pH values of 7 (dashed red line) and 8 (solid red line), and sampling from wildlife guzzlers (dashed blue line), 
streams (dotted blue line), and ponds (solid blue line). (b) The cumulative capture probability (γ*, the probability that DNA is observed in 
at least one extraction given it is available in the sample) of DNA by number of extractions is shown for estimates based on pre‐inhibitor 
removal treatment (solid red line), post‐inhibitor removal treatment (solid blue line), and both pre‐ and post‐ inhibitor removal treatment 
(solid black line). (c) The cumulative amplification probability (δ*, probability that DNA is observed in at least one qPCR replicate given 
it is captured in the extraction) is shown by the number of qPCR replicates (solid black line). An interactive version can be found in the 
supplemental information
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some cases where the cost of responding to a new invasion may be 
considerable and thus there would be substantial concern for de-
claring a species is present when it is not (false positive). To that 
end, some studies require that two or more PCR replicates confirm 
a detection before they will be declared a positive (Kriger, Hero, & 
Ashton, 2006). If false positives are possible at the PCR level, then 
modifications must be made to the occupancy analysis as that is a 
clear violation of the occupancy assumptions (Mackenzie, 2005). 
There are several advances to occupancy modeling that will ac-
commodate false positives (Miller et al., 2011; Royle & Link, 2006) 
and approaches that have been incorporated into eDNA analyses 
(Ficetola, Taberlet, & Coissac, 2016; Lahoz‐Monfort, Guillera‐
Arroita, & Tingley, 2016).

Pooling field‐collected eDNA samples by site and taking ex-
tractions from subsamples of the pooled sample (Biggs et al., 2015; 
Piaggio et al., 2014) reduces laboratory costs over running multiple 
samples per site separately. Replicate samples per site are collected 
because the DNA distribution in water is heterogeneous (Furlan 
et al., 2016), such that some samples may not contain DNA. Pooling 
the field samples eliminates the ability to have true replicates to esti-
mate the detection process. The subsampling of the pooled samples 
only allows for pseudo‐replicates. Our results demonstrated that 
pooling field replicates greatly reduced the detection probability and 
thus added to the variability in observation processes when com-
pared to analyzing the replicate samples separately. This suggests 
that although DNA may be present in the pooled samples, the act of 
pooling may increase the effect of dilution (perhaps requiring extra 
filtration) and the use of pseudo‐replicates reduces our power to 
make inference on the hidden biological state of interest. Therefore, 
if pooled samples are used, a species may go undetected. For threat-
ened or endangered species, this may result in failure to provide con-
servation measures, whereas for an invasive species a non‐detection 
could lead to a new invasion progressing unchecked and allowing it 
to become established.

Although keeping samples per site separate greatly increased 
our detection probability, it also greatly increased the laboratory 
time and expenses. Instead of three extractions for each site, we 
conducted 20 extractions per site (2 per each of 10 field water sam-
ples). This method is likely prohibitively laborious and costly for use 
as a standard sampling procedure to detect invasive terrestrial mam-
mals. Therefore, we adapted our approach to a removal design (by 
sample), which has been found to be the most efficient design for 
occupancy studies (MacKenzie & Royle, 2005). However, MacKenzie 
and Royle (2005) point out that removal designs are less robust to 
violations of assumptions compared to a standard design. For ex-
ample, occupancy should be constant during the sample frame (if 
a site is occupied it should be occupied during the entire sampling 
period), detection rates will be biased low if violations of this as-
sumption occur, but the bias will be greater for the removal design 
than the standard design. This suggests that the maximum number 
of samples needed for a removal design might be more than the total 
number of samples for a standard design. Based on our estimated 
detection probability of 0.2 and our high occupancy rate, MacKenzie 

and Royle (2005) would recommend 23 samples be collected per 
site. Fortunately, the field costs of collecting additional water sam-
ples per site are marginal and extractions would only need to be con-
ducted on additional samples if no detections were made from each 
previous extraction.

Our field collection protocols were strategically designed to 
streamline and simplify sampling so they could be used by a variety 
of agencies in a variety of field conditions (Williams et al., 2016). Our 
methods are species‐specific—we focused on small water bodies 
which wild pigs are likely to use for drinking and wallowing to opti-
mize detection of this terrestrial species. To come up with a generic 
method to sample these small, turbid water bodies, we needed to 
use smaller water samples than are often used for detecting aquatic 
species (e.g., Furlan et al., 2016; Pilliod et al., 2013; Spear et al., 
2015). The smaller water volumes used in our study may contribute 
to the lower levels of detection that we observed compared to other 
studies. Our results suggest that the probability of detection would 
be increased by collecting more water samples per site (which would 
increase the overall volume of water collected per site). By collect-
ing more samples, we will still be able to use the same protocol for 
sample collection (which helps with consistency across study areas) 
while addressing the issue that small water volume may have on de-
tection probability.

The field costs to collect additional samples may be low, but 
processing those samples in the laboratory is not. The removal ap-
proach may reduce overall costs. However, if no detections occur 
then the costs will be the same as the standard sampling approach 
if all samples are analyzed. Although costs in this case may be high, 
eDNA has been found to be a cost‐effective option for monitoring 
populations of aquatic species compared to trapping (Lugg, Griffiths, 
van Rooyen, Weeks, & Tingley, 2018) and may be found to be worth 
the costs when compared to potential costs of undetected invasions 
of invasive species.

Pooling samples per site may be used as a first step in a removal 
sampling approach, and if there is no detection, testing the field sam-
ples could proceed discretely and in succession. However, using the 
data from September, if we had used the pooled data as a first step in 
a removal sampling approach (3 extractions and 12 qPCR replicates) 
and then continued with the separate samples (two extractions and 
six qPCR replicates) until we came to a detection, we would have 
needed a total of 228 qPCR replicates to analyze all of the data. If 
we had forgone the pooled samples and just conducted the removal 
approach on the separate field samples, we would have needed only 
84 qPCR replicates to analyze all the data. Thus to detect rare indi-
viduals, we recommend a removal approach, with eDNA analysis on 
the separate samples, to optimize detection probabilities and reduce 
false negatives and variability in observation processes. A removal 
approach is also advantageous as collecting field samples are rel-
atively inexpensive relative to the requisite cost of associated lab 
work; so this method reduces costs while not compromising power.

Using the detection probabilities of wild pig eDNA (p) estimated 
from the separate samples per site, we calculated the cumulative de-
tection probability given the number of samples analyzed through 
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qPCR to evaluate cumulative detection rates of using more samples 
than we collected, similar to Schmidt et al. (2013). Because availability 
varied by month, pH, and water body type, the number of samples 
necessary per site to have a high cumulative availability probability (θ*, 
where θ is plugged into equation 8, and “n” is the number of samples) 
was dependent on site conditions. For example, in a stream sampled in 
September, we had over a 90% cumulative availability probability with 
only three samples analyzed, but in streams in October we needed 
to analyze at least six samples to have the same cumulative availabil-
ity probability. While in wildlife guzzlers or ponds in September, we 
needed to analyze at least five samples for the same level of confi-
dence and in October, we did not reach a 90% cumulative availabil-
ity probability until 16 samples were analyzed. Thus by collecting a 
potentially superfluous number of water samples in the field, future 
studies will be better equipped to handle issues of poor DNA avail-
ability that may occur due to study timing, water body type, or other 
environmental conditions that reduce overall detection probability.

We conducted qPCR both pre‐ and post‐ inhibitor removal treat-
ment. The treatment strips away inhibitors that prevent qPCR from 
amplifying DNA. However, in cases where there is a low quantity of 
DNA in the sample, the inhibitor removal treatment may result in re-
ducing the DNA and not just the inhibitors. This might suggest that it 
is the number of extractions that is important and not the inhibitor 
removal process. However, we found many instances of detections 
that only happened pre‐ treatment and some that only happened post‐ 
treatment. Additionally, DNA concentrations of extracts before inhibi-
tor removal treatment were low. Although, conducting one extraction 
with data both pre‐ and post‐ inhibitor removal resulted in a similar 
cumulative DNA capture rate to conducting two extractions with data 
either just pre‐inhibitor removal or just post‐inhibitor removal, we rec-
ommend that all samples are subject to qPCR amplifications both with 
and without inhibitor removal to maximize detection probability of tar-
get DNA or that an internal positive control (IPC) be incorporated into 
the qPCR assay to monitor inhibition (Goldberg et al., 2016).

5  | CONCLUSIONS

We found that observation processes of an invasive terrestrial mammal 
using eDNA are variable and dependent on the conditions of the water 
body sampled and laboratory processes. We recommend collecting a 
minimum of 10 water samples per site, but 20 samples would be better, 
and using a removal approach to laboratory analysis; more samples will 
be needed when the pH of the water body is not neutral. The adaptive 
analysis process will maximize detection while making efficient use of 
resources. We recommend running qPCR both pre‐ and post‐ inhibitor 
removal to increase capture rate of DNA. Variation in time of year and 
water body type will also impact the overall detection probability using 
eDNA and must be accounted for or estimates of species presence will 
be biased which could have serious implications for conservation or in-
vasive species management. As has become part of best practices for 
non‐invasive genetics studies (another approach for utilizing low qual-
ity/quantity DNA available in the absence of the target species), we 

strongly advocate for conducting field studies on the system of inter-
est to determine the factors influencing the study site and the target 
species (Lonsinger et al., 2015; Taberlet, Waits, & Luikart, 1999; Waits 
& Paetkau, 2005). Using multi‐scale occupancy modeling for inference 
of species distributions will provide more robust inferences about fac-
tors affecting the observation processes of eDNA, which is particularly 
important for designing efficient sampling protocols. The multi‐scale 
analysis may not need to be continued once greater understanding of 
the different levels of uncertainty are reached; however, new programs 
and packages (Dorazio & Erickson, 2017; Hunter et al., 2015; White & 
Burnham, 1999) have been developed that make performing this type 
of analysis marginally more work than a standard occupancy approach 
and therefore may be worth continuing. Improving the understanding 
of the observational process will help provide better understanding of 
the ecological processes influencing the distribution of the target spe-
cies and guidance for future research and management.
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