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Abstract: 7-Oxo-1,2,4-benzotriazines (benzo[1,2,4]triazin-7-ones) are reversible thioredoxin reductase
inhibitors that exhibit very strong correlations to pleurotin. In this article, we provide the first
synthesis of fluorinated derivatives. Fluorination using Selectfluor of benzo[1,2,4]triazin-7-ones
occurs regioselectively and in high yield at the enamine-activated position. This electron N-lone pair
activation overrides the activation/deactivation effects of some other substituents. The reaction time
was significantly reduced with the use of microwave irradiation at 120 ◦C and 7 bar. The cytotoxicity
and cyclic voltammetry measurements for 8-fluoro-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (2)
are presented and compared with its synthetic precursor, 1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-
one (1a).

Keywords: iminoquinone; enamine; fluorine; heterocyclic compound; microwave

1. Introduction

The remarkable expansion in the use of fluorinated chemicals has attracted the attention of organic,
agricultural, medicinal, and materials scientists. Uniquely, the incorporation of fluorine atoms into
organic molecules introduces polar hydrophobicity. This has been significantly utilized in medicinal
chemistry as a means to increase efficacy [1,2], with some 30% of blockbuster drugs containing fluorine
atoms [3]. Selectfluor is perhaps the most versatile, stable, cheap, and effective commercial electrophilic
fluorinating reagent [4], and in this article, we demonstrate its use in the selective fluorination of
some 7-oxo-1,2,4-benzotriazines (benzo[1,2,4]triazin-7-ones) (Figure 1). Selectfluor is also a strong
oxidant, and mediator or catalyst of several “fluorine-free” transformations [5]. Selectfluor is known
to directly substitute fluorine into activated positions on anilines, benzamides, and phenols [6,7];
however, to date, examples of fluorinated quinones are few and low-yielding (<20%) [8,9]. Typically,
in such cases, the fluorine was introduced via a halogen exchange with nucleophilic fluoride reagents,
such as KF [10–12]. Interestingly, 2-hydroxymethylindole can undergo simultaneous electrophilic
aromatic substitution with fluorine at the activated enamine C-3 position with oxidation of the alcohol
to the aldehyde by using Selectfluor [13].
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1. Introduction 

The remarkable expansion in the use of fluorinated chemicals has attracted the attention of 
organic, agricultural, medicinal, and materials scientists. Uniquely, the incorporation of fluorine 
atoms into organic molecules introduces polar hydrophobicity. This has been significantly utilized in 
medicinal chemistry as a means to increase efficacy [1,2], with some 30% of blockbuster drugs 
containing fluorine atoms [3]. Selectfluor is perhaps the most versatile, stable, cheap, and effective 
commercial electrophilic fluorinating reagent [4], and in this article, we demonstrate its use in the 
selective fluorination of some 7-oxo-1,2,4-benzotriazines (benzo[1,2,4]triazin-7-ones) (Figure 1). 
Selectfluor is also a strong oxidant, and mediator or catalyst of several “fluorine-free” transformations 
[5]. Selectfluor is known to directly substitute fluorine into activated positions on anilines, 
benzamides, and phenols [6,7]; however, to date, examples of fluorinated quinones are few and low-
yielding (<20%) [8,9]. Typically, in such cases, the fluorine was introduced via a halogen exchange 
with nucleophilic fluoride reagents, such as KF [10–12]. Interestingly, 2-hydroxymethylindole can 
undergo simultaneous electrophilic aromatic substitution with fluorine at the activated enamine C-3 
position with oxidation of the alcohol to the aldehyde by using Selectfluor [13]. 
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Benzo[1,2,4]triazin-7-ones are reversible thioredoxin reductase inhibitors with significant
anti-cancer activities, which strongly correlate to pleurotin [14]. Derivatives also exhibit
anti-Alzheimer’s disease activity [15], while the cytotoxicity is far greater than that of the derived
Blatter-type (benzotriazin-4-yl) radicals [16]. Herein, we present the first fluorination of several
benzo[1,2,4]triazin-7-one derivatives (that were available to us). Additionally, the cytotoxicity and
cyclic voltammetry of 8-fluoro-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (2) is compared to that of
the non-fluorinated scaffold 1a.

2. Results and Discussion

2.1. Fluorinations

2.1.1. Optimizing the Fluorination and Confirming Selectivity

Selectfluor was found to fluorinate at the 8-position of the parent 1,3-diphenylbenzo
[e][1,2,4]triazin-7(1H)-one (1a), presumably due to enamine conjugation with the N-1 atom (Scheme 1).
Initially, low yields of 8-fluoro derivative 2 were obtained, when using less than 2 equivalents of
Selectfluor at room temperature and at reflux in acetonitrile, with recovery of 1a (Table 1). The complete
conversion of 1a to 2 was observed by TLC after 1 h when increasing the reaction temperature to
120 ◦C, which was facilitated by using a sealed Ace pressure tube with 2 isolated in 94% yield
after column chromatography. The reaction time was reduced to 20 min when performing the
transformation in a microwave reactor (150 W, 7 bar), with 2 isolated at 97% yield. Applying the
latter optimized conditions on 8-chloro-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (1b), a halogen
exchange proceeds efficiently yielding 2 in 96% yield, although after a longer reaction time of 1 h,
as monitored by TLC. Jiang et al. [13] reported a similar aromatic substitution of bromine by fluorine
at the C-3 position of indole, using Selectfluor. In these cases, the defluorinated Selectfluor by-product
(1-chloromethyl-1,4-diazobicyclo[2.2.2]octane) may assist with the elimination of the halogen atom.
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Table 1. Optimization of reaction conditions a. 

Entry Iminoquinone Selectfluor (equiv) Time (h) Isolated Yield 2 (%) 
1 1a 1.2 24 32 b 
2 1a 1.5 24 55 c 
3 1a 2 1 94 d 
4 1a 2 0.3 97 e 
5 1b 2 1 96 e 

a Reaction conditions: 1a (0.1 mmol), Selectfluor, MeCN (0.5 mL). b room temperature, recovered 1a 
(54%). c reflux, recovered 1a (35%). d Ace pressure tube, 1a (0.4 mmol), MeCN (2 mL). e Microwave 
reactor (150 W, ~7 bar, CEM Discover SP). 

The position of the fluorination on 2 is discernible by comparing its 1H-NMR spectrum with that 
of substrate 1a (Figure 2) with the disappearance of the H-8 signal of 1a at 6.10 ppm being clearly 
visible, and 1H-19F (meta) coupling for H-6 of J = 7.2 Hz. The 13C-NMR spectrum of 2 gives the expected 
13C-19F couplings, including 1JCF of 247.5 Hz for C-8, and 2JCF of 15.7 Hz for C=O. 

Scheme 1. Synthesis of 8-fluoro-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (2).

Table 1. Optimization of reaction conditions a.

Entry Iminoquinone Selectfluor (equiv) Time (h) Isolated Yield 2 (%)

1 1a 1.2 24 32 b

2 1a 1.5 24 55 c

3 1a 2 1 94 d

4 1a 2 0.3 97 e

5 1b 2 1 96 e

a Reaction conditions: 1a (0.1 mmol), Selectfluor, MeCN (0.5 mL). b room temperature, recovered 1a (54%). c reflux,
recovered 1a (35%). d Ace pressure tube, 1a (0.4 mmol), MeCN (2 mL). e Microwave reactor (150 W, ~7 bar,
CEM Discover SP).

The position of the fluorination on 2 is discernible by comparing its 1H-NMR spectrum with that
of substrate 1a (Figure 2) with the disappearance of the H-8 signal of 1a at 6.10 ppm being clearly
visible, and 1H-19F (meta) coupling for H-6 of J = 7.2 Hz. The 13C-NMR spectrum of 2 gives the expected
13C-19F couplings, including 1JCF of 247.5 Hz for C-8, and 2JCF of 15.7 Hz for C=O.



Molecules 2019, 24, 282 3 of 10
Molecules 2019, 24 3 

 

 
Figure 2. 1H-NMR spectrum: (a) of 1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (1a) and (b) of 8-
fluoro-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (2). 
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The optimized conditions in Table 1 of treatment with Selectfluor (2 equiv, MW at 120 °C, 20 
min) were applied to benzo[1,2,4]triazin-7-ones 3a and 3b containing phenyl and benzylthio 
substituents at C-6. C-8 Fluorinated derivatives 4a and 4b were isolated in 59% and 86% yield, 
respectively, with 4a accompanied by significant recovery of 3a (31%). Interestingly, fluorination at 
C-8 remained the only path for substitution despite activation at C-5 by the benzylthio substituent of 
3b. 
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Scheme 2. Synthesis of 8-fluoro-1,3,6-triphenylbenzo[e][1,2,4]triazin-7(1H)-one (4a) and 6-
(benzylthio)-8-fluoro-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (4b). 

2.1.3. Fluorination of 1,2,5-Thiadiazolo-Fused Benzotriazinones 

The preparation of 1,2,5-thiadiazolo-fused benzotriazinones 5a and 5b has been recently 
reported by using the reaction of S4N4 with 1a and the 3-trifluoromethyl analogue [17]. The reaction 
of thiadiazoles 5a and 5b with Selectfluor using the optimized conditions in Table 1 gave the 
fluorinated adducts 6a (93%) and 6b (89%) in excellent yields, where the reaction occurred at the only 
available CH of the benzotriazinone scaffold. The regioselective formation of 6b in high yield 
demonstrated that the electrophilic fluorination remained facile, despite the strongly deactivating 
inductive effect of the CF3 substituent of 5b. 

Figure 2. 1H-NMR spectrum: (a) of 1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (1a) and (b) of
8-fluoro-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (2).

2.1.2. Fluorination of C-6-Substituted Benzo[1,2,4]triazin-7-ones

The optimized conditions in Table 1 of treatment with Selectfluor (2 equiv, MW at 120 ◦C, 20 min)
were applied to benzo[1,2,4]triazin-7-ones 3a and 3b containing phenyl and benzylthio substituents at
C-6 (Scheme 2). C-8 Fluorinated derivatives 4a and 4b were isolated in 59% and 86% yield, respectively,
with 4a accompanied by significant recovery of 3a (31%). Interestingly, fluorination at C-8 remained
the only path for substitution despite activation at C-5 by the benzylthio substituent of 3b.
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Scheme 2. Synthesis of 8-fluoro-1,3,6-triphenylbenzo[e][1,2,4]triazin-7(1H)-one (4a) and 6-(benzylthio)-
8-fluoro-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (4b).

2.1.3. Fluorination of 1,2,5-Thiadiazolo-Fused Benzotriazinones

The preparation of 1,2,5-thiadiazolo-fused benzotriazinones 5a and 5b has been recently reported
by using the reaction of S4N4 with 1a and the 3-trifluoromethyl analogue [17]. The reaction of
thiadiazoles 5a and 5b with Selectfluor using the optimized conditions in Table 1 gave the fluorinated
adducts 6a (93%) and 6b (89%) in excellent yields, where the reaction occurred at the only available
CH of the benzotriazinone scaffold (Scheme 3). The regioselective formation of 6b in high yield
demonstrated that the electrophilic fluorination remained facile, despite the strongly deactivating
inductive effect of the CF3 substituent of 5b.
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(6a) and 5-fluoro-6-phenyl-8-(trifluoromethyl)[1,2,5]thiadiazolo[3′,4′:5,6]benzo[1,2-e][1,2,4]triazin-4(6H)-one
(6b).

The NMR data for fluorinated adducts revealed a “through space” coupling with the ortho-CH on
the N-1-Ph, supported by distance measurements using Spartan (Figure S16).

2.2. Cytotoxicity against MCF-7 using the MTT Assay

Having the fluorinated benzotriazin-7-one 2, we investigated the effect of the
fluorine substituent on cytotoxicity. The breast cancer cell line MCF-7, and the MTT
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay were employed by using the
conditions previously described on the parent compound 1a [14]. The fluorinated derivative 2 proved
to be approximately five times more cytotoxic than 1a towards the MCF-7 cell line (Table 2).

Table 2. Cytotoxicity evaluation using the MTT colorimetric assay.

Compound IC50 MCF-7 (µM) a

1a 0.810 ± 0.080 b

2 0.157 ± 0.001
a IC50 represents the compound concentration required for the reduction of the mean cell viability to 50% of the
control value after incubation for 72 h at 37 ◦C. b IC50 values for 1a were previously obtained under identical
conditions [14].

2.3. Cyclic Voltammetry

Cyclic voltammetry studies were carried out on compounds 1a and 2 (Figure 3). Redox response
experiments showed that both 1a and 2 undergo two characteristic quasi-reversible one-electron redox
processes corresponding to the 0/−1 redox transition (I and I′) and the −1/−2 redox transition (II and
II′). The fluorinated derivative 2 produced a similar redox response to 1a, with surprisingly similar
formal potentials (E0′) (Table 3), despite the presence of the electronegative fluorine at the C-8 position.
This indicates that factors other than bioreduction may account for the differences in cytotoxicity
between 1a and 2 against the MCF-7 cell line.

Table 3. Formal potentials (E0′) (±0.010 V) calculated as (Epc + Epa)/2 from cyclic voltammograms
recorded at 100 mV·s−1.

Compound E0′ [V] versus Fc/Fc+

E0′ (I) E0′ (II)

1a −1.31 −1.72
2 −1.21 −1.73
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3. Experimental Section

3.1. General Materials and Methods

1,3-Diphenylbenzo[e][1,2,4]triazin-7(1H)-one (1a) [18,19] and 1,3,6-triphenylbenzo[e][1,2,4]-triazin-
7(1H)-one (3a) [18] were prepared according to literature procedures. 8-Chloro-1,3-diphenyl-
benzo[e][1,2,4]triazin-7(1H)-one (1b) [18], 6-(benzylthio)-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one
(3b) [18], 6,8-diphenyl[1,2,5]thiadiazolo[3′,4′:5,6]benzo[1,2-e][1,2,4]triazin-4(6H)-one (5a) [17] and
6-phenyl-8-(trifluoromethyl)-[1,2,5]thiadiazolo[3′,4′:5,6]benzo[1,2-e][1,2,4]triazin-4(6H)-one (5b) [17]
were provided by Koutentis Research Laboratory (University of Cyprus), and used as received.
All other solvents and reagents were used as received from Sigma-Aldrich (Gillingham, Dorset,
SP8 4XT, UK). Acetonitrile (MeCN, Sigma-Aldrich, ≥99.9%) was freshly distilled over 3 Å molecular
sieves and then over CaH2 (Sigma-Aldrich, 95%). Thin-layer chromatography (TLC) was performed
on Merck TLC Silica gel 60 F254 plates using a UV lamp for visualization. The technique of dry flash
chromatography [20] was used throughout for all non-TLC-scale chromatographic separations using
silica gel 60 (<0.063 mm). Microwave irradiation was conducted in a CEM Discover SP Microwave
Reactor using 150 watts of microwave power. The pressure was controlled by a load cell connected to
the vessel via the cap on top of the sealed pressure vessel. The temperature of the content of the vessel
was monitored by an infrared temperature control system, which uses a non-contact, infrared sensor
mounted under the vessel. All reactions were performed in Pyrex pressure vessels (capacity 10 mL)
sealed with silicone caps. All reaction mixtures were stirred with a Teflon-coated, magnetic stirring
bar in the vessel. A ramp temperature of 2 min was set for each experiment. Ultraviolet spectra were
obtained on a Varian (Cary 100) UV-Vis spectrometer, where inf = inflection. Infrared spectra were
recorded using a PerkinElmer Spec 1 with attenuated total reflection (ATR) attached. NMR spectra
were recorded using Varian 500 MHz, and an Agilent DD2 600 MHz instrument was used to be
obtain the 13C-NMR spectrum of compound 6b. The chemical shifts were recorded in ppm relative
to SiMe4. 13C-NMR data were collected at 125 MHz and 150 MHz for compound 6b with complete
proton decoupling. NMR assignments were supported by distortionless enhancement by polarization
transfer (DEPT). 19F-NMR spectra were obtained at 470 MHz. Deuterated solvents were used for the
homonuclear lock, and the signals were referenced to the deuterated solvent peaks. High resolution
mass spectra (HRMS) was carried out using an ESI time-of light mass spectrometer (TOFMS) in
positive or negative mode, using a Waters LCT Mass Spectrometry instrument. The precision of
all accurate mass measurements was better than 5 ppm. Melting points were determined by using
differential scanning calorimetry (DSC), which was performed on a Mettler Toledo Simultaneous
Thermal Analyzer using standard aluminium pans.
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elution with EtOAc and petroleum ether (30:70), gave the recovered starting material 3a (11.6 mg, 
31%). 

Method A: Selectfluor (238.2 mg, 0.8 mmol) was added to the solution of
1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (1a) (120 mg, 0.4 mmol) in dry MeCN (2 mL)
in an Ace pressure tube (15 mL). The reaction mixture was immersed in a preheated oil
bath at ca. 120 ◦C and left to stir for 1 h, under monitoring by TLC. The reaction mixture
was cooled to ca. 20 ◦C, diluted with EtOAc (30 mL), and washed with brine (3 × 30 mL).
The organic layer was separated, dried over anhydrous MgSO4, filtered, and evaporated to
dryness. The residue was purified by column chromatography using EtOAc and petroleum ether
to give 8-fluoro-1,3-diphenylbenzo[e][1,2,4]-triazin-7(1H)-one (2) (119.3 mg, 94%) as blue fine
needles; m.p. (DSC) onset 202.3 ◦C, peak max 205.2 ◦C (from cyclohexane/CH2Cl2, 90:10); Rf 0.42
(EtOAc/Petroleum ether, 60:40); λmax(CH2Cl2)/nm 300 (log ε 5.12), 350 inf (4.69), 360 inf (4.65), 575
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1211, 1160, 955; 1H-NMR (500 MHz, CDCl3) δH 7.45 (1H, dd, J = 7.2 Hz, J = 9.8 Hz, H-6), 7.48–7.51 (3H,
m), 7.52–7.57 (5H, m), 7.75 (1H, d, J = 9.8 Hz, H-5), 8.26–8.29 (2H, m); 13C-NMR (125 MHz, CDCl3)
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133.4 (C), 136.1 (d, 1JCF = 247.5 Hz, CF), 141.3 (CH), 143.6 (d, J = 2.7 Hz, C), 150.9, 153.9 (both C),
172.7 (d, J = 15.7 Hz, C=O); 19F-NMR (470 MHz, CDCl3) δF −145.8 (1F, s); HRMS (ESI) m/z [M + H]+,
C19H13FN3O calcd. 318.1043, observed 318.1054.

Method B (General Procedure): Selectfluor (70.8 mg, 0.2 mmol) was added to the solution of the
benzo[e][1,2,4]triazin-7(1H)-one 1a–1b, 3a–3b, 5a–5b (0.1 mmol) in dry MeCN (0.5 mL). The reaction
mixture was stirred under microwave irradiation (150 W, ca. 120 ◦C, 7 bar) for 20 min (1 h in the case
of 1b). EtOAc (10 mL) was added and the mixture was extracted with brine (3 × 10 mL). The organic
layer was separated, dried over anhydrous MgSO4, filtered, and evaporated to dryness. The residue
was dissolved in CH2Cl2, poured onto a short pad of silica, and washed with EtOAc and petroleum
ether to give the desired products 2, 4a–4b, and 6a–6b.
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s); HRMS (ESI) m/z [M + H]+, C26H19FN3OS calcd. 440.1233, observed 440.1220. 

 

5-Fluoro-6,8-diphenyl[1,2,5]thiadiazolo[3′,4′:5,6]benzo[1,2-e][1,2,4]triazin-4(6H)-one (6a) (35.1 mg, 
93%) as brown fine needles; m.p. (DSC) onset 315.7 °C, peak max 316.7 °C (from cyclohexane/CH2Cl2, 
90:10); Rf 0.38 (EtOAc/petroleum ether, 40:60); λmax(CH2Cl2)/nm 275 (log ε 4.94), 310 (5.09), 430 (4.74), 
515 inf (3.95), 555 (4.04), 600 inf (3.97), 660 inf (3.54); νmax (neat, cm−1) 3068 (Ar CH), 1624 (C=O), 1573, 
1534, 1464, 1434, 1345, 1238, 1198, 1161, 1061, 922; 1H-NMR (500 MHz, CDCl3) δH 7.50–7.58 (8H, m), 
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CDCl3) δF −145.5 (1F, s); HRMS (ESI) m/z [M + H]+, C19H11FN5OS calcd. 376.0668, observed 376.0654. 

 

5-Fluoro-6-phenyl-8-(trifluoromethyl)[1,2,5]thiadiazolo[3′,4′:5,6]benzo[1,2-e][1,2,4]triazin-4(6H)-one 
(6b) (32.5 mg, 89%) as purple fine needles; m.p. (DSC) onset 279.0 °C, peak max 281.5 °C (from 
cyclohexane/CH2Cl2, 90:10); Rf 0.59 (EtOAc/petroleum ether, 40:60); λmax(CH2Cl2)/nm 260 (log ε 4.93), 
300 (4.96), 315 inf (4.90), 325 inf (4.76), 390 inf (4.52), 405 (4.53), 500 inf (4.02), 540 (4.09), 590 inf (3.97), 
645 inf (3.57); νmax (neat, cm−1) 3072 (Ar CH), 1652 (C=O), 1587, 1567, 1487, 1414, 1387, 1294, 1204, 1131, 
1068, 928; 1H-NMR (500 MHz, CDCl3) δH 7.49–7.53 (2H, m), 7.54–7.59 (3H, m); 13C-NMR (150 MHz, 
CDCl3) δC 119.0 (q, 1JCF = 272.4 Hz, F3C), 124.1 (d, J = 5.8 Hz, C), 124.4 (d, J = 4.5 Hz, CH), 129.5, 130.4 
(both CH), 138.4 (d, 1JCF = 255.7 Hz, C-8), 142.6 (d, J = 2.7 Hz, C), 142.9 (q, J = 39.4 Hz, F3CC), 149.3, 
150.8 (both C), 156.0 (d, J = 7.5 Hz, C), 165.9 (d, J = 19.5 Hz, C=O); 19F-NMR (470 MHz, CDCl3) δF −70.1 
(3F, s, CF3), −141.3 (1F, s); HRMS (ESI) m/z [M + H]+, C14H6F4N5OS calcd. 368.0229, observed 368.0230. 

3.3. Cell Culture and Cytotoxicity Evaluation 

6-(Benzylthio)-8-fluoro-1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (4b) (38.0 mg, 86%) as olive green
fine needles; m.p. (DSC) onset 217.5 ◦C, peak max 219.2 ◦C (from cyclohexane/CH2Cl2, 90:10); Rf 0.43
(EtOAc/petroleum ether, 30:70); λmax(CH2Cl2)/nm 260 (log ε 4.95), 325 (4.82), 410 inf (4.27), 425 (4.31),
575 (3.95), 635 inf (3.72); νmax (neat, cm−1) 3061 (Ar CH), 1610 (C=O), 1574, 1523, 1491, 1430, 1311, 1281,
1214, 1112, 1072, 974; 1H-NMR (500 MHz, CDCl3) δH 4.29 (2H, s, CH2), 7.33–7.40 (3H, m), 7.46–7.52 (5H,
m), 7.53–7.60 (6H, m), 8.26–8.32 (2H, m); 13C-NMR (125 MHz, CDCl3) δC 36.2 (CH2), 118.7 (CH), 120.8
(d, J = 3.1 Hz, C), 125.1 (d, J = 4.2 Hz, 5-CH), 127.0, 128.1, 128.9, 129.0, 129.1 (×2), 129.7, 130.8 (all CH),
133.6, 134.1 (both C), 134.6 (d, 1JCF = 245.0 Hz, CF), 143.9 (d, J = 2.9 Hz, C), 150.5, 151.6 (both C), 158.4
(d, J = 4.6 Hz, C), 168.7 (d, J = 16.4 Hz, C=O); 19F-NMR (470 MHz, CDCl3) δF −147.5 (1F, s); HRMS
(ESI) m/z [M + H]+, C26H19FN3OS calcd. 440.1233, observed 440.1220.
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5-Fluoro-6-phenyl-8-(trifluoromethyl)[1,2,5]thiadiazolo[3′,4′:5,6]benzo[1,2-e][1,2,4]triazin-4(6H)-one
(6b) (32.5 mg, 89%) as purple fine needles; m.p. (DSC) onset 279.0 ◦C, peak max 281.5 ◦C
(from cyclohexane/CH2Cl2, 90:10); Rf 0.59 (EtOAc/petroleum ether, 40:60); λmax(CH2Cl2)/nm 260
(log ε 4.93), 300 (4.96), 315 inf (4.90), 325 inf (4.76), 390 inf (4.52), 405 (4.53), 500 inf (4.02), 540 (4.09), 590
inf (3.97), 645 inf (3.57); νmax (neat, cm−1) 3072 (Ar CH), 1652 (C=O), 1587, 1567, 1487, 1414, 1387, 1294,
1204, 1131, 1068, 928; 1H-NMR (500 MHz, CDCl3) δH 7.49–7.53 (2H, m), 7.54–7.59 (3H, m); 13C-NMR
(150 MHz, CDCl3) δC 119.0 (q, 1JCF = 272.4 Hz, F3C), 124.1 (d, J = 5.8 Hz, C), 124.4 (d, J = 4.5 Hz, CH),
129.5, 130.4 (both CH), 138.4 (d, 1JCF = 255.7 Hz, C-8), 142.6 (d, J = 2.7 Hz, C), 142.9 (q, J = 39.4 Hz,
F3CC), 149.3, 150.8 (both C), 156.0 (d, J = 7.5 Hz, C), 165.9 (d, J = 19.5 Hz, C=O); 19F-NMR (470 MHz,
CDCl3) δF −70.1 (3F, s, CF3), −141.3 (1F, s); HRMS (ESI) m/z [M + H]+, C14H6F4N5OS calcd. 368.0229,
observed 368.0230.



Molecules 2019, 24, 282 8 of 10

3.3. Cell Culture and Cytotoxicity Evaluation

3.3.1. Materials and Cell Lines

MCF-7 were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing high glucose
(4.5 g/mL) and supplemented with 1% penicillin-streptomycin and 10% heat-inactivated foetal bovine
serum (FBS). Cells grew as adherent cultures. Cell culture reagents were obtained from Sigma-Aldrich.
Disposable sterile plasticware was obtained from Sarstedt (Numbrecht, Germany).

3.3.2. Cytotoxicity Measurements Using the MTT Assay

The MTT colorimetric assay was used to determine cell viability. MCF-7 cells were added to
96-well plates at a cell density of 1000 cells per well (200 µL per well) and allowed to adhere over
24 h. Compound solutions in DMSO were added after 24 h (1% v/v final concentration in the well).
The control cells were exposed to the same concentration of the vehicle control alone (DMSO). All cells
were incubated at 37 ◦C and 5% CO2 (humidified atmosphere) for 72 h. MTT (20 µL, 5 mg/mL solution)
was added after 72 h and the cells were incubated for a further 3 h. The supernatant was then removed
by using a multi-transfer pipette, and DMSO (100 µL) was added to dissolve the MTT formazan
crystals. The absorbance was determined by using a plate reader at 550 nm with a reference at 690 nm.
Cell viability is expressed as a percentage of the vehicle-only treated control (DMSO). Dose-response
curves were analysed by non-linear regression analysis, and IC50 values were determined by using
GraphPad Prism software, v 8.0 (GraphPad Inc., San Diego, CA, USA). The in vitro activity of the
drugs towards all cell lines is expressed as IC50 (i.e., the concentration required for the reduction of the
mean cell viability to 50%).

3.4. Electrochemistry

Cyclic voltammograms were recorded using a PalmSens3+ potentiostat. The concentrations of all
studied compounds were 0.001 mol·L−1 in dry (over CaH2) HPLC grade CH2Cl2 (5.0 mL) containing
n-Bu4NPF6 (0.1 M) as a supporting electrolyte. A three-electrode electrochemical cell was employed
with glassy carbon, Pt wire, and Ag/AgCl (1 M NaCl) as the working, counter, and reference electrodes,
respectively. The ferrocene/ferrocenium (Fc/Fc+) couple was used as an internal reference, and all
redox couples are referenced against it (EFc/Fc+ 0.0 V). The scan rate was 0.1 V·s−1 and the temperature
was 20 ◦C.

4. Conclusions

Selectfluor regioselectively fluorinates benzo[1,2,4]triazin-7-ones and derivatives in high yield.
One of the fluorinated iminoquinones is shown to be cytotoxic, offering the potential for further
investigation of fluorinated adducts as bioreductive antibiotics and anti-cancer agents.

Supplementary Materials: Supplementary materials are available online. Figures S1–S15: 1H, 13C and 19F-NMR
of compounds 2, 4a–4b and 6a–6b, Figure S16: 1H-13C HSQC NMR and the optimized geometry of compound 6b,
Figure S17: Viability of the MCF-7 cell line as determined by using the MTT assay for compounds 1a and 2.
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