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Abstract: Previous studies on exposure disparity have focused more on spatial variation but ignored
the temporal variation of air pollution; thus, it is necessary to explore group disparity in terms of
spatio-temporal variation to assist policy-making regarding public health. This study employed the
dynamic land use regression (LUR) model and mobile phone signal data to illustrate the variation
features of group disparity in Shanghai. The results showed that NO2 exposure followed a bimodal,
diurnal variation pattern and remained at a high level on weekdays but decreased on weekends.
The most critical at-risk areas were within the central city in areas with a high population density.
Moreover, women and the elderly proved to be more exposed to NO2 pollution in Shanghai. Further-
more, the results of this study showed that it is vital to focus on land-use planning, transportation
improvement programs, and population agglomeration to attenuate exposure inequality.

Keywords: land use regression (LUR); mobile phone signal data; air pollution; population exposure;
environmental justice

1. Introduction

Air pollution has become one of the most serious environmental problems globally.
Worldwide, approximately 4.2 million premature deaths could be attributed to air pollution
in 2016 [1]. In China, 112.7 of every 100,000 deaths were caused by air pollutants [2]. The
rapid development of heavy chemical industries, energy consumption, and motor vehicle
ownership has resulted in massive emissions of nitrogen dioxide (NO2), which have led to
increasing pollution by secondary pollutants such as acid rain and photochemical pollution.
Epidemiological investigations have confirmed that NO2 pollution is associated with
considerable health risks, even below the current WHO air quality guidelines [3]. Short-
term exposure to NO2 pollution may cause airway responsiveness and lung function injury,
while long-term exposure may impair the immune function, even potentially increasing
the risk and severity of respiratory viral infection [4–6]. Furthermore, mounting evidence
indicates that vulnerable social groups are more likely to be exposed to air pollution [7,8].
However, most studies on exposure inequality focused on the annual average data, ignoring
the impacts of temporal variation of air pollution. Therefore, it is necessary to conduct
studies on the group disparity in population exposure assessment in terms of spatio-
temporal variation to assist policy-making aimed at attenuating exposure inequality and
improving public health.

Exposure is defined by both air pollution concentration in places where people spend
time and the amount of time spent in each place [9,10]. It relies on both air pollutant
concentration and population distribution. The land use regression (LUR) model is recog-
nized as a common method to simulate spatial–temporal variations in air pollution. Most
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studies use static explanatory variables and static data, illustrating a strong spatial but poor
temporal variation of air pollution. This study introduced hourly dynamic data to delineate
the high-resolution temporal heterogeneity of air pollution. Furthermore, mobile phone
signal data were employed to measure population dynamics, which helped to improve
the accuracy of the exposure assessment. We proposed a case study of Shanghai to assess
NO2 exposure and the spatio–temporal variation and group disparity (age or gender) in
Shanghai based on a dynamic LUR model and mobile phone signal data.

In summary, the main contributions of this study were two-fold: (1) a fairly novel ap-
proach that integrated a dynamic LUR model and mobile phone signal data was employed
to improve the accuracy of dynamic population exposure; (2) a more detailed analysis of
group disparity was investigated in terms of spatio-temporal variation.

The remainder of this paper is structured as follows: Section 2 reviews the LUR
application to the spatio-temporal variation in air pollution, analyzes the development of
air pollution exposure, and discusses exposure equality and environmental justice. Section 3
describes our model framework regarding NO2 exposure built with a dynamic LUR model
and mobile phone signal data. Section 4 presents the results of our model and discusses
areas of future interest for spatio-temporal variation and group disparity in air pollution
exposure. Section 5 discusses the principal findings, strengths, and limitations of the study
and policy implications. Section 6 concludes the paper.

2. Literature Review
2.1. LUR Application in Spatio-Temporal Variations of Air Pollution

The LUR model has been proven to be a valid and cost-effective approach for as-
sessing exposure to air pollutants in epidemiological investigations, especially for traffic-
generated air pollution [11]. Over the past few years, it has been applied extensively in
European [12–14] and North American settings [15–19] and has gradually become popular
in China [20–23].

Focusing on static data leads to a LUR model with superior spatial but poor temporal
variations [24]. Therefore, highlighting the spatio-temporal variation is recognized as a
focus and orientation for research. Ever more attention is being focused on improving the
sensitivity of the LUR model to the temporal variation, and several methods have been
applied. The first method is to recalibrate the intercept of LUR models with the temporal
difference of pollutant concentrations [25,26]. The second method is to introduce dummy
time variables to the LUR models to represent different periods [24,27,28]. The third method
is to apply dynamic variables to establish several models in different periods [24,29,30]. In
addition, earlier studies have combined the above methods to model the spatial-temporal
variations of air pollutants [31,32]. Recently, the spatio-temporal LUR model has provided a
more in-depth understanding of the dynamic variation of air pollution and the relationship
between pollutant concentrations and the urban environment, but it remains limited
because these models are mainly focused on annual [33,34] or seasonal variations [35,36].
Delineating high-resolution temporal heterogeneity (hourly, diurnal, weekly, monthly, etc.)
remains difficult, making medium- and short-term exposure studies non-feasible. Thus,
an in-depth understanding of high-resolution temporal variation is crucial for estimating
exposure to air pollution accurately.

2.2. Air Pollution Exposure Assessment

Accurate exposure-based health risk assessments require not only high-resolution
measurements of air quality but also knowledge of human activity patterns [37–39]. Earlier
studies have typically focused more on static population data such as census data [40–46]
and nighttime lighting [47,48]. However, evidence has shown that exposure levels are gen-
erally underestimated by static analysis, as it ignores variability in exposure caused by indi-
vidual mobility [49–55]. Recent studies have attempted to introduce travel surveys [56,57],
activity-based dynamic population models [49,58–60], global positioning system (GPS)
models [53,61–63], travel smartcards [64], call detail records (CDRs) [65], or location-based
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service (LBS) data [66–68] to analyze dynamic exposure levels. These approaches provide
more detailed spatio-temporal analyses of individual travel behavior, but, for researchers
and participants, these methods are often inefficient, expensive, and limited in terms of
how many people they can track.

Today, increasingly available mobile phone signal data provide a new opportunity to
further improve measurements of population exposure. However, to date, limited efforts
have been made to use large-scale mobile phone signal data to examine variations in
exposure to air pollution [51,69]. The first study that used mobile phone data to examine
the disparity in exposure to air pollution in China was performed by Guo et al. in 2020 [70].
This study utilized data collected on a weekday (23 March 2012) in Shenzhen. Given
the limited time frame, medium- and short-term population exposure remains unclear.
Furthermore, this study inappropriately applied time-profile population exposure to assess
individual-level exposure over a large spatial area instead of the microenvironment such as
an individual’s residence or workplace [71].

2.3. Exposure Equality and Environmental Justice

Environmental justice believes that regardless of socioeconomic status, all residents
ought to enjoy the equal benefits of public natural resources and shoulder equal adverse
health impacts from deteriorating environmental conditions [72–74]. Increasingly, the liter-
ature has been illustrating that several subpopulations may have born a disproportionate
air pollution exposure and health burden over the past several decades [75]. This is of
particular concern because a better understanding of the impacts of air pollution exposure
on environmental justice is a public health policy-making priority. However, there exists a
gap in China due to the lack of data and neglect for environmental justice issues.

Many environmental justice studies have noted the inequitable distribution of air
pollution exposure among marginal social groups (e.g., poor people, Blacks, and chil-
dren) [7,8], in part because these vulnerable populations are more likely to reside near
air pollutant sources where cheaper housing and more job opportunities congregate. For
example, a national study in the United States has revealed that low-income non-White
children and the elderly were more likely to be exposed to NO2 [76]. A similar conclu-
sion was drawn in Sweden, where children living in poorer conditions were burdened
with higher NO2 exposure [77]. Race or ethnicity is a particularly consequential element
when it comes to air pollution exposure disparity. Many studies in the USA have demon-
strated that Blacks and Latinos are disproportionately exposed to higher levels of NO2 than
whites [46,78–80]. Evidence from nine European metropolitan areas, indicates that higher
NO2 values were observed in areas with higher populations of individuals born outside
the European Union [81]. However, some cases contradict the above studies; for example,
Toronto reported that racial minority groups tended to have less air pollution exposure,
probably due to the immigration policy aimed at highly educated groups [82]. Low-income
populations also suffer more adverse impacts of air pollution, even they have contributed
little to the pollution [83–85].

In addition, recent environmental justice research attempts to understand the evolution
of environmental inequality through long-term dynamic analysis. These studies found
that vulnerable populations benefit the least from air-quality improvement; in other words,
exposure decreased more in less polluted areas, which means that group disparity in air
pollution increased further [86–88].

3. Methodology

In this section, the study area and research data we used to model aggregate-level
NO2 exposure are introduced in detail, followed by the modeling and validation of the
LUR model and the calculation and comparison of population exposure. The research flow
chart is shown in Figure 1.
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Figure 1. Research flow chart.

3.1. Study Area

Shanghai is one of the municipalities under direct administration of the Central
Government of China and at the core of the world-class city cluster in the Yangtze River
Delta area. It is composed of 16 districts with an area of 6340.5 km2 and a total population
of 24.28 million as of the end of 2019. There were 56 days when air pollution was severe
during 2019 [89], and the primary pollutants were fine particles and NO2. The mean value
of NO2 concentration was 42 µg/m3 in Shanghai, 2 µg/m3 higher than the standard set by
the WHO (40 µg/m3) [90]. In general, severe air pollution still hangs over Shanghai.

It should be mentioned that the study area in this study includes all districts except the
isolated Chongming Island due to the differences in the geographical location and climate
conditions from other districts as shown in Figure 2.
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3.2. LUR Model Setting

A spatio-temporal LUR model was developed by utilizing hourly dynamic variables
to establish several models in different periods. Considering that road transport is one
of the primary contributors to the ambient concentration of NO2, a day was divided into
four periods, namely, morning peak (7 a.m.–9 a.m.), daytime (9 a.m.–5 p.m.), evening peak
(5 p.m.–7 p.m.), and nighttime (7 p.m.–7 a.m.), regarding traffic states in Shanghai [91].

3.2.1. Dependent Variable

The mean values of the hourly concentrations of NO2 during different periods for
50 monitors in the 16 districts were retrieved from the Shanghai Environmental Monitoring
Center and cover a time span from 11 November to 30 November 2019.

3.2.2. Independent Variables

The independent variables included location, meteorological elements, road network,
land use, point of interest, and other pollutants as listed in Table 1. It should be mentioned
that the suburban and urban areas were set as binary variables, with 1 referring to urban
monitoring stations and 0 to suburban monitoring stations, for which the boundary was
the outer-ring highway in Shanghai. Mean hourly data for meteorological elements were
extracted from Inverse distance weight (IDW) interpolation pollution maps which were
drawn in ArcGIS based on the meteorological data from China Meteorological Data Service
Center. The road network was elaborated as the intensity of highways and local roads,
whose maximum buffer distance of the road networks was set at 1000 m, following the
principle proposed by Hock [92]. Land-use data contained five types, namely, residential
land use, commercial land use, industrial land use, green space, and water body, which
were calculated in each buffer zone from monitor stations. Four types of points of interest
(POIs) were extracted using the Baidu Open Map Platform (2019) based on categories and
keywords. The numbers of restaurants, bus stops, intersections, and gas stations were
calculated within each buffer.

Table 1. Independent variables.

Category Variable
Sub-Categories

Buffer
Radii (m) Unit Prior

Direction

Location

Longitude
Extract point value

/calculate linear distance

◦ O
Latitude ◦ O

DEM m −
Distance to the ocean km −

Suburban and urban area 0/1 +

Meteorological
elements

Temperature

Extract point value

°C −
Pressure hPa +

Evaporation mm O
Relative humidity % O

Precipitation mm −
Cloud % +

Ground surface temperature °C −
Wind speed m/s −

Road
networks

Highway Radius area integral
(r = 100, 200, 300, 500, 750, 1000 m)

km/km2 +
Local road km/km2 +

Land use

Residential land use
Radius area integral

(r = 100, 200, 300, 500, 750,
1000, 2000, 3000, and 5000 m)

km2 +
Commercial land use km2 +

Industrial land use km2 +
Greenspace km2 −
Waterbody km2 −

Points
of interest

Restaurant Radius area integral
(r = 100, 200, 300, 500, 750, 1000,

2000, 3000, 5000 m)

N +
Bus stop N +

Intersection N +
Gas station N +

Other
pollutants

SO2 Extract point value µg/m3 +
O3 µg/m3 −

Note: “+” denoted assumed positive correlation. “−“ denoted assumed negative correlation, “O” denoted not
assigned because no effect could be assumed. More details were described in Section 3.2.3.
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3.2.3. Modeling and Validation

The explanatory variables were chosen by a supervised forward regression method [93,94].
First, each potential explanatory variable was assigned to a prior direction to enhance the
applicability of the LUR models described in Table 1. For example, wind speed could
improve the dilution and diffusion process of pollutants in the atmosphere; thus, its prior
direction was assumed as negative (denoted as “−“). A stable atmospheric configuration
under a high-pressure environment was not conducive to the physical diffusion of pollu-
tants, leading to the accumulation of pollutant concentrations. Therefore, its prior direction
was assigned as positive (denoted as “+”). As for relative humidity, some studies have
shown that higher relative humidity is detrimental to the diffusion process of gaseous
pollutants, worsening environmental pollution, but other studies came to the opposite
conclusion that higher relative humidity improves the transition of gaseous pollutants to
particulate state, reducing the pollution concentration. Consequently, the prior direction of
relative humidity was not specified since it’s still a controversial correlation and denoted
by “O”.

Secondly, univariate regression was carried out between the dependent variables and
each independent variable, and the resulting F-statistic and corresponding p-value were
used to determine the significance of the predictor and the order for its entry into the
model. The model with the highest adjusted R2 that was consistent with the prior direction
was selected as the initial model of stepwise regression. Thereafter, a supervised forward
regression was conducted in IBM SPSS (version 26.0), and the variables were introduced
into the model if they satisfied the following criteria: (1) the adjusted R2 of the model
increased by at least 1%; (2) the coefficient of each variable was consistent with the prior
direction; (3) the existing variables in the model did not change their effect directions. All
potential explanatory variables were introduced into the model one by one until there were
no remaining variables that satisfied the above criteria. Then, the variables with p-values
greater than 0.1 were excluded from the model.

Thirdly, standardized diagnostic tests were applied to the final models to check the
multicollinearity between the variables and influential observations. The variables with the
highest variance inflation factors (VIFs) of more than 3 were excluded from the final model
and the model was recalibrated.

Finally, residual analysis and cross-validation were applied to evaluate the perfor-
mance of the model. The former plays an important role in validating the regression model,
consisting of a test for normality, test for equal variance, test for independence of residuals,
and test for spatial autocorrelation, which were developed by ArcGIS and SPSS packages. If
the error term satisfies the four basic assumptions of the regression model, then the model
is considered valid. The latter was used to assess the accuracy of a linear regression model.
In this paper, the leave-one-out cross-validation (LOOCV) method was used to evaluate
the model’s performance. Each site was subsequently left out, and a model was developed
from the remaining sites with the variables unchanged. Predicted concentrations were
estimated and compared with the actual concentrations at each left-out site. The LOOCV R2

and root mean squared error (RMSE) between the predicted and measured concentrations
were calculated for all monitoring stations to represent the model performance.

3.3. Population Exposure Assessment Comparisons
3.3.1. Mobile Phone Signal Data

The mobile phone signal dataset in Shanghai, including the time, location, and users’
information for the period from 11 November to 30 November 2019, was provided by JI
SMART (http://daas.smartsteps.com/, accessed on 19 January 2021). Initially, the number
of mobile phone users included in the data was approximately 5.28 million, and this
number can be used to represent Shanghai’s population of approximately 23.55 million,
excluding the Chongming district. The main detailed information in the dataset included
(1) user attributes, which contained an anonymously processed user ID, gender, age, etc.;
(2) date, start time, and end time of stay points; (3) location, which was represented by

http://daas.smartsteps.com/
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a grid number with a resolution of 250 m instead of longitude and latitude; (4) grid
information containing grid ID, coverage area (well-known text), etc.

The dataset we acquired for the study was processed. More details on the data
processing, including the identification of the homes and workplaces of users, were not
available due to the confidentiality agreement. Briefly, the locations of each user’s home
and workplace were identified according to how long they remained at certain locations.
Home locations were recognized based on the location where users remained the longest
between 9 p.m. and 8 a.m. during the month. Similarly, users’ workplaces were identified
according to the location where they spent the most time between 9 a.m. to 5 p.m. Stay
points, excluding the home and workplace, were marked as other activity locations.

A correlation test and paired samples t-tests were used to verify whether there was
a significant difference between the seventh population census data and mobile phone
signal data, regarding the population distribution, sex composition, and age structure in
the districts of Shanghai. It is worth mentioning that population proportion was chosen for
comparison rather than the population size due to the different magnitudes of the two sets
of data.

First, population distribution was defined as the proportion of each district’s residen-
tial population to the total population of Shanghai, designed to indicate whether the two
sets of data were consistent in the geographical distribution of the population. Pearson’s
correlation coefficient of population distribution was 0.998, close to 1, indicating that the
two samples had a strong linear correlation. The p-value from the paired-samples t-test
was 0.999, which was greater than the significance level of α = 0.05; that is, there was no
sufficient evidence to claim that the population distribution from the mobile phone signal
dataset differs from the one from the Seventh National Census data as shown in Table 2.

Table 2. Population distribution in the districts of Shanghai (%).

District 7th Population
Census Data

Mobile Phone
Signal Data District 7th Population

Census Data
Mobile Phone

Signal Data

Huangpu 2.73 2.14 Baoshan 9.22 9.42
Xuhui 4.59 3.79 Jiading 7.57 8.24

Changning 2.86 3.33 Pudong 23.44 25.66
Jing’an 4.03 3.80 Jinshan 3.40 2.46
Putuo 5.11 5.07 Songjiang 7.88 8.22

Hongkou 3.13 2.53 Qingpu 5.25 5.06
Yangpu 5.13 4.46 Fengxian 4.71 4.72

Minhang 10.95 11.10

Secondly, the sex ratio defined as the number of females per 1000 males was chosen
as a social indicator of sex composition as listed in Table 3. The correlation between the
two samples was considered to be strong, because the absolute value of the Pearson’s
correlation coefficient was 0.794, greater than 0.75. In addition, the paired sample t-test
(p-value = 0.374) confirmed that there was no statistically significant difference between the
seventh population census data and mobile phone signal data. That is to say, the mobile
phone signal data could accurately capture the population’s gender structure in the districts
of Shanghai.

Table 3. Sex ratio in the districts of Shanghai.

District 7th Population
Census Data

Mobile Phone
Signal Data District 7th Population

Census Data
Mobile Phone

Signal Data

Huangpu 107.59 101.63 Baoshan 109.51 100.13
Xuhui 95.06 95.02 Jiading 116.83 114.40

Changning 90.91 98.50 Pudong 108.04 103.32
Jing’an 95.19 96.79 Jinshan 113.74 117.63
Putuo 97.14 101.68 Songjiang 114.70 107.42

Hongkou 97.17 96.43 Qingpu 120.39 120.64
Yangpu 97.91 103.05 Fengxian 116.78 117.26

Minhang 107.72 93.60
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Thirdly, the proportions of the population aged 0–14, 15–64, and over 65 years were
used to describe the population age structure in the districts of Shanghai as listed in Table 4.
The correlation test and paired samples t-tests were performed separately for each age
group, and the Pearson’s correlation coefficients were 0.518, 0.912, and 0.942, respectively,
indicating strong positive linear correlations between the three groups of paired samples.
Furthermore, the p-values of the t-tests were 0.997, 0.627, and 0.499, which meant that there
was no significant difference in the age structure, suggesting that the mobile phone signal
dataset could denote the age structure of different areas in Shanghai.

Table 4. Age structure in the districts of Shanghai (%).

District
7th Population Census Data Mobile Phone Signal Data

0–14 15–64 ≥65 0–14 15–64 ≥65

Huangpu 8.67 72.84 18.48 8.74 73.72 17.54
Xuhui 9.79 69.60 20.61 9.39 71.48 19.13

Changning 8.89 70.46 20.65 9.11 71.00 19.89
Jing’an 9.31 68.72 21.97 10.78 70.20 19.02
Putuo 9.39 69.48 21.12 10.04 69.34 20.62

Hongkou 8.19 68.58 23.23 8.53 69.20 22.27
Yangpu 8.84 69.31 21.85 9.12 70.47 20.41

Minhang 10.86 75.11 14.02 9.57 76.91 13.52
Baoshan 10.01 74.61 15.39 8.54 74.72 16.74
Jiading 9.81 78.12 12.07 9.62 77.39 12.99
Pudong 10.48 74.53 14.99 10.03 76.32 13.65
Jinshan 9.22 73.75 17.03 9.54 70.75 19.71

Songjiang 10.70 78.39 10.91 10.76 76.87 12.37
Qingpu 8.86 79.58 11.56 9.31 76.79 12.90

Fengxian 9.28 76.96 13.76 9.21 77.92 12.87

In conclusion, it was proved that the mobile phone signal dataset used in this study
was a representative sample of the population distribution, sex composition, and age
structure in Shanghai.

3.3.2. Air Pollution Exposure Assessment

Population-weighted exposure level (PWEL), proposed by Fu and Kan [95], was
chosen as the exposure assessment indicator in this paper. It was calculated as predicted
concentrations combined with population dynamic distributions. First, NO2 pollution
during different periods was estimated with the LUR models. Secondly, hourly gridded
population data with a spatial resolution of 500 × 500 m was derived from the mobile
phone data. Then, using ArcGIS software, the NO2 concentration layers were overlaid
on the gridded population distribution layers and NO2 exposure level in each grid was
calculated based on Equation (1) as follows:

Ei = (Pi × Ci)/
n

∑
i=1

Pi (1)

where i indicates grids, n indicates the number of grids, Ei represents grid i’s potential
population exposure, Pi denotes grid i’s population size in a certain period, and Ci denotes
grid i’s concentration of specific air pollutants. Moreover, the mean exposure was used as a
baseline to classify each grid’s exposure into one of four levels, namely, low risk (<0.5 SD),
medium risk (>0.5 and ≤1.5 SD), high risk (>1.5 and ≤2.5 SD), and critical risk (>2.5 SD).
Finally, the population-weighted exposure level of NO2 for Shanghai was assessed using
Equation (2), where E represents Shanghai’s potential NO2 exposure:

E =
n

∑
i=1

(Pi × Ci)/
n

∑
i=1

Pi (2)
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3.3.3. Population Exposure Comparisons

In this section, NO2 exposure characteristics in Shanghai were explored for spatio-
temporal variations and group disparity (gender and age), which is crucial for assisting
policy-making aimed at attenuating health disparities. Firstly, the diurnal and weekly
variations in population exposure were identified based on weekly and daily averages of
NO2 exposure for the period from 11 to 30 November 2019. Next, NO2 exposure levels
for each grid area were analyzed to determine spatial variations and to highlight risky
areas that required additional attention. Finally, NO2 exposure was compared according to
gender and age to quantify exposure disparities between different groups.

4. Results
4.1. Spatio-Temporal Distribution of Pollutant Concentrations

Different influencing factors finally entered the LUR models in different periods. Over-
all, land use was the most significant indicator, where green spaces and water bodies
proved to effectively absorb and purify air pollutants, and then meteorological elements
and traffic-related variables as listed in Tables 5–8. Approximately 56–73% of the vari-
ations in NO2 pollution were explained by the final models and the RMSEs were 4.554,
4.732, 5.371, and 4.894, respectively, which indicates good performance. The differences
between the LOOCV R2 and the model R2 were less than 10%, indicating the stability of
the LUR model [96]. Moreover, given the z-scores of −0.757, −1.499, −0.842, and −1.295,
respectively, the model residuals did not appear to be significantly different from random,
fulfilling the regression model assumptions of spatial independence in residuals.

Table 5. Final results of the NO2 model for daytime (9 a.m.–5 p.m.).

Explanatory Variable β t p VIF

(Intercept) 2679.989 4.764 0.000
Green space within 3000 m (km2) −1.212 −6.550 0.000 1.170

Longitude −22.035 −4.689 0.000 1.643
Intersections within 300 m (N) 0.249 2.656 0.011 1.159

Cloud (%) 0.982 2.529 0.015 1.471

Global statistics
R2

adj 0.561

LOOCV R2 0.528
RMSE 4.554

Table 6. Final results of the NO2 model for nighttime (7 p.m.–7 a.m.).

Explanatory Variable β t p VIF

(Intercept) 227.595 8.500 0.000
Green space within 3000 m (km2) −0.677 −2.942 0.005 1.775

O3 (µg/m3) −0.476 −3.342 0.002 1.595
Relative humidity (%) −1.697 −6.164 0.000 2.168

Wind speed (m/s) −5.259 −3.000 0.004 2.058
Bus stops within 2000 m (N) 0.039 3.281 0.002 1.894
Distance to the ocean (km) 0.159 2.060 0.045 1.988

Global statistics
R2

adj 0.692

LOOCV R2 0.650
RMSE 4.732

Table 7. Final results of the NO2 model for the morning peak (7 a.m.–9 a.m.).

Explanatory Variable β t p VIF

(Intercept) 52.481 22.336 0.000
Green space within 2000 m (km2) −2.318 −4.171 0.000 1.736

Gas stations within 5000 m (N) 0.124 2.480 0.017 1.736

Global statistics R2
adj 0.560

Wind speed (m/s) LOOCV R2 0.528
Bus stops within 2000 m (N) RMSE 5.371
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Table 8. Final results of the NO2 model for the evening peak (5 p.m.–7 p.m.).

Explanatory Variable β t p VIF

(Intercept) 213.666 8.481 0.000
O3 (µg/m3) −0.251 −2.013 0.051 1.902

Green space within 2000 m (km2) −1.105 −2.349 0.024 1.569
Relative humidity (%) −2.077 −5.711 0.000 1.405

Distance to the ocean (km) 0.379 4.128 0.000 2.574
Water body within 300 m (km2) −145.268 −3.215 0.003 2.206

Highway intensity within 500 m (km/km2) 1.427 2.093 0.042 1.192
Intersections within 300 m (N) 0.212 2.027 0.049 1.306

Global statistics
R2

adj 0.737
LOOCV R2 0.705

RMSE 4.894

After completing the final models, regression equations were applied to a regular
500 × 500 m grid covering the entire study area. A pollution point map was developed
using the predicted values. As shown in Figure 3, an evident spatio-temporal heterogeneity
of NO2 pollution was observed in Shanghai. Overall spatial variation showed a tendency
to decline gradually from downtown in all directions, but the spatial pattern of different
periods also presented a uniqueness. Higher NO2 values were observed to be transferred
from the urban districts with the intensive road network to suburban districts with clustered
logistics and industrial parks, such as the Baoshan and Minhang Districts, due to the traffic
restriction policy aimed at trucks in Shanghai that encourages freight transport at night.
Peak hours shared a similar distribution pattern, but transportation contributed more to
the evening peak. In general, NO2 concentrations were higher west of than the east of the
Huangpu River. In terms of temporal variation, the average values during the daytime,
nighttime, morning peak, and evening peak were 29.71, 41.54, 44.07, and 46.52 µg/m3,
respectively, which exhibited a bimodal diurnal variation, and the figure of the evening peak
was higher than the early peak, approximately resembling daily diurnal traffic patterns.
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(5 p.m.–7 p.m.) in Shanghai.
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In conclusion, the results of the LUR models suggest that the pollution concentration
could be a result in a dynamic game between the air-pollutant emission intensity and
environmental self-purification capacity. Consequently, air quality improvements not only
require an emphasis on controlling the air-pollutant sources, such as advocating low-carbon
travel, prioritizing public transportation development, and advancing emission standards,
but also on taking advantage of environmental self-purification capacity. For example, it
is necessary to take meteorological elements (wind speed, wind direction, precipitation,
etc.) into consideration in the selection of locations for logistics and industrial parks or the
height of a chimney. In addition, for air quality improvement, it would be wise to increase
the rate of green land use, considering the purification capacity of plants.

4.2. Differences in Exposure and Inequality
4.2.1. Temporal Variation

As previously stated, NO2 exposure was evaluated by population-weighted exposure
levels based on the pollution simulation results from the LUR models and dynamic popula-
tion distribution from the mobile phone signal data. The mean values, minimum values,
maximum values, and standard deviations are summarized in Table 9, presenting bimodal
variations consistent with the differences in the pollutant concentration within a day.

Table 9. Summary statistics of NO2 exposure (µg/m3).

Period Mean Minimum Maximum Standard Deviation

Daytime 35.563 35.226 35.695 0.127
Nighttime 47.891 47.693 48.027 0.061

Morning Peak 51.005 50.802 51.146 0.107
Evening Peak 52.257 52.112 52.337 0.050

The daily mean values of NO2 exposure are shown in Figure 4, where the gray shaded
areas represent weekends. NO2 exposure remained at a high level on weekdays but
decreased on weekends. This fluctuation could be attributed to the weekly variations
in traffic volumes; that is, there was more traffic on weekdays than on weekends due to
the fact of commuters heading to work. However, this trend was not distinct during the
nighttime. This was mainly because freight transport did not have an obvious weekly
variation. In conclusion, NO2 exposure might be influenced by both pollutant concentration
and population dynamics.
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4.2.2. Spatial Variation

In this section, the standard deviation classification method was used to place the NO2
exposure in each grid area at four levels to highlight the differences between the districts.
It should be mentioned that there was no comparison between different periods, because
this classification was based on the mean value of all air pollution exposure during a single
corresponding period.

Higher risk areas were observed in the downtown area with a dense population, as
shown in Figure 5, mainly west of the Huangpu River, including the Hongkou, Yangpu,
Huangpu, Xuhui, and Jing’an districts. In other words, the areas to the east of the Huangpu
River were healthier with lower air pollutant exposure. Furthermore, there was a difference
in the range of NO2 exposure levels, which were more clustered during the morning peak,
indicating exposure inequality was lower during that period. As previously stated, heavy
traffic contributed the most to NO2 exposure during rush hours. When combined with a
large number of cross-regional population dynamics due to the commuting demand, NO2
exposure was largely homogeneous across different regions. We would also like to note
that NO2 exposure inequality during the morning peak was lower, but exposure levels
were higher than during other periods. This characteristic was not observed during the
evening peak, in part because the flexible off-duty hours led to more scattered commuting.
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4.2.3. Group Disparity

To investigate group disparity, user attribute information, including gender and age,
was extracted from the mobile phone signal data. The ages were divided into four groups,
namely juvenile (≤18), young (19–44), middle-aged (45–64), and elderly (≥65).

Females were subject to more NO2 exposure (Figure 6). The exposure disparity
between males and females was found to reach a peak during the day, especially during
the morning peak, and decreased at night, which could be attributed to gender differences
in commuting behavior. In general, females took more trips and had more complex trip
chains than men, probably since they undertook a large number of non-work-related trips,
such as shopping, delivering children to school, or accompanying the elderly to health
centers [97], namely, women had a higher probability of being exposed to traffic-related
pollution or other sources of pollution. An inequality in family responsibilities may have
evolved into inequality in terms of pollution exposure due to differences in travel behavior.
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Figure 6. NO2 exposure disparity between males and females.

As the main bearer of daily housework, women’s destinations of most non-work-
related trips were concentrated in urban districts with a completely public transportation
system, convenient shopping areas, abundant medical resources, and children’s educational
institutions. In a word, urban districts were more attractive to women [98]. However, these
places were also heavily polluted areas as described above. Kernel density analysis was
applied in ArcGIS to explore the gender differences in travel distribution based on trajectory
data extracted from the mobile phone signal dataset, and the standard deviation stretch
and gamma correction were applied to the mapping to eliminate the gap in trip volume
between different groups and increase the contrast in the raster dataset to highlight the
range of hot spots. As shown in Figure 7, the distribution of different gender groups in the
road network was both generally of unbalanced and aggregated characteristics, and the
travel distribution of women was more clustered. Male trip volume showed a continuous
trend of decreasing outward from the urban areas but remained high on some suburban
trunk roads. However, there was a very significant cliff-like decline in the trip volume of
females in the urban periphery, with fewer trips on major arterial roads in the suburban
areas compared to men. It was worth noting that the central area of the city where women
gather is precisely the most polluted area, which may lead to the overall higher exposure
of women than men.
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Regarding the age groups, NO2 exposure increased significantly in the elderly as
shown in Figure 8; that is, the elderly group endured the greatest exposure, followed by
the young and the middle-aged, and then the juvenile groups.
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Figure 8. NO2 exposure disparity between age groups.

Residential preference and travel behaviors may have contributed to the observed
disparity between age groups. Since the 1990s, the policy of suppressing the second
industry and developing the third industry has prompted factories in the central area of
the city to relocate to the suburbs and gather to form industrial parks. At the same time,
the planning and construction of new towns were in full swing under the influence of
the Greater Shanghai Plan. The working-age population in the central urban area and
from surrounding cities migrated to the suburbs or new towns due to a large number
of employment opportunities and moderately priced housing, which contributed to the
age structure differentiation between the urban area and the suburban areas of Shanghai.
Finally, the elderly population was concentrated in the urban areas while young and
middle-aged groups gathered near the suburbs.

According to the seventh Shanghai Census Bulletin, Hongkou and Huangpu districts
have the densest elderly population, with a density of more than 5000 people per square
kilometer. The elderly population in the suburbs is relatively sparse, such as in Jinshan,
Qingpu, and Fengxian Districts, where the density of the elderly population was less
than 250 people per square kilometer. Among them, the difference between the densest
and the sparsest regions was as high as 35 times. In general, the density of the resident
elderly population in Shanghai was low around the middle and uneven in the regional
distribution. Furthermore, the characteristics of the circle structure were significant. As
listed in Table 10, the population proportion over 60 years in the urban districts of Shanghai
exceeded 25%, with an average of 30.2%. However, suburbs were mostly below 20%, with
an average of just 19.6%. To this end, the global Moran’s I index was used in ArcGIS to
further evaluate the spatial autocorrelation of the people over the age of 65 in the districts
of Shanghai. Given the z-score of 3.02, much larger than the critical value of 1.65, there was
more than a 95% likelihood that Shanghai’s elderly population could be the result of the
clustered pattern. It meant that the spatial distribution of the elderly population has strong
homogeneity, that is, it is uneven in the regional distribution.

Based on the residence distribution of different age groups extracted from the mobile
phone signal dataset, the spatial distribution of the population density between age groups
was described through the mean–standard deviation method in ArcGIS. As shown in
Figure 9, the spatial distribution of the elderly population had a more significant clustering
characteristic than other age groups. It is worth noting that the urban districts, where
the elderly population was densely distributed, were the areas with the most critical NO2
pollution. This means that the elderly population with the lowest pollution contribution is
bearing the highest risk of exposure; that is, Shanghai has serious environmental inequities
in terms of air quality.
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Table 10. Population Aging Level in the districts of Shanghai.

Location District Population Proportion
over 60 (%)

Population Proportion
over 65 (%)

Population Density
over 65 (/km2)

Urban
District

Huangpu 26.6 18.5 5963.6
Xuhui 28.7 20.6 4176.0

Changning 29.1 20.7 3737.1
Jing’an 31.6 22.0 5794.0
Putuo 30.6 21.1 4716.4

Hongkou 33.2 23.2 7504.7
Yangpu 31.8 21.9 4480.4

Suburban
District

Minhang 19.5 14.0 998.8
Baoshan 22.9 15.4 941.5
Jiading 17.8 12.1 476.8
Pudong 21.6 15.0 703.7
Jinshan 23.6 17.0 228.6

Songjiang 15.8 10.9 344.6
Qingpu 16.6 11.6 217.4
Fengxian 19.4 13.8 214.1
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5. Discussion
5.1. Principal Findings

In summary, this study attempted to combine dynamic LUR models with mobile
phone signal data to explain the spatio-temporal variations and group disparities of NO2
exposure in Shanghai. Our main conclusions can be summarized as follows.
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1. The dynamic LUR models revealed an evident temporal variation of NO2 exposure in
Shanghai. Overall, it followed a bimodal diurnal variation and remains at a high level
on weekdays but decreases on weekends, consistent with changes in traffic volume;

2. In terms of spatial variation, higher-risk locations included urban areas with dense
populations and busy traffic and were concentrated west of the Huangpu River.
Also, lower regional inequality of NO2 exposure was observed during the morning
peak due to a large number of cross-regional commutes that led to NO2 exposure
homogenization across different regions;

3. As for group disparity, women and the elderly proved to suffer more exposure to
NO2 pollution, which could be attributed to gender differences in travel behavior and
the preference of residence in different age groups.

5.2. Strengths and Limitations

This study aimed to introduce an improved NO2 exposure assessment by integrating
the dynamic LUR model with mobile phone signal data and explored the spatio-temporal
variation of the population exposure disparity in the case of Shanghai. Nevertheless, some
limitations in this study should be pointed out.

First, limited by the availability of pollution concentration and mobile phone signal
data, only diurnal and weekly variations in NO2 exposure were explored. In the future, the
data could be strengthened and validated on a monthly, seasonal, or annual scale over a
longer period. Secondly, this paper attempted to establish a link between traffic-related air
pollution and human risk. However, the lack of quantitative analysis of traffic emissions
made it difficult to strongly support this conclusion. Thirdly, although this paper has
revealed the exposure disparity in terms of spatio-temporal variation and age/gender
group, there is still a long way to go in addressing the issues of environmental and health
equity. The subsequent research is supposed to further dig out whether the implementation
of financial support policies such as subsidies and tax cuts could attenuate exposure
inequality and improve public health.

5.3. Policy Implications

These results suggest that Shanghai is trapped in an awkward predicament with an
uncoordinated relationship between urban development and air quality. Currently, it is
necessary to create a comprehensive environmental plan and a target- and results-oriented
governance program to improve air quality and public health.

Based on our analysis, we propose several recommendations. First, air pollution
improvement requires regulators to pay close attention to pollution sources. Scientific
land-use planning can be an ideal tool to coordinate urban economic development and
quality living environments. For instance, it would be prudent to increase the number of
green spaces near the pollutant source to prevent air pollutants from spreading elsewhere.
In addition, the needs and interests of vulnerable social groups have to be prioritized in
the process of the formulation and implementation of urban planning and environmental
health policies to ensure environmental justice and sustainable development. Second,
transportation improvement programs are also considered an effective way to alleviate the
negative impacts of motorization. Today, TOD (transit-oriented development) has become
a priority for improving public health and developing a quality living environment, as it
encourages enhanced accessibility with a superior and sustainable transit system along
with mixed land use and compact urban development. Moreover, the boom in ridesharing
and electric vehicles has also created more opportunities to reduce the contribution of
the road networks to air pollution. Third, higher risk areas for air pollution exposure are
generally downtown in locations with high population density, and population agglomera-
tion aggravates air pollution, as revealed in previous studies [99]. Therefore, the Shanghai
municipal government should develop several effective control strategies for population
agglomeration to guide the reasonable spatial distribution of the population to reduce the
intensity of population exposure inequality.
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6. Conclusions

In summary, this study proposed a fairly novel approach that integrated a dynamic
LUR model and mobile phone signal data to improve the accuracy of dynamic population
exposure. A more detailed analysis of group disparity was investigated in terms of spatio-
temporal variation in the case of Shanghai. Although some limitations exist, our study
could help researchers better understand the spatio-temporal patterns of NO2 pollution
exposure and assist policy-making aimed at improving public health. The results showed
that it is vital to focus on land-use planning, transportation improvement programs, and
population agglomeration to attenuate exposure inequality.
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