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Abstract: CCG-1423 is a Rho A pathway inhibitor that has been reported to inhibit Rho/SRF-mediated
transcriptional regulation. Serum response factor and its cofactors, which include ternary complex
factors and myocardin-related transcription factors, regulate various cellular functions. In this
study, we observed that CCG-1423 modulates the mitochondrial functions. The effect of this small
molecule drug was determined by measuring mitochondrial function using an XFe96 Analyzer and an
Oxygraph 2k (O2k) high-resolution respirometer. CCG-1423 treatment significantly reduced oxidative
phosphorylation in a dose-dependent manner. However, CCG-1423 increased the glycolytic rate. We
also observed that histone 4 at lysine-16 underwent hyperacetylation with the treatment of this drug.
Immunolabeling with F-actin and MitoTracker revealed the alteration in the actin cytoskeleton and
mitochondria. Taken together, our findings highlight a critical role of CCG-1423 in inhibiting the
transcription of SRF/p49 and PGC-1α, β, resulting in the downregulation of mitochondrial genes,
leading to the repression of mitochondrial oxidative phosphorylation and overall ATP reduction.
This study provides a better understanding of the effects of CCG-1423 on mitochondria, which may
be useful for the assessment of the potential clinical application of CCG-1423 and its derivatives.
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1. Introduction

Serum response factor (SRF) is an important transcription factor that plays a crucial
role in multiple biological processes in many cells, such as muscle cells (cardiac, skeletal,
and smooth), endothelial cells, fibroblasts, hepatocytes, immune cells, and neurons [1–3].
SRF regulates differential gene expression through cofactor(s) recruitment, among which
the most well-known are myocardin-related transcription factors and the members of the
ternary complex factors. Myocardin family transcriptional co-activators include myocardin,
also known as MKL (megakaryoblastic leukemia), which plays an important role in stim-
ulating transcriptional activity of SRF. In the nucleus, different cofactors associate with
SRF, and this association drives gene expression via the CC(A/T-rich)6GG cis-element, also
called the CArG box [4]. This complex regulates actin cytoskeleton and motility [5,6]. SRF
is also regulated by Rho GTPases and the Rho/SRF signaling has also been studied in terms
of mechanisms including melanoma metastasis and fibrotic pathological pathways [7–9].

A small molecule screen of inhibitors of Rho-induced SRF-mediated transcription
initially discovered CCG-1423 as an inhibitor of MKL/SRF signaling. CCG-1423 is formally
named as N-[2-[4(4-chlorophenyl) amino]-1-methyl-2-oxoethoxy]-3, 5-bis (trifluoromethyl)-
benzamide [10]. It has been shown that CCG-1423 binds to the nuclear localization signal
region of G-actin-binding sites of the MKL family of proteins [11]. CCG-1423 prevents
MKL’s association with importin-α/β, causing inhibition of nuclear import of MKL and
MKL/SRF-mediated gene transcription. CCG-1423 can also indirectly reduce the nuclear
accumulation of MKL and repress SRF activation. Others have shown that the inhibitory ef-
fects of CCG-1423 on cancer cell invasions [10] tend to improve other pathological changes
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including insulin resistance [12], neointima formation in vascular diseases [13], and fibro-
genesis [14].

It is evident that dysfunction in mitochondrial metabolism is the cause of several inher-
ited and acquired diseases. Mitochondria are essential organelles that have several critical
functions in the cell, including metabolism and signaling [15]. SRF regulates cell metabolism
by maintaining mitochondrial dynamics, fatty acid translocation, and determining the fate
of electron transport chain (ETC) complex proteins [16]. Epigenetic modifications are major
components affecting the activation of genes downstream of SRF [17]. Chromatin structure
and function are greatly influenced by histone protein post-translational modifications, and
they usually regulate the DNA transcription factor binding by altering either acetylation
or methylation. SRF is involved in mechanisms controlling chromatin structure [18]. The
reversible addition of an acetyl group to lysine residues and protein acetylation regulates
the transcriptional activity [19,20]. Furthermore, many studies have demonstrated the
crucial role of SRF in cellular migration and normal actin cytoskeleton and contractile
biology [21,22]. Previously, our group had discovered p49/STRAP, a serum response factor
binding protein [23]. The NADH dehydrogenase ubiquinone oxidoreductase subunit AB1
(NDUFAB1), a subunit of complex I, interacts with p49/STRAP [24]. Moreover, p49/STRAP
over-expression promoted histone H4 deacetylation, which was accompanied by downreg-
ulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC 1α)
and mitofusin 1 and 2 expression [25]. Mitofusins, which are regulated by PGC-1α, are im-
portant mitochondrial fusion proteins [26]. Therefore, p49/STRAP has been demonstrated
to have its role in mitochondrial function and dynamics.

We herein investigated the role CCG-1423 on SRF and its cofactor p49/STRAP and
whether it repressed the mitochondrial function and biogenesis in mouse skeletal myoblast
cells. Our data demonstrate that CCG-1423 deacetylated the SRF protein and caused
histone 4 at lysine 16 (H4K16) hyperacetylation. It also changed the actin cytoskeleton
conformation. In addition, it reduced the transcriptional activity of PGC-1α, PGC-1β, and
affected the other mitochondrial genes involved in biogenesis and function. We have shown
the effects of CCG-1423 on the functional aspects of mitochondrial function of oxidative
phosphorylation (oxygen consumption rate, OCR), glycolysis (extracellular acidification
rate, ECAR), and total ATP production. These findings help to elucidate the role of CCG-
1423 in mitochondrial function and might suggest areas for future study in the preclinical
evaluation of CCG-1423 as a potential novel therapeutic agent.

2. Results
2.1. CCG-1423 Downregulates SRF, p49/STRAP Expression and Does Not Affect the Cell Viability

We first examined whether CCG-1423 affected C2C12 cell viability. The treatment
of CCG-1423 at different concentrations for 24 h did not significantly affect the C2C12
cell viability. At higher concentrations, 1 µM and 10 µM of CCG-1423 did have a slight
effect on the cell viability (Supplementary Figure S1). The inhibitory effects of CCG-1423
on SRF and p49/STRAP was tested at 10 µM dosage of CCG-1423 for 24 h, resulting in
significant reduction of mRNA expression levels and protein levels of SRF and p49/STRAP
(Figure 1A,B). Thus, CCG-1423 downregulates both SRF and p49/STRAP.

2.2. CCG-1423 Increases H4 Lysine-16 Acetylation but Decreases the Level of Acetylated-Lysine SRF

We explored a possible regulation of SRF by CCG-1423 in immunoprecipitation ex-
periments using an SRF antibody specifically pulled down SRF compared with vehicle
control after 24 h, 10 µM dosage treatment. The strong signal of SRF pulldown confirmed
the specificity of the SRF antibody (Figure 2A). The immunoprecipitation evidence for
acetylated-lysine/SRF shows SRF is deacetylated on the treatment of CCG-1423 (Figure 2A).
We then determined acetylation levels of H4K16 since it plays an important role in transcrip-
tion and chromatin packaging [27]. We performed immunoprecipitation to specifically pull
down the H4. Interestingly, our data showed that pre-treatment with CCG-1423 robustly
increased H4K16 acetylation (Figure 2B).
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Figure 1. CCG-1423 represses SRF and p49/STRAP. (A–C) C2C12 cells were treated with a 10 μM 
dosage for 24 h. (A) The mRNA expression of SRF and p49/STRAP was evaluated in qPCR. DMSO 
was used as control. Immunoblotting was used to evaluate the protein levels of (B) SRF and (C) 
p49/STRAP. GAPDH was used as the total protein loading control and relative protein expression 
was quantified in (B,C). ** p < 0.01, **** p < 0.0001 (n = 3). 
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Figure 1. CCG-1423 represses SRF and p49/STRAP. (A–C) C2C12 cells were treated with a 10
µM dosage for 24 h. (A) The mRNA expression of SRF and p49/STRAP was evaluated in qPCR.
DMSO was used as control. Immunoblotting was used to evaluate the protein levels of (B) SRF
and (C) p49/STRAP. GAPDH was used as the total protein loading control and relative protein
expression was quantified in (B,C). ** p < 0.01, **** p < 0.0001 (n = 3).
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Figure 2. Immunoprecipitation of SRF acetylated lysine and H4K16 protein. (A) CCG-1423 represses 
the SRF acetylated-lysine (Ac-SRF), representative western blot of acetylated-lysine SRF and SRF in 
lysates from CCG-1423 treated and non-treated C2C12 cells. GAPDH was used as a loading control. 
(B) H4K16 was hyperacetylated on the CCG-1423 treatment, representative western blot image of 
H4K16 and total histone H4 protein was used as a loading control (n = 3). 
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CCG-1423 on mitochondrial fusion and fission genes. CCG-1423 significantly reduced the 
expression level of mitofusin-2 (MFN2) and mitochondrial fission 1 (Fis1) whereas it did 
not change the mRNA expression level of mitofusin-1 (MFN1) and optic atrophy-1 (Opa1) 
(Figure 3C). CCG-1423 also altered the expression levels of mitochondrial complex I sub-
unit genes NDUFV1, NDUFV2, NDUFS1, and NDUFAB1 (Figure 3D). 
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the SRF acetylated-lysine (Ac-SRF), representative western blot of acetylated-lysine SRF and SRF in
lysates from CCG-1423 treated and non-treated C2C12 cells. GAPDH was used as a loading control.
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H4K16 and total histone H4 protein was used as a loading control (n = 3).
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2.3. CCG-1423 Represses the Genes Involved in Mitochondrial Biogenesis, Fusion, and Fission

We next assessed the effect of CCG-1423 on the gene expression of PGC-1α and PGC-
1β. The PGC-1α and -1β are the upstream regulators of mitochondrial genes [28,29]. Our
data indicate that CCG-1423 reduced the PGC-1α and PGC-1β expression at mRNA levels
(Figure 3A) as well as PGC-1α protein levels (Figure 3B). We also determined the effect
of CCG-1423 on mitochondrial fusion and fission genes. CCG-1423 significantly reduced
the expression level of mitofusin-2 (MFN2) and mitochondrial fission 1 (Fis1) whereas it
did not change the mRNA expression level of mitofusin-1 (MFN1) and optic atrophy-1
(Opa1) (Figure 3C). CCG-1423 also altered the expression levels of mitochondrial complex I
subunit genes NDUFV1, NDUFV2, NDUFS1, and NDUFAB1 (Figure 3D).
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Figure 3. Repression of mitochondrial genes involved in biogenesis and function. (A) RT-qPCR
analysis demonstrated the inhibition of PGC-1α and -1β gene expression following the treatment
of CCG-1423. (B) Protein levels of PGC-1α were analyzed by Western blot and GAPDH was used
as a loading control. Densitometric analysis shows inhibition of PGC-1α. (C) MFN2 and Fis1
gene expression levels reduced whereas MFN1 and Opa1 were unaffected. (D) Downregulation of
mitochondrial genes involved in complex-I. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns:
p > 0.05 (n = 3).

2.4. Actin Assembly and Mitochondrial Morphology

SRF is a crucial transcription regulator of normal actin cytoskeleton and cellular
migration [30]. The f-actin phalloidin staining for actin filaments traversing the entire
length of the cells (in Figure 4A) were altered by CCG-1423 treatment (in Figure 4B). SRF
inhibition decreased the f-actin formation and changed the cell structure. To further in-
vestigate the effect of CCG-1423 on mitochondrial morphology and membrane potential,
the MitoTracker staining was performed. As shown in Figure 4C (vehicle control) and Fig-
ure 4D (treated), CCG-1423 reduced the mitochondrial size and lowered the mitochondrial
membrane potential.
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Figure 4. Immunolabeling of Actin and MitoTracker. C2C12 cells at 24 h post-treatment, cells
incubated with phalloidin (green) and MitoTracker (red) conjugated dyes. DAPI (blue) was used for
nuclear counterstaining. (A,C) Vehicle (DMSO) (B,D) CCG-1423 treated cells, at 10 µM dosage. 63×
oil objective is used; scale bars indicate 10 µm. (E) MitoTracker stained cells are randomly selected
microscopic fields in four individual repetitions where the fluorescence intensity was quantified
using ImageJ. **** p < 0.0001 (n = 4).

2.5. CCG-1423 Differentially Regulates Cellular Bioenergetics

To investigate the two major energy pathways, oxidative phosphorylation, and glycol-
ysis, the Seahorse XFe96 Analyzer was utilized. CCG-1423 repressed the basal respiration
paralleled by a significant reduction in the maximal respiratory capacity and spare respira-
tory capacity in a dose-dependent manner as compared to the vehicle control (Figure 5A).
CCG-1423 increased the basal glycolysis and compensatory glycolysis in a dose-dependent
trend (Figure 5B). Furthermore, we also determined the total ATP production from OCR
and ECAR. As shown in Figure 5C, mitochondrial ATP was reduced with the treatment of
different dosages of CCG-1423. The inhibitory effects on OCR reduced the mitochondrial
ATP production, possibly forcing the cells to compensate by increasing glycolysis to meet
energy demands.

Next, we tested the inhibitory effects of CCG-1423 on OCR with Oxygraph 2k high-
resolution respirometer in the intact C2C12 cells. As shown in Figure 6A, the basal respi-
ration, ATP-linked respiration, as well as the maximal capacity of the mitochondrial ETC
was significantly repressed with the treatment of CCG-1423. With the substrate-inhibitor-
titration, we also assessed the inhibitory effects on the Electron transport complexes I
(NADH/ubiquinone oxidoreductase), II (succinate dehydrogenase), III (cytochrome c re-
ductase), and IV (cytochrome c oxidase). Intriguingly, CCG-1423 represses the functional
activity of all four complexes of ETC (Figure 6B).
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Figure 5. Mitochondria functional analysis of oxygen consumption rate, extracellular acidification
rate, and total ATP production. (A) OCR and basal respiration, maximum respiration, and spare
respiratory capacity in CCG-1423 treated cells with different dosages. OCR was repressed in a dose
dependent manner upon the treatment of CCG-1423 in C2C12 cells. (B) CCG-1423 upregulated
the ECAR in a dose dependent manner. (C) Total ATP production was decreased in both mecha-
nisms of oxidative phosphorylation (mitochondrial-ATP) and glycolysis (glycolysis-ATP). * p < 0.05,
*** p < 0.001, **** p < 0.0001, ns: p > 0.05 (n = 4).
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Figure 6. High-resolution respiratory analysis of oxidative phosphorylation. (A) OCR and basal
respiration, leak respiration, ATP-linked respiration, Maximum ET capacity was analyzed using
an Oroboros O2K instrument. Intact C2C12 cells were pre-treated with CCG-1423 with 10 µM for
24 h treatment. OCR and other functional aspects indicated above in the figure were repressed.
(B) C2C12 cells were permeabilized and were used to determine OCR levels at complexes of ETC.
OCR at complex I–IV of ETC were repressed on the treatment of CCG-1423. ** p < 0.01, *** p < 0.001,
**** p < 0.0001 (n = 3).

3. Discussion

Recent advances in elucidating the gene transcriptional mechanisms downstream
of Rho (i.e., MKL and SRF) have led to the discovery of CCG-1423, a first-generation
inhibitor of Rho/MKL1/SRF-mediated gene transcription [10]. Since its initial discovery, a
novel small-molecule inhibitor, CCG-1423, has demonstrated significant promise in various
preclinical disease models, as an anti-fibrotic agent [14], a possible therapeutic agent in
type II diabetes [12], an anti-angiogenic agent [31], and most importantly, in metastatic
cancer [32–36].

CCG-1423 has been shown to inhibit the transcriptional signaling by RhoA GTPase
family and inhibit proteins and genes, such as β-catenin, TAZ, and p-LATS1, which are
involved in promoting proliferation of cancer cell lines. Interestingly, growing evidence
suggests a major interest in pursuing the study of mitochondria biology in cancer and
targeting this organelle therapeutically [37]. There are multiple ongoing clinical trials
exploring the therapeutic effects of Oxidative Phosphorylation (OXPHOS) inhibitors in
different tumor types [38]. Many preclinical studies have suggested anti-tumor activity of
ETC CI inhibitors, for instance, metformin, the most common anti-diabetic drug [39–41].
Previously, our group has also demonstrated the role of metformin against low glucose-
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induced elevated oxygen consumption in a process that may involve reducing oxidative
stress [42].

Although CCG-1423 is a pleiotropic drug, the effects of this small molecule inhibitor
on mitochondria function are largely unknown. Our study is focused on exploring whether
CCG-1423 could be utilized to target mitochondria metabolism. To address this gap in
knowledge, we first defined the effect of CCG-1423 on the cell viability of C2C12 cells.
As shown in Supplementary Figure S1, MTS assay demonstrated that incubation with
different dosages of the drug molecule from 10 nm to 10 µM for 24 h did not affect the cell
viability of C2C12. Our observation is consistent with no effect of the same dosage and for
an extended period of 72h of CCG-1423 on cortical neurons [43]. Furthermore, other studies
have also implicated the dose dependent inhibitory effects on SRF-mediated transcription
by CCG-1423 and it has been shown that high doses of CCG-1423 (5 to 10 µM) are necessary
for the reduction of smooth muscle α-actin expression at the protein levels [44]. The
precise molecular mechanism of actions of CCG-1423 is not fully understood, but our
findings indicate that CCG-1423 may disrupt Rho signaling through functional inhibition
of SRF transcriptional activity (Figure 1A). Our data also suggest the inhibitory effects of
CCG-1423 on the cofactor p49/STRAP, along with SRF (Figure 1A, B). The attenuation of
MKL/SRF signaling is one of the main downstream effects of CCG-1423, but importantly
our data suggest CCG-1423 has more than one cellular target. SRF binds to the serum
response element in the promoter region of target genes and participates in cell cycle
regulation, apoptosis, cell growth, and cell differentiation [45–47]. Our data indicates
that CCG-1423 repressed the SRF acetylation at lysine (Figure 2). This was an expected
outcome since many studies have shown the role of histone acetylation in SRF signaling [48].
Histone acetylation is a critical epigenetic modification that changes chromatin architecture
and regulates gene expression by opening or closing the chromatin structure [49]. It has
been studied that anisomycin and TNFα induce H4 hyperacetylation via the SAPK/JNK
pathway [50]. CCG-1423 inhibition of SRF/p49 mediated transcription induces H4K16
hyperacetylation (Figure 2). Furthermore, histone hyperacetylation has been linked to
inducing mitochondrial dysfunction [51,52].

PGC-1α and β are critical regulators of transcriptional control of mitochondrial bio-
genesis [25], as it directly stimulates transcription of the Mfn1 and Mfn2 genes [53]. Others
have shown that PGC-1α stimulates the transcriptional activity of the Fis1 promoter [26].
We showed that CCG-1423 also significantly reduced the expression level of PGC-1α,-1
β, Mfn2, and Fis1 (Figure 3C). Presumably, inhibition of the PGC-1α gene by CCG-1423
negatively regulated the expression of Mfn2 and Fis1. PGC-1α regulates the multiple tran-
scriptional factors involved in mitochondrial biogenesis, such as transcription of the gene
coding mitochondrial transcription factor A (TFAM), a gene required for mitochondrial
biogenesis [54]. It has been well studied that PGC-1α can also regulate the composition and
functions of individual mitochondria [55–57]. Thus, CCG-1423 inhibition of PGC-1α could
have affected mitochondrial biogenesis and overall function. Mitochondrial oxidative
phosphorylation consists of five multienzyme complexes (Complexes I–V) located in the
mitochondrial inner membrane [58]. Mitochondrial respiratory complex I is critical to
the balance in NAD: NADH levels [59]. CCG-1423 also repressed the gene expression
of complex I genes (Figure 3D). Previous studies by our group have also suggested that
NDUFAB1, a subunit of complex I, interacts with p49/STRAP [24]. Therefore, CCG-1423
inhibition of p49/STRAP may have indirectly altered the gene expression of NDUFAB1.
The actin cytoskeleton mediated differentiation by regulating SRF transcriptional activity
has been well studied [60]. Our data in immunolabeling experiments validate the SRF
actin regulation since CCG-1423 affects the actin organization in C2C12 cells (Figure 4A,B).
Furthermore, it also affects the mitochondrial membrane potential and mitochondrial
structure (Figure 4C,D).

In this study, we investigated the OCR in C2C12 cells after the CCG-1423 treatment,
which is associated with reducing mitochondrial respiration (Figure 5A). This inhibitory
effect illustrates an impaired mitochondrial function that leads to a reduction of the compo-
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nents of ETC machinery and a decrease in oxidative phosphorylation. Energy consumption
from metabolic activities in normal cells relies primarily on mitochondrial oxidative phos-
phorylation, which is efficient and generates more ATP than glycolysis [61]. The inefficient
pathway for energy production by aerobic glycolysis in cancer cells was due to a permanent
impairment of mitochondrial OXPHOS [62]. Our data in Figure 5B validates the Warburg
concept of this compensatory mechanism. On the treatment of CCG-1423, OXPHOS was
inhibited but simultaneously glycolysis was increased as compared to the control at differ-
ent dosages. Furthermore, total ATP production was greatly reduced with the treatment of
CCG-1423 (Figure 5C), which validates the MitoTracker immunolabeling data in Figure 4.
We also confirmed the inhibitory effects of CCG-1423 on mitochondrial function with the
intact C2C12 cells in high-resolution respirometry, O2k-FluoRespirometer (Figure 6A). The
inhibitory effects of CCG-1423 on mitochondrial function are not only limited to C2C12
cells, but we have also tested the inhibitory effects of CCG-1423 on the intact H9C2, a rat
cardiomyoblast cell line, using O2k-FluoRespirometer (Supplementary Figure S2). Our
data also indicated the importance of CCG-1423 at different complex levels of ETC, as it
repressed the activity of ETC in complex I-IV (Figure 6B).

In conclusion, CCG-1423 inhibits SRF/p49 mediated transcription and contributes
to H4K16 hyperacetylation. Most importantly, it blocked the gene expression of PGC-1α
and β and downregulated the mitochondrial genes involved in biogenesis and function.
Furthermore, it repressed the mitochondrial oxidative phosphorylation mechanism and
reduced total ATP production (Figure 7). Oxidative phosphorylation inhibition has become
a potential tool for cancer therapy, and recent therapeutic interventions suggest that some
specific tumors might respond to mitochondria inhibitors. Our study supports the effective
use of CCG-1423 in repressing mitochondrial genes and function in C2C12 and H9C2
cells representative of vascular and cardiogenic cells. The aging cardiovascular system is
vulnerable to damage from oxidative stress and potentially CCG-1423 could be tried to
slow down metabolism during periods of high oxidative stress. Although we did not use
cancer cell lines in our study, we postulate that the same mechanism of action of CCG-1423
might also prevent cancer cell growth and invasion. However, future studies are required
to test the efficacy of this drug as a cardiovascular as well as cancer therapeutic agent.
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4. Materials and Methods
4.1. Cell Culture and Cell Proliferation Assay

The mouse skeletal muscle C2C12 cell line was obtained from the American Type
Culture Collection (ATCC, CRL-1772), and all the cell culture reagents were obtained from
Thermo Fisher Scientific as previously described [63]. The proliferation ability of C2C12
cells was assessed using (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium) (MTS reagent) (Abcam, ab197010). C2C12 cells (5 × 103/well)
were seeded in a 96-well microtiter plate with a final volume of 200µL/well DMEM contain-
ing 10% FBS and treated with different concentrations of CCG-1423 (Cayman Chemicals,
10010350) for 24 h. Furthermore, 20µL of an MTS reagent was added to each well three
hours before the end of the incubation period following the manufacturer’s instructions.
The absorbance of each well was detected at 490 nm with a microplate reader (BioTek
Synergy H1).

4.2. Relative Quantification of Gene Expression

The cells were pre-treated for 24 h with a 10 µM dosage of CCG-1423. The iso-
lation of total RNA, cDNA synthesis, and quantification of gene expression were per-
formed as previously described [64]. The sequence of the qPCR primers is described
in Supplementary Table S1.

4.3. Immunoprecipitation and Western Blot Analysis

Cells were washed with cold phosphate-buffered saline (PBS) and lysed with RIPA
lysis buffer system (SantaCruz, sc-24948A) for 10 min at 4 ◦C after 24 h, 10 µM CCG-1423
treatment. The immunoprecipitation and Western blotting were carried out as previously
described [24]. Antibodies that were used included SRF (G-20, SC-335), p49/STRAP
antibody [23], PGC-1α (Abcam, 106814), Histone H4 (Cell signaling, L64C1), anti-acetyl-
Histone H4 (Lys16) (Cell signaling, E2B8W) and anti-acetyl-Lysine (EMD Millipore, 4G12),
anti-goat HRP (Santacruz, sc-20200), anti-mouse HRP (Invitrogen, 62-6520), and anti-rabbit
AP (Bio-Rad, 64251130). Immunoreactive bands were visualized with ECL, and images
were captured on a ChemiDoc MP Imaging System (Bio-Rad) and analyzed using ImageJ
software (National Institutes of Health, Bethesda, MD, USA), and the relative level was
obtained by comparison with the GAPDH or total protein level.

4.4. MitoTracker and Immunofluorescence Staining

C2C12 cells were seeded with 1.0 × 105 cells per well in a 35 mm MatTek microscopy
glass dish (Fisher Scientific, PDCFOS30) and treated with 10 µM of CCG-1423 for 24 h,
whereas 0.5% DMSO treatment was used as control. As described previously [24], cells were
fixed with 3.7% formaldehyde (Fisher Scientific, SF100-4) for 10 min at room temperature
and permeabilized with PBS containing 0.2% Triton X-100 for 5 min. Cells were washed
with PBS and blocked with 3% BSA for 1 h at room temperature. Cells were then incubated
with ActinGreen (ThermoFisher, Waltham, MA, USA, R37110) using rhodamine-phalloidin
(1:200) for 20 min. Samples were then counterstained for 5 min with DAPI (1:1000) to
label the nuclei (ThermoFisher, Waltham, MA, USA, D1306). Cells were stained with
MitoTracker™ Red CMXRos (Invitrogen, Waltham, MA, USA, M7512) for 30 min following
the manufacturer’s instructions. Fluorescent images were captured with a Zeiss LSM 880
confocal microscope with ZEN blue 3.2 software (Carl Zeiss Microscopy, White Plains, NY,
USA). The collected images were analyzed, and fluorescence intensity was quantified using
ImageJ software.

4.5. Measurement of Mitochondrial Oxygen Consumption, Glycolytic and ATP Rate

C2C12 cells were seeded at 12,000 cells/well in XFe96 Well plates (Seahorse Bioscience,
Billerica, MA, USA). The cells were treated with different concentrations of CCG-1423
and 0.5% DMSO as control, for 24 h. Then, the cells were subjected to extracellular flux
analysis using the XF Cell Mito Stress Test Kit (Agilent, 103015-100), XF Glycolytic Rate



Int. J. Mol. Sci. 2022, 23, 11536 11 of 14

Assay Kit (Agilent, 103344-100), and XF Real-Time ATP Rate Assay (Agilent, 103592-100).
The measurement was performed as previously described [64,65].

4.6. High-Resolution Respirometry

The mitochondrial respiration parameters in the intact C2C12 cells were measured
using an Oxygraph 2k (O2k) high-resolution respirometer and processed with DatLab 6.2
software (Oroboros Instruments GmbH, Innsbruck, Austria). Cells were treated with a
10 µM dose of CCG-1423 for 24 h and 0.5% DMSO treatment was used as control. Aliquots
of 1 × 106 treated cells were analyzed. Briefly, cells were collected and suspended in 2 mL
of Mir05 buffer [66]. Air calibration of a polarographic oxygen sensor was performed
routinely before each experiment. According to the O2K manufacturer’s protocol, 5 nM
of oligomycin (Sigma, O4876) was added to both chambers. Oligomycin is an inhibitor of
ATP synthase and is used to induce a LEAK respiration state of respiration. Then, 0.5–3 µM
of CCCP (Sigma, C2759), an uncoupler of mitochondrial oxidative phosphorylation, was
added until maximal mitochondrial ET capacity was achieved. Furthermore, 2.5 µM
of antimycin A (Sigma, A8674) was added to inhibit the ATP synthase and reduce the
OCR. The activity of mitochondrial respiratory complexes was measured according to the
substrate-inhibitor-titration protocols adapted as described in [67,68]. First, C2C12 cells
(2 × 106) were incubated for 15 min at 4 ◦C with digitonin (Sigma, D5628) (8 µM/million
cells), prepared in MiRO5 buffer to the permeabilize cells. Non-phosphorylating respiration
was induced by adding the complex I-linked substrate 2 mM malate (Sigma, M1000) and
10 mM glutamate (Sigma, G1626), followed by 2.5 mM ADP (Sigma, A5285) to achieve state
3 respiration. Subsequently, 10µM of cytochrome C (Sigma, C7752) was added to check the
flux control efficiency. Furthermore, 0.5 µM Rotenone (Sigma, R8875) was added to inhibit
complex I. Then, 10 mM succinate (Sigma, S2378) was added to evaluate OXPHOS-capacity
of complex II and III-linked activity, followed by 1 mM malonic acid (Sigma, M1296) to
inhibit complex II respiration and 2.5 µM antimycin A to inhibit complex III. Furthermore,
0.5 mM tetramethyl-p-phenylenediamine, TMPD (Sigma, T3134), and 2 mM ascorbate
(Sigma, A7631) to stabilize the TMPD was added to initiate the Complex IV respiration and
inhibited using 100 mM Azide (Sigma, 438456). Data analysis was performed with DatLab
6.2 software (Innsbruck, Austria) and cellular respiration of each mitochondrial complex
was expressed as oxygen flux (pmol/s*Million Cells).

4.7. Statistical Analysis

Statistical analysis was performed with GraphPad Prism 9.1.1 Software Inc (Dotmatics,
Boston, MA, USA). Results are represented by mean values ± SD of at least three inde-
pendent experiments, as indicated by n. For simple comparisons, a two-tailed Student’s
t-test was used. For multiple group comparison, one way ANOVA was used. p-values
inferior to 0.05 were considered statistically significant (* p < 0.05; ** p <0.01; *** p < 0.001,
**** p < 0.0001).
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