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Abstract

Introduction: Insecticide-treated nets (ITNs) are one of the main interventions used for malaria control. However, these nets
may also be effective against other vector borne diseases (VBDs). We conducted a systematic review and meta-analysis to
estimate the efficacy of ITNs, insecticide-treated curtains (ITCs) and insecticide-treated house screening (ITS) against Chagas
disease, cutaneous and visceral leishmaniasis, dengue, human African trypanosomiasis, Japanese encephalitis, lymphatic
filariasis and onchocerciasis.

Methods: MEDLINE, EMBASE, LILACS and Tropical Disease Bulletin databases were searched using intervention, vector- and
disease-specific search terms. Cluster or individually randomised controlled trials, non-randomised trials with pre- and post-
intervention data and rotational design studies were included. Analysis assessed the efficacy of ITNs, ITCs or ITS versus no
intervention. Meta-analysis of clinical data was performed and percentage reduction in vector density calculated.

Results: Twenty-one studies were identified which met the inclusion criteria. Meta-analysis of clinical data could only be
performed for four cutaneous leishmaniasis studies which together showed a protective efficacy of ITNs of 77% (95%CI:
39%–91%). Studies of ITC and ITS against cutaneous leishmaniasis also reported significant reductions in disease incidence.
Single studies reported a high protective efficacy of ITS against dengue and ITNs against Japanese encephalitis. No studies
of Chagas disease, human African trypanosomiasis or onchocerciasis were identified.

Conclusion: There are likely to be considerable collateral benefits of ITN roll out on cutaneous leishmaniasis where this
disease is co-endemic with malaria. Due to the low number of studies identified, issues with reporting of entomological
outcomes, and few studies reporting clinical outcomes, it is difficult to make strong conclusions on the effect of ITNs, ITCs or
ITS on other VBDs and therefore further studies be conducted. Nonetheless, it is clear that insecticide-treated materials such
as ITNs have the potential to reduce pathogen transmission and morbidity from VBDs where vectors enter houses.
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Introduction

The World Health Organisation (WHO) promotes the use of

Integrated Vector Management (IVM) to control vector borne

diseases (VBDs) [1]. Briefly, IVM involves the use of a range of

proven vector control tools used either alone or in combination

selected based on knowledge of the local vector ecology and

epidemiological situation. IVM can involve use of multiple vector

control tools against a single disease or alternatively a single tool

against multiple diseases. This is particularly the case where vector

control interventions are active against more than one disease and

VBDs overlap in their distribution.

IVM is a WHO policy for effective, cost effective and

sustainable vector control. In order to exploit synergies between

VBDs and make vector control more cost effective, IVM advocates

for the use of shared interventions across diseases. However, in

order to be able to do this it is important to first know whether

interventions are effective against multiple diseases. This was the
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rationale for conducting this review. We considered insecticide-

treated bednets (ITNs) since this intervention has been rolled out

already on a large scale for malaria vector control.

ITNs form the mainstay of malaria vector control in many

malaria endemic areas [2]. ITNs are estimated to reduce all-cause

child mortality by 17% and uncomplicated Plasmodium falci-
parum episodes in areas of stable transmission by 50%, compared

to no nets [3]. ITNs have been rolled out in malaria-endemic

regions on a large scale, particularly in sub-Saharan Africa (SSA).

Between 2004 and 2010, the number of ITNs delivered by

manufacturers to malaria endemic countries in SSA increased

from 6 million to 145 million [2]. The percentage of households

owning at least one ITN in SSA is estimated to have risen from 3%

in 2000 to 56% in 2012, but declined slightly to 54% in 2013.

More work is needed to reach ITN coverage targets set by Roll

Back Malaria of 80% use of ITNs by individuals in populations at

risk [4]. Outside Africa, 60 million ITNs were distributed during

2009–2012, with 10 countries accounting for 75% of the total

(India 9.2 million, Indonesia 6.1 million, Myanmar 5.4 million,

Bangladesh 4.7 million, Afghanistan 4.3 million, Cambodia 3.6

million, Papua New Guinea 3.2 million, Haiti 3.0 million and

Philippines 3.0 million) [2]. More recently conventional ITNs have

been replaced by long lasting insecticide-treated nets (LLINs) that

maintain effective levels of insecticide for at least three years

meaning that re-treatment with insecticide is not necessary. Since

2007 the WHO recommends only use of LLINs and not

conventional ITNs [5]. For the purpose of this review we refer

to ITNs without distinguishing between conventional ITNs or

LLINs.

ITNs are likely to be effective against multiple vectors and

VBDs since a substantial proportion of transmission occurs

indoors, but this has not been systematically assessed. As such

there may be unknown collateral benefits of ITN roll-out on VBDs

in addition to malaria. ITNs as well as insecticide-treated curtains

(ITC) and insecticide-treated screening are likely to function in the

same way. Disease vectors are attracted to host odours emanating

either from people sleeping under ITNs or from people within

houses in the case of ITCs and ITS. Vectors then coming into

contact with these materials are deterred or killed and thus it can

be said that the ITN and house are acting as ‘baited traps’. ITC

and ITS may also be working to some extent to prevent vectors

from entering houses (household level protection) rather than

personal protection in the case of ITNs.

We conducted a systematic review to assess the efficacy of ITNs,

ITCs or ITS against eight VBDs prioritised by the WHO in the

Handbook for IVM [6]: Chagas disease, cutaneous and visceral

leishmaniasis, dengue, human African trypanosomiasis, Japanese

encephalitis, lymphatic filariasis and onchocerciasis. In this study

we assessed the effect of ITNs, ITCs and ITS on clinical and

entomological outcomes.

Methods

Literature search
The review was carried out according to a protocol and

analytical plan that was prepared in advance. A systematic search

of published literature was performed in April 2013 and repeated

in June 2014 using intervention-specific search terms (for example

ITN/LLIN/bednet/curtain/pyrethrins), as well as vector and

disease specific search terms. MeSH and DeCS terms were used

where appropriate. More detail on the search terms used is given

in Supporting Information S1. MEDLINE (1950 -), EMBASE

(1980 -) and LILACS (1982 -) databases were searched and no

language restrictions were applied. In April 2013 we also searched

the Tropical Disease Bulletin (1912 -) database. In addition, we

reviewed the reference lists of key review articles and consulted

with experts to identify further studies.

The search was conducted as part of a larger systematic review

on all types of vector control interventions against eight different

VBDs [6]: Chagas disease, cutaneous and visceral leishmaniasis,

dengue, human African trypanosomiasis, Japanese encephalitis,

lymphatic filariasis and onchocerciasis.

AW screened the search results for potentially relevant studies

and full text documents were obtained for those publications

deemed to be relevant. Foreign language studies were evaluated by

a native speaker in consultation with AW. The articles were

scrutinised to ensure that multiple publications from the same

study were included only once.

Study inclusion and exclusion criteria
Studies were assessed against inclusion and exclusion criteria by

AW and SL independently. Studies were included if they

compared the efficacy of ITNs, ITCs or ITS versus no

intervention (control group) in disease endemic areas. Excluded

studies and reasons for their exclusion are detailed in Supporting

Information S2. We sought to compare the efficacy of ITNs, ITCs

and ITS versus no intervention, rather than assess the efficacy of

untreated bednets, curtains or screening or compare these

untreated materials to ITNs, ITCs or ITS. We took this decision

because bednets being rolled out for malaria control are

insecticide-treated. Studies using hand-impregnated nets or factory

manufactured LLINs were included. Studies assessed the effect of

the intervention on either i) clinical outcomes (incidence or

prevalence of disease or infection – whether this was confirmed by

the patient, clinical diagnosis or diagnostically differed by study)

and/or ii) entomological outcomes (including human biting rate,

adult vector density and Stegomyia indices, pupal/demographic

indices, oviposition rates or ovitrap positivity for dengue vectors).

Adult vector density was measured using a number of techniques

including Centers for Disease Control (CDC) light traps, sticky

traps, pyrethrum spray catches and resting catches using

aspirators. Larval indices extracted for dengue were house index

(percentage of houses infested with larvae and/or pupae),

container index (percentage of water containers infested with

active immatures) and Breteau index (number of positive

Author Summary

Malaria is a deadly disease caused by a parasite which is
transmitted by anopheline mosquitoes. Bednets treated
with insecticide are one of the key tools used to prevent
malaria and they have been distributed on a large scale in
many countries, particularly in Africa. It may be possible to
control other diseases transmitted by insects using
insecticide-treated bednets because many of these insects
also enter houses. We did a review of studies looking at
the effectiveness of insecticide-treated bednets, curtains
and house screening against nine major diseases trans-
mitted by insects. We assessed the effect these tools had
on reducing numbers of the insects and disease in
humans. Insecticide-treated bednets were found to be
effective in preventing cutaneous leishmaniasis—a disease
transmitted by sandflies—and insecticide-treated curtains
and screening showed potential in preventing other insect
borne diseases. Although further studies are required, it is
clear that insecticide-treated bednets, curtains and screen-
ing have the potential to prevent transmission of insect-
transmitted diseases.
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containers per 100 houses). We also extracted data on pupae per

person (number of pupae collected over the total number of

inhabitants of the households inspected), oviposition rates (mean

number of Aedes aegypti eggs per trap) and ovitrap positivity

(percentage of traps positive for Aedes eggs).

In terms of study designs, we included i) randomised controlled

trials (cluster level or individual randomisation), ii) non-rando-

mised trials with pre- and post-intervention data (for both control

and intervention areas) and iii) rotational studies (provided there

was baseline data or allocation was random or interventions/

collectors were rotated appropriately e.g. each house received each

intervention). A rotational design is when an intervention(s) is

moved between sampling sites for set time periods or, in the case of

human landing catches, collectors are rotated between interven-

tions.

Studies performed under laboratory or semi-field conditions (for

example, experimental huts) were excluded. We also excluded

non-randomised trials without baseline data (for both control and

intervention areas), non-controlled programme evaluations and

observational studies in which clusters or individuals were not

purposely allocated to intervention and control groups.

Data extraction and analysis
AW (or a third party contractor) extracted data from the

publications into a pre-designed data extraction form in Microsoft

Word (Supporting Information S3), along with data tables and

graphs. Graphs were digitised using Engauge Digitizer software

(version 5.1, http://digitizer.sourceforge.net/). Preliminary anal-

ysis of data tables was conducted in Microsoft Excel. Analysis

assessed the efficacy of ITNs, ITCs or ITS compared to no

intervention. We used un-adjusted measures (clinical and ento-

mological) throughout. This was for consistency because different

studies adjust for different covariates. However, adjusted values,

where available are reported for comparison.

Clinical outcomes were reported as either risks or rates of

disease or infection in the published papers. Meta-analysis of

clinical data (unadjusted risk of disease or infection) was performed

in Stata 13 using the metan command (StataCorp, Texas, U.S.A.).

Pre-intervention risk ratios were plotted on forest plots alongside

post-intervention risk ratios to show comparability of groups at

baseline. Statistical heterogeneity was assessed using a x2 test. Due

to the small number of studies in each comparison, we deemed

there to be heterogeneity if the x2 test p value was less than 0.1 [7].

If heterogeneity was found, a summary effect measure was

calculated using random effect meta-analysis rather than fixed

effect meta-analysis. Protective efficacy (PE) was calculated as

PE = 12(risk ratio of clinical disease or infection during the

intervention period) 6100%. PE (or relative risk reduction) can be

interpreted as the percentage reduction in risk of clinical disease or

infection associated with the intervention. Standard formulas were

used to calculate 95% confidence intervals for risk or rate ratios

[8].

Entomological outcomes are reported as means with 95%

confidence intervals, where these are reported in the published

paper or could be calculated. If there were zero events then we

estimated the upper 95% confidence interval as 100 x (3.7/N)

where N is the sample size [9]. For entomological outcomes, where

data were available for multiple intervention and control sites, we

took the average values of the outcome measure, applying equal

weight to all sites. A similar approach was taken if data were

available for multiple timepoints within a year or transmission

season, either pre- or post- intervention. We could not use meta-

analysis to analyse the entomological data due to inadequate

reporting in the published manuscripts. In almost all the studies

the standard error for mean vector density was not reported and

could not be calculated from the data presented in the papers. For

studies with baseline/post intervention data for control and

intervention sites we calculated the percentage reduction in vector

density using a difference in differences approach. We estimated

the effect of the intervention (J) using the formula J = (q1/q0)/

(p1/p0), where q1 and q0 are, respectively, the entomological

indicators (mean density, or biting rate) observed in the

intervention and control areas post-intervention respectively and

p1 and p0 are the corresponding baseline estimates of these

entomological indicators [10]. We calculated the percentage

reduction in entomological indicators as 100 x (1 - J). For studies

in which only post intervention data were available we calculated

the percent reduction in the outcome in the treatment group

compared to the control group using the formula 100 x (1-(q1/q0)

[10]. We were not able to calculate confidence intervals around

percentage reductions due to heterogeneity in study designs; e.g.

different follow up periods pre- and post-intervention and the way

in which the data was reported e.g. the total vector count was

reported rather than individual observations.

We followed recommendations made by the Preferred Report-

ing Items for Systematic Reviews and Meta-Analyses (PRISMA)

group where possible [11,12] (Supporting Information S4:

PRISMA checklist).

Risk of bias and study quality assessment
AW and SL assessed independently the risk of bias in the

included studies using a risk of bias assessment form. This form

was developed for the purposes of this review to assess

entomological studies and was adapted from the Effective Practice

and Organisation of Care (EPOC) risk of bias assessment form

[13] (Supporting Information S5). A judgement of high, low or

unclear risk of bias was given for a number of parameters. An

overall bias assessment (high/medium/low) was made based on

the modal bias risk.

We developed a tool for assessing study quality which primarily

concerns the study design and downgrades the score given to the

study depending on whether sample size calculations were

performed (overall and for entomological sampling), the length

of the follow up period and risk of bias (Supporting Information

S6). This was loosely based on the Grading of Recommendations

Assessment, Development and Evaluation (GRADE) system of

rating quality of evidence [14], but adapted for entomological

studies. For the purposes of the quality assessment, we deemed a

trial to be a randomised controlled trial if the published paper

stated that groups were randomised to intervention or control,

even if the process of sequence generation was not described in the

paper.

Results

Summary of studies identified and risk of bias and quality
assessment

The initial systematic literature search identified 19,113 unique

records (Figure 1). 18,617 records were excluded based on review

of the title and abstract. 496 full text records were reviewed and of

these 310 studies met the inclusion/exclusion criteria across all

types of vector control intervention. The update of the search in

June 2014 identified 1,991 unique records, of which 125 full-text

records were reviewed and 2 studies met the inclusion/exclusion

criteria. In total, 21 studies assessed the efficacy of ITNs, ITCs or

ITS versus no intervention and the split of these by disease was

nine cutaneous leishmaniasis, five dengue, one Japanese enceph-

alitis, three lymphatic filariasis and three visceral leishmaniasis.

Insecticide-Treated Materials against Vector Borne Diseases
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Summary tables of the studies identified are given in Supporting

Information S7. Only nine of the 21 studies included reported the

level of insecticide resistance in the study area or conducted an

insecticide bioassay. Of the 21 studies identified, fifteen were

deemed to be at low risk of bias, three at medium risk and three at

high risk of bias [15] (Supporting Information S8). Twelve studies

were deemed to be of high quality, three medium quality and six

low quality (Supporting Information S9). No studies that met the

inclusion and exclusion criteria were found assessing the efficacy of

ITNs, ITCs or ITS against Chagas disease, human African

trypanosomiasis or onchocerciasis.

Efficacy of ITNs and ITCs against cutaneous leishmaniasis
A total of six studies assessing the efficacy of ITNs against

cutaneous leishmaniasis were identified [15–20]. Of these three

reported clinical data only, one reported entomological data only,

and two reported both clinical and entomological data. Of the

studies reporting clinical data, this was generally either a symptom

questionnaire administered to participants or examination of

lesions. Two studies utilised either a leishmanin skin test [20] or

microscopic examination of skin scrapings from an active lesion

[21].

Random effects meta-analysis of the efficacy of ITNs was

conducted on data from four studies conducted in Iran (2 studies),

Afghanistan and Colombia [17–20] (Figure 2, Table 1). Pre-

intervention incidence of cutaneous leishmaniasis was comparable

in intervention and control groups in the three studies that

reported this data, with 95% confidence intervals for the risk ratio

crossing the null value. Random effect meta-analysis indicated a

PE of ITNs against cutaneous leishmaniasis of 77% (95% CI:

39%–91%, P = 0.003). Clinical data from one study in Turkey

[15] was not suitable for meta-analysis because this study did not

report numbers of cases or population at risk. Alten et al. reported

a significant reduction in incidence of cutaneous leishmaniasis in

Figure 1. Flowchart of study inclusion (adapted from [11]).
doi:10.1371/journal.pntd.0003228.g001
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ITN clusters, while incidence in control areas either stayed the

same or increased. However, this study was deemed to be at high

risk of bias and low quality.

Studies assessing the efficacy of ITNs reported mixed results

in terms of effect on sandfly density ranging from a relative

increase of 49% to a relative reduction of 96% (Table 2). Although

Emami et al. reported a highly significant PE against cutaneous

leishmaniasis in Iran, no effect on the mean number of

Phlebotomus sergenti captured per month was detected in this

study [17]. Similarly, Alten et al. reported a beneficial effect of

ITNs on clinical disease in Turkey and a percentage increase in

vector density relative to the control group was documented [15].

Three studies conducted in Colombia, Venezuela and Burkina

Faso assessed the efficacy of ITCs against cutaneous leishmaniasis

[16,22,23]. Two studies reported entomological data while one

reported both clinical and entomological data. Kroeger et al.
demonstrated a high PE against cutaneous leishmaniasis of 93%

(95% CI: 216%–100%, p = 0.06) in Venezuela (Table 1) [22].

Studies that measured the entomological effect of ITCs demon-

strated a high percentage reduction in vector density of 54%, 87%

and 98% (Table 2). However, the 98% reduction was observed in

a study that was deemed to be of low quality due to the study

design employed (non-randomised pre-post design), few sampling

sites for entomological data and short period of follow up.

A study which assessed the efficacy of ITCs and ITS against

cutaneous leishmaniasis in Iran reported a PE of 16% (95% CI:

2%–28%, p = 0.03) [21]. This study was deemed to be of low

quality due to the study design (non-randomised pre-post design)

and high risk of bias.

Efficacy of ITNs against visceral leishmaniasis
Three studies assessing the efficacy of ITNs on visceral

leishmaniasis were identified [24–27]. Two studies reported only

entomological data and one reported both clinical and entomo-

logical data. The Picado et al. study [27] did not show a significant

effect on incident Leishmania donovani infections (PE: 0.3%,

95%CI: 215%–14%, p = 0.97) or incident cases of visceral

leishmaniasis (PE: 4%, 95%CI: 281%–48%, p = 0.9) in India

and Nepal (Table 1). The same study, however, did appear to

show an effect on vector density with a relative reduction in the

mean number of P. argentipes females per light trap night of 57%

[26] (Table 3). Two studies conducted in Sudan [24] and

Bangladesh, India and Nepal [25] demonstrated a 100% and

35% (95% CI: 256% to 75%) reduction in vector density,

respectively (Table 3).

No studies were identified which assessed the efficacy of ITCs or

ITS against visceral leishmaniasis.

Efficacy of ITNs and ITCs against lymphatic filariasis
Two studies assessing the efficacy of ITNs against lymphatic

filariasis were identified, both of which collected entomological

data only [28,29]. ITNs generally were associated with a high level

of protection against Anopheles species, with approximately a 98%

reduction in vector density in the two studies conducted in Kenya

and Papua New Guinea (Table 4). Bøgh et al. reported a lower

percentage reduction in Culex quinquefasciatus density of 16%

[28].

One study conducted in India assessing the efficacy of ITCs

hung in eaves and doorways against lymphatic filariasis vectors

was identified [30]. Poopathi et al. detected an 82% reduction in

man biting density and a 79% reduction in indoor resting density

of Cx. quinquefasciatus [30] (Table 3). However, this study was

deemed to be of low quality mainly due to the study design

employed (non-randomised pre-post design), few sampling sites for

entomological data and short period of follow up.

Efficacy of ITNs, ITCs and ITS against dengue
One study conducted in Haiti assessed the efficacy of ITNs

against dengue [31]. Based on the five month post-intervention

survey this study showed that ITN use was associated with a 36%

Figure 2. Forest plot (random effects meta-analysis) indicating efficacy of ITNs against cutaneous leishmaniasis. The forest plot
displays post-intervention risk ratios and pre-intervention risk ratios separately to show comparability of groups at baseline.
doi:10.1371/journal.pntd.0003228.g002
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reduction in pupae per person and 77% reduction in indoor

ovitrap positivity. However, the study reported that ITNs were

associated with a 56% increase in house index, 143% increase in

container index, 60% increase in Breteau index and 20% increase

in outdoor ovitrap positivity. The bioassay results on new nets

from this study site indicated only 30% mortality of A. aegypti
suggesting that insecticide resistance may have been a problem.

Three studies were identified that assessed the efficacy of ITCs

against dengue vectors [32–34]. Kroeger et al. demonstrated in

Mexico a beneficial effect of ITCs on house index (25% reduction)

and pupae per person (39% reduction), but reported a relative

increase in Breteau index of 10% based on the 12 month follow up

survey [32]. The authors, however, reported a community-level

effect of the ITCs which meant that benefits in terms of reductions

in mosquito populations spilt over into control areas. They

postulate that this is why there is no significant difference between

intervention and control arms. Breteau and house indices from an

external control area closely follow seasonal rainfall patterns and

do not show similar reductions as in the study intervention and

control areas. In Thailand Lenhart et al. did not detect a beneficial

effect of ITCs on house index, container index, Breteau index or

pupae per person, with relative increases of 15%, 20%, 3% and

37%, respectively at the nine-month time point [33]. ITCs did,

however, show a beneficial effect on indoor and outdoor

oviposition rates with reductions of 44% and 49% in mean

numbers of eggs per trap, respectively at the six month time point,

although no significant difference between control and ITC arms

was reported at three or nine months. Another study in Thailand

where houses generally had a more closed design reported a 56%

reduction in house index, 67% reduction in Breteau index and

63% reduction in pupae per person index six months after the start

of the intervention [34]. At the 6-month follow up survey 71% of

households had at least one ITC. However, at the 18-month follow

up survey when ITC coverage had fallen to only 33% a much

lower effect on entomological parameters was observed (26%

reduction in house index, 8% reduction in Breteau index and

111% increase in pupae per person index).

A study of ITS reported a beneficial effect on both house index

and density index (adult Ae. aegypti) in Vietnam. In the

intervention arm both house and density index were reduced to

zero one month after installation of the screening and remained at

zero for the duration of the epidemic season (eight months post

intervention), compared to the control arm in which seasonal

peaks in both indices were observed [35,36]. The same study also

reported a PE of ITS against IgM seropositivity of 80% (95% CI:

53–92%, p,0.001) compared to the control group (Table 1). This

study used a non-randomised pre-post design and was deemed to

be of low quality.

Efficacy of ITNs against Japanese encephalitis
A single study by Dutta et al. assessed the efficacy of ITNs

against Japanese encephalitis vectors and seroconversion in India

[37]. This study was deemed to be of low quality due to the study

design employed (non-randomised pre-post design) and low

number of sampling sites for entomological data. No effect of

ITNs on mean density of adults of the Cx. vishnui group was

observed (reduction of 23.5%). The risk of seroconversion against

Japanese encephalitis virus was comparable across groups at

baseline, but the risk was significantly lower in the ITN group

compared to the control during the two year post intervention

period (PE: 67%, 95%CI: 44–80%, p,0.001) (Table 1).

Discussion

Our review shows the potential for ITNs, ITCs and ITS to

reduce vector borne diseases. Of particular note is the evidence on

high protective efficacy of ITNs against cutaneous leishmaniasis,

which suggests that there may be considerable collateral benefits of

ITN roll out where cutaneous leishmaniasis and malaria are co-

endemic. There is also good evidence of the efficacy of ITC and

Table 1. Effect of ITNs, ITCs and ITS against vector borne diseases.

Disease Intervention Study
Unadjusted PE
(95% CI, p value)

Adjusted PE
(95% CI, p value) Covariates adjusted for

Cutaneous leishmaniasis ITN Emami 2009 98% (93%, 100%, p,0.001) NR NR

Nadim 1995 50% (23%, 76%, p = 0.06) NR NR

Reyburn 2000 66% (54%, 75%, p,0.001) 69% (45%, 82%,
p,0.001)

Intra-household clustering

Rojas 2006 55% (6%, 79%, p = 0.03) 55% (214%, 82%) Age, residence located on the
periphery, roof of thatch, distance to
the forest ,50 m, community
participation score and prevalence
of infection in children ,5 years old

Alten 2003 37% NR NR

ITC Kroeger 2002 93% (216%, 100%, p = 0.06) NR NR

ITC and ITS Noazin 2013* 16% (2%, 28%, p = 0.03) NR NR

Visceral leishmaniasis ITN Picado 2010 Cases: 4% (281%, 48%,
p = 0.9) Infection: 0.3%
(215%, 14%, p = 0.97)

Cases: 215%
(2116%, 39%,
p = 0.64) Infection: 11%
(264%, 52%, p = 0.68)

Clustering, age group, sex, times
sprayed, and socioeconomic status.

Dengue ITS Nguyen 1996
Igarashi 1997

81% (53%, 92%, p,0.001) NR NR

Japanese encephalitis ITN Dutta 2011 67% (44%, 80%, p,0.001) NR NR

*study reported rates only, PE = protective efficacy, CI = confidence interval, NR = not recorded, More detail on cases and denominators given in Supporting
Information S10.
doi:10.1371/journal.pntd.0003228.t001
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ITS against cutaneous leishmaniasis. Weaker evidence exists for

the effect of ITS on dengue and ITNs on Japanese encephalitis,

but these interventions look promising. Further studies should be

conducted to confirm these findings. The potential of ITNs,

ITCs and ITS against Chagas disease, human African trypano-

somiasis and onchocerciasis remains untested. In several studies

the pattern of reduction in disease incidence was not matched by

reductions in entomological parameters. This is not unsurprising

given the complicated relationship between vector density and

risk of human infection, particularly when vector infection rate is

not taken into account.

Meta-analysis showed that ITNs were able to reduce the

incidence of cutaneous leishmaniasis by 77%. This finding

provides support for WHO’s recommendation that ITNs should

be used as a vector control method against this disease [38]. This

level of protective efficacy compares favourably with the 50%

protective efficacy of ITNs against P. falciparum malaria shown

by Lengeler [3]. Based on maps of cutaneous leishmaniasis [39]

and P. falciparum endemicity [40] there are large areas,

particularly in South America, where these diseases are likely

to be co-endemic. Non-malaria endemic countries where

cutaneous leishmaniasis is prevalent should consider rolling out

ITNs as part of control efforts. Similar reductions in vector

density were not observed which may be due to the ecology of

the vector species or differences in collection techniques. For

example studies by Alten et al. and Emami et al. sampled both

endophilic and exophilic species [15,17]. Studies by Kroeger et
al. [22] and Noazin et al. [21] reported significant effects of ITC

and ITC/ITS on clinical outcomes.

Clinical evidence from one study suggested that ITNs were

not effective against visceral leishmaniasis [27]. However, in this

study Picado et al. suggested that L. donovani transmission may

have been occurring outside the home where ITNs would have

little impact on preventing sandfly-human contact. In Africa

observational studies led to mixed results – several studies have

shown treated bednets to be protective against visceral

leishmaniasis [41,42], while others have shown no effect of

ITNs on L. donovani infection rate in P. orientalis, although the

number of infected P. orientalis identified was small in all

villages [43]. In south Asia, several observational studies have

shown use of (untreated) bednets to be protective against visceral

leishmaniasis [44,45].

The efficacy of ITNs in preventing leishmaniasis transmission

is dependent on a number of key variables related to vector

biology, type of nets and human behaviour. Studies have shown

protection is dependent on mesh size of the nets – nets designed

to be cooler which have large holes are more likely to let

sandflies though, even if they are insecticide treated [46]. ITNs

are likely to be more effective where sandflies bite indoors at

night and where people use ITNs consistently [47,48]. ITCs and

ITS may be advantageous over ITNs because these interventions

are in place all the time and since there is no need to set them up

at night compliance is less of an issue [21]. In general, where

transmission is occurring inside the home or where vectors rest

indoors, we would expect ITNs, ITCs or ITS to have a beneficial

effect, irrespective of whether the vectors are transmitting

cutaneous or visceral leishmaniasis. It is important to have a

sound grasp of sandfly biology and human behaviour in a

particular setting in order to understand where transmission is

occurring or where vectors rest before planning specific

intervention strategies.

There were no studies that met the selection criteria, which

reported the efficacy of ITNs against lymphatic filariasis

infection. In much of SSA and parts of the western Pacific,
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Anopheles mosquitoes transmit both lymphatic filariasis and

malaria and so theoretically ITNs should have a beneficial effect

on both diseases [49]. Observational studies have shown a

beneficial effect of ITNs on lymphatic filariasis transmission where

the disease is transmitted by Anopheles mosquitoes [50–53] and

ITNs may be particularly useful in areas co-endemic for lymphatic

filariasis and Loa Loa where mass drug administration of

ivermectin is contraindicated due to serious adverse events [54].

However, to our knowledge no randomised controlled trials have

been performed in these settings. Such a study would need to be of

long duration to show a reduction in microfilaraemia given that

adult worms have lifespans of between four and 10 years [55,56].

Alternatively, a study could use incidence of new infections in

young children as an outcome [57]. The efficacy of ITNs, ITCs

and ITS against Culex vectors of lymphatic filariasis, which are

predominant in urban areas [58], needs further assessment. Bøgh

et al. reported a 16% reduction in indoor resting density of Cx.
quinquefasciatus compared to a 98% reduction in Anopheles
species [28], presumably because Culex are less susceptible than

Anopheles to pyrethroids [59–61]. Another explanation may be

that transient reductions in vector density are masked because

Culex populations are massive and the population can rapidly

replace itself or immigrate. Poopathi et al. assessed the effect of

insecticide-treated eave and door curtains and reported an 82%

reduction in human biting density of Cx. quinquefasciatus [30]. It

may be the door curtain component of this intervention which is of

greatest importance given the findings of a study by Njie et al. who

reported that culicines enter houses via the door rather than the

eaves [62].

There is an increasing focus on intradomicile vector control for

dengue [63] because Ae. aegypti rest, feed, mate and reproduce

inside houses [64]. Targeting adult Ae. aegypti shifts the age

structure of the vector population to younger mosquitoes, which is

likely to have a large effect on human infections due to the

relatively long extrinsic incubation period of the dengue virus in

the mosquito [65]. However, since transmission of dengue occurs

mostly during the daytime the use of bednets has rarely been

considered as an intra-domiciliary control strategy. Studies

identified in this review reporting an effect of ITCs and ITS on

Ae. aegypti infestation levels [32,34–36] suggest that vectors are

coming into contact with these interventions indoors. The

likelihood of the vector coming into contact with the ITN, ITC

or ITS will depend on a number of factors including the size of the

home and construction. For example, Lenhart et al. state that the

open construction of the homes in their study conducted in

Thailand may explain why ITCs did not show any effect [33]. It is

generally recognised that greater coverage of the intervention will

result in mass killing, reduced vector survival and greater

reductions in transmission; i.e. a community level effect. This

was apparent in two of the dengue studies included in this review.

In one study use of ITCs in intervention areas led to a community

level effect whereby larval indices were reduced in neighbouring

control areas [32]. A study by Vanlerberghe reported that a

reduction in ITC coverage over time led to a reduced effect on

entomological parameters [34]. A similar pattern of coverage

dependent effects of ITCs on Ae. aegypti larval and pupal/

demographic indices was reported in another study in Venezuela,

which suggested that at least 50% coverage of ITCs was necessary

to reduce Ae. aegypti infestation levels by 50% [66].

Entomological data from studies on the efficacy of ITCs and

ITNs against the dengue vector Ae. aegypti were inconsistent

across the different indices measured. Focks and others have

questioned the reliability and sensitivity of traditional immature

aegypti indices (the house, container, and Breteau indices) and

there is growing consensus that these indices are of little value in

predicting risk of human infection [67]. Ovitraps are also not

recommended for assessing vector abundance because measures

are often biased by competition from natural oviposition sites [63].

Instead pupal/demographic indices (for example pupae per

person) are a better proxy for adult vector abundance or

measurement of adult vector density itself [67,68] and are more

appropriate for assessing transmission risk and directing control

operations [69,70]. The ideal would be to have a measure similar

to the entomological inoculation rate for malaria transmission

(incorporating both adult density and infection rate). However,

adult Ae. aegypti are difficult to catch in appreciable numbers

(though this is likely to improve with development of new adult

monitoring tools) and only small proportion of adults are infected

so it is difficult to detect infection [71].

The absence of studies of the two human trypanosome vectors

and black flies is noteworthy. For black flies and tsetse flies, the

predominantly outdoor exposure may be the main underlying

reason. For triatomines, the absence of intensive bednet campaigns

in Chagas disease endemic areas (which are often non-malarious,

especially for the main vector Triatoma infestans), and the general

lack of attention to improved housing may be among the principal

underlying factors for the lack of studies.

Our review has several limitations that should be noted. We

focused on a number of important neglected tropical diseases. This

group of diseases is well-named because few studies were

identified, despite conducting a comprehensive database search

and contacting disease experts. We also relaxed the inclusion

criteria somewhat in terms of study designs to include non-

randomised studies with pre- and post-intervention data. We did

not, however, do a full search of the grey literature which may

mean that publication bias was introduced resulting in over-

reporting of studies demonstrating that ITNs, ITCs and ITS were

protective. We did not request further information from authors if

reporting of methods or results was unclear in the published paper.

Due to the few studies identified, summary estimates could only be

generated using meta-analysis for cutaneous leishmaniasis. Studies

were generally at low risk of bias but were of mixed quality. The

main problems identified were with study design; e.g. short periods

of follow up and incomplete reporting in the published papers; e.g.

the method of sequence generation for randomisation was not

reported. We took a cautious approach and did not calculate

confidence intervals for entomological outcomes. This was due to

i) heterogeneity in study designs e.g. differences in follow up

periods pre- and post-intervention and between studies, studies

involving single houses and entomological parameters measured

once versus studies with multiple clusters and measurements over

an extended time period and ii) incomplete reporting in the

published papers e.g. confidence intervals and standard deviations

omitted. Without knowing the uncertainty around percentage

reductions it was not possible to make any conclusions regarding

the entomological effect of interventions. Improved reporting of

entomological data in studies and standardisation of study design

and conduct should be a priority. Entomological data should

always be assessed in combination with a clinical outcome where

possible, and clinical outcomes with standardised diagnostic

techniques and case definitions should remain the gold standard

outcome for assessing the efficacy of vector control interventions.

Less than half of the studies we considered reported the results

of bioassays for efficacy of the insecticide used. In one of the

studies conducted in Haiti there was some indication of resistance

[31]. However, many of the studies were conducted prior to the

early 2000s before the advent of pyrethroid resistance [72],

including those against cutaneous leishmaniasis that show a high
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PE. It is not possible, therefore, to say whether this level of efficacy

would be observed today. Currently pyrethroids are the only class

of insecticides suitable for use on LLINs and increasing coverage

of pyrethroid treated materials to control multiple VBD is likely to

increase selection pressure for development of resistance. Indeed,

pyrethroid resistance has been detected in a number of non-

malaria vectors including Cx. quinquefasciatus [73–75], sand flies

[76], Ae. aegypti and Ae. albopictus [77]. Even if pyrethroid

resistance increases it is likely that ITNs, ITC and ITS will still

afford some level of protection against vectors due to a barrier

effect. However, it would be sound to use insecticide treated

materials as part of an IVM strategy including other vector control

tools that do not rely on insecticide such as larval source

management or make sure that different insecticide classes are

used for IRS/fogging etc (if appropriate). In the meantime, new

types of insecticide treated materials, for example LLINs

impregnated with insecticides with two different modes of action,

are being developed which are showing promise against insecticide

resistant malaria vectors [78,79].

In terms of collateral benefits there may also be beneficial effects

of ITNs, curtains and screening on preventing household pests

such as bedbugs, headlice, cockroaches and rodents which

although not systematically assessed in this review are important

benefits which increase acceptability and encourage compliance

with interventions [80–82].

In conclusion, ITNs, ITCs and ITS have great potential to

reduce VBDs. The biological insight that follows from this

conclusion is that a substantial proportion of the vector

population must be resting or feeding indoors. Evidence on

efficacy of ITNs, ITC and ITS against multiple VBDs should be

paired with maps of disease co-endemicity in order to prioritise

and focus resources to areas of greatest disease burden. The use

of interventions against multiple diseases has the potential to

reduce costs and make better use of financial and human

resources. This requires functional coordination between disease-

specific programmes on planning, implementation and monitor-

ing and evaluation with sharing of existing infrastructure and

competencies. Beneficial effects on multiple VBDs will serve to

increase the cost effectiveness of insecticide-treated materials and

this may help to bolster the case for vector control funding. This

review demonstrates some promising results, but highlights the

urgent need for further well conducted studies. The efficacy of

ITNs, ITCs and ITS against VBDs needs to be rigorously tested

in randomised controlled trials with standardised clinical

outcomes.
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