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Abstract: 1H-NMR is a very reproducible spectroscopic method and, therefore, a powerful tool for the
metabolomic analysis of biological samples. However, due to the high complexity of natural samples,
such as plant extracts, the evaluation of spectra is difficult because of signal overlap. The new NMR
“Pure Shift” methods improve spectral resolution by suppressing homonuclear coupling and turning
multiplets into singlets. The PSYCHE (Pure Shift yielded by Chirp excitation) and the Zangger–Sterk
pulse sequence were tested. The parameters of the more suitable PSYCHE experiment were optimized,
and the extracts of 21 Hypericum species were measured. Different evaluation criteria were used to
compare the suitability of the PSYCHE experiment with conventional 1H-NMR. The relationship
between the integral of a signal and the related bin value established by linear regression demonstrates
an equal representation of the integrals in binned PSYCHE spectra compared to conventional
1H-NMR. Using multivariate data analysis based on both techniques reveals comparable results.
The obtained data demonstrate that Pure Shift spectra can support the evaluation of conventional
1H-NMR experiments.
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1. Introduction

Metabolomics is understood as a quantitative and comprehensive analysis of metabolites in a
complex biological specimen to describe the chemical phenotype [1]. Nuclear magnetic resonance
(NMR) spectroscopy and mass spectrometry (MS) are the key technologies used for that purpose.
NMR is particularly convincing due to its simple sample preparation process, high reproducibility,
and non-destructive character [2,3]. Originally, it was the method of choice for the structure elucidation
of pure compounds; however, NMR is increasingly used nowadays for the analysis of complex
mixtures [4]. In particular, the ability to quantify different metabolites at various concentration levels
makes 1H-NMR a valuable tool for metabolite profiling and the fingerprinting of biofluids [5], foods [6]
and natural product sources such as plants [7,8], fungi [9] and corals [10,11].

Plant metabolomics is challenging because, in addition to the primary metabolites, each species
includes a high number of secondary metabolites, which helps the organism to interact with
its environment. It is assumed that the metabolome of the plant kingdom comprises over
200,000 metabolites [1]. The genus Hypericum includes around 450 chemically diverse species [12].
The best-known species is H. perforatum (St. John’s Wort), which is commercially used against mild to
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moderate depression in the Western World [12,13]. In general, Hypericum species are characterized
by several secondary metabolite classes, such as naphthodianthrones, phloroglucinols, flavonoids
and xanthones [7,14–16]. In the 1H-NMR, those secondary metabolites and primary metabolites can
be detected simultaneously [7]. However, the high number of signals from complex mixtures in the
1H-NMR spectrum is limited to a small spectral range, which leads to overlapping signals. It is further
strengthened by proton–proton scalar couplings, which cause multiplet structures. Regions with
overlapping signals complicate spectral analysis and identification [17–19]. 2D-NMR methods enhance
the spectral resolution by spreading the overlapped signals in a second dimension, which is useful in
structure elucidation. However, due to the long acquisition times required for most of the experiments,
they were rarely applied in metabolomics investigations [2,20,21]. Homonuclear broadband decoupling
methods, also called “Pure Shift” methods, were stated by Aquilar et al. as a possible “resolution of
the resolution problem” [22]. They offer enhanced resolution by removing the effects of proton–proton
scalar couplings and turning multiplets into singlets [23,24]. During the last few decades, different
methods have evolved, such as 2D J-resolved NMR [25], slice selective decoupling (Zangger–Sterk) [19]
and PSYCHE (Pure Shift yielded by chirp excitation) decoupling [26,27].

Besides all the theoretical benefits that Pure Shift methods promise for metabolomics experiments,
a major bottleneck is still the low sensitivity, which (depending on the method) reaches around 1–20%
of a conventional 1H-NMR [24]. However, recent studies show promising results that indicate Pure
Shift methods could be added to the metabolomics toolbox [10,17,28–30]. Lopez et al. demonstrated
that an untargeted metabolomics approach for Physalis peruviana fruits based on SAPPHIRE-PSYCHE
revealed good results in the STOCSY and PLS analyses [17]. Furthermore, Santacruz et al. used
PSYCHE decoupling for the differentiation of coral extracts, and Bo et al. adapted the method to
honey and tea samples [10,28]. All the studies indicated, besides the additional structural information,
advantages in the untargeted metabolomics data processing. Those studies handled samples with
quantitative differences in metabolites, but just to a certain extent, they also differed in their chemical
composition. The suitability of Pure Shift for highly diverse sample sets, for which peak picking and
intelligent binning [31] is not possible, has been examined in the study presented here. Until now,
it has not been clear to what extent binning has a positive or negative effect on the data processing
of PSYCHE spectra. Uniform binning, the data reduction of the spectrum into small integral regions
of the same size, often results in signals, especially multiplets of large widths, being unintentionally
distributed over several bins, and thus being only represented inadequately by one bin. A better
separation of signals could lead to better binning results.

First, the best suitable Pure Shift method was determined, and the parameters were optimized
to analyze complex extracts of different Hypericum species, which are known to vary in their major
secondary metabolites [7]. Second, an optimized bin size was determined for PSYCHE spectra. Finally,
the performance of the PSYCHE experiment within multivariate data analysis was addressed in terms
of quantifiability, metabolite identification, and applicability.

2. Results and Discussion

2.1. Comparison of Pure Shift Methods

Different Pure Shift methods are known. The most common experiments are the Zangger–Sterk [19]
and the PSYCHE methods [32]. Both techniques were tested with a compound mixture of chlorogenic
acid (1) and rutin (2) (for structures and numbering schemes see Figure S.1). The combination of these
Hypericum constituents was chosen because the coupling constants of the signals cover a wide range,
from 2 to 16 Hz [7] (Figure S.1). The first experiment was performed with the spectrometer control
software’s (VnmrJ) default settings (pulse sequences given in data depository). Figure 1 shows the
Pure Shift spectra in comparison to the conventional 1H-NMR. The Zangger–Sterk method (Figure 1)
revealed, despite the long measuring time of 50 min, a low signal to noise ratio (SNR), and cannot
compete with the sensitivity of the PSYCHE experiment. Additionally, the measuring time of the
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PSYCHE experiment is nearly ten times shorter than Zangger–Sterk. Therefore, the PSYCHE method
was considered for metabolomics experiments, wherein acquisition times should be short, as usually
high sample numbers and compound stability are important issues. The homonuclear decoupling was
achieved for all signals in the PSYCHE experiment to an acceptable extent. The SNR was lower than in
conventional 1H-NMR, as already described by Castanar [24]. Furthermore, artifacts (e.g., Figure 1:
7.65 ppm) were generated in the PSYCHE spectrum, so the parameters had to be optimized to obtain a
higher spectral quality.
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Figure 1. Comparison of the 1H-NMR, Zangger–Sterk (PSD1 [19]) and PSYCHE [32] spectra acquired
with the default parameter settings (number of scans = 4).

2.2. Parameter Optimization of the PSYCHE Experiment

The PSYCHE spectra show decoupled signals and a variety of undesired signals, resulting from
strong couplings, “chunking” sidebands, and other artifacts [27]. The experimental parameters were
improved to generate spectra with high spectral purity, containing a good ratio between wanted and
unwanted signals. Furthermore, the sensitivity, calculated as the quotient of SNR and the measurement
time, was considered as a quality parameter.

The influence of the essential parameters, swept pulse flip angle and Pure Shift tau-delay
(τPS = 1/(2sw1)) on spectra quality was tested. The small pulse angle is the fundamental idea that
enables the homodecoupling of the PSYCHE experiment [27]. The impact was determined by changing
the pulse angle (6◦–18◦) gradually with a constant τPS (30 ms). The obtained spectra are shown in
Figure 2a. The utilization of pulse angles above 10◦ results in decoupling sidebands, observable at the
signal H-5′ of 2 at 6.88 ppm. The calculated sensitivities are summarized in Figure 3. It becomes clear
that big pulse angles accompany high SNRs, and thus a better sensitivity is reached. Nevertheless,
the use of small pulse angles is a reasonable compromise, since it leads to the acquisition of spectra
with a high homodecoupling efficiency [24,27,33].
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Figure 3. Effect of the variation of pulse angle and τPS on the sensitivity (given as signal to noise ratio
(SNR) per experiment time) of the PSYCHE spectra.

In the next experiments, the τPS was subsequently changed while the pulse angle was kept
constant. With the increasing τPS, the experiment time became shorter. While a PSYCHE measurement
with a τPS of 5 ms takes 155 min, an experiment with 45 ms takes only 39 min, with the same number
of scans of 16. Furthermore, the spectral purity is highly influenced by the τPS, observable in Figure 2b.
The suitability of the parameter depends on the coupling constant J of the signals. As shown in
Figure 2b, the largest J (signal H-7′ of 1, J = 15.9 Hz) is successfully decoupled with τPS values up to
20 ms. These findings are in line with the recommendations of Foroozandeh et al., who stated that the
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sw1 (sw1 = 1/(2τPS)) should be twice the highest J in order to decouple [32]. For signals with large
J values, such as in the case of signal H-7′ (1, J = 15.9 Hz), it can be clearly seen that the negative
sidebands increase with the increasing τPS. These sidebands are caused by chunking, and show up in
the distance of sw1 or 1/(2τPS). On the other hand, a small τPS leads to artifacts between signals with
strong couplings, such as for compound 2 signals H-2′ (J = 2.2 Hz) and H-6′ (J = 2.2 Hz, 8.4 Hz). Thus,
the choice of a certain τPS value is always a compromise. Further, the COSY type and strong coupling
artifacts could be reduced by elongating the duration of the pulse. However, a pulse length of 30 ms,
which is consistently reported in the literature [17,28], gave satisfactory results.

In our study, we decided to use a swept pulse flip angle = 10◦, a τPS = 15 ms, and a pulse
width = 30 ms, in order to enable the decoupling of the larger J from the aromatic and olefinic protons
of the secondary metabolites. The decision was based on the taxonomic marker compounds described
for the Hypericum species, such as flavonoids, xanthones, phloroglucinols and organic acids [7,12,15,16].
Furthermore, the influence of homodecoupling on binning was investigated, whereby particularly
large coupling constants are problematic due to a higher signal width.

In general, it can be concluded that the spectroscopist determines which signals are better detected
and which worse by setting the parameters. This is fine for structure elucidation and targeted
approaches, but for untargeted metabolomics, it is definitely a drawback.

2.3. Suitability of PSYCHE and 1H-NMR for Metabolomics Studies

It was investigated whether PSYCHE has advantages over a conventional 1H-NMR during
classical metabolomics processing with subsequent multivariate data analysis. In total, 21 Hypericum
species (Table S.1), represented by 29 genotypes with up to three biological replicates, were analyzed
with quantitative 1H-NMR, conventional 1H-NMR, and a PSYCHE experiment. In contrast to other
Pure Shift methods, a PSYCHE spectrum contains quantitative information, and thus can be used
for metabolomics experiments [23]. In the metabolomics workflow used, the spectra were baseline
corrected and referenced. Then, a uniform binning was applied, which divides the spectrum into bins
of the same size over the whole spectral width. Finally, the binned spectra were normalized to the
internal standard HMDS and evaluated by principal component analysis (PCA).

2.3.1. Optimization of Bin Size

Binning is a form of data reduction. The spectra are cut into sections (bin), and the total integral
of each bin is used as the evaluation value. Ideally, a bin completely includes one signal and represents
the total integral, and thus the amount of substance in the sample. The integrals measured in the
quantitative 1H-NMR and the corresponding bin value of the PSYCHE spectrum were compared to
estimate the signal representation. The integration of the signals presupposes a baseline separation from
other peaks. For the comparison of both methods, eleven samples of five genotypes of H. perforatum
(including biological replicates) were used. This ensures that no overlap of the signals chosen for
quantification occurs, since intraspecifically the quantities of the constituents change, but regularly,
not the chemical composition. Nine baseline separated signals derived from seven constituents (Table 1)
were integrated and compared to the bins of PSYCHE and conventional 1H-NMR (examples shown
in Figure 4). Figure 5 visualizes the procedure for the example of the doublet of the methyl group
H3-12 of hyperforin (5) at 1.08 ppm. The integrals and bin values were combined in an XY diagram,
and the coefficient of determination for the resulting regression line was used as a quality parameter.
This procedure is inspired by Ludwig et al., who evaluated the quantitation of 2D J-resolved NMR
experiments [29].
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Table 1. Summary of the coefficient of determination (R2) after linear regression between 1H-qNMR
integrals and bin values of different experiments with bin size 0.02 ppm (Supplement S.2). Numbering
scheme of compounds is shown in Figure S.1.

Compound Assignment δ (ppm)
Multiplicity (J)

R2 of Experiment
1Hconv PSYCHE

Chlorogenic acid (1) H-8′ 6.31 d (15.8 Hz) 0.6553 0.8485
Chlorogenic acid (1) H-2′ 7.05 d (2.1 Hz) 0.7865 0.5748

Rutin (2) H-6′′′ 1.12 d (6.2 Hz) 0.8176 0.7331
Hyperoside (3) H-2′ 7.83 (d 2.2 Hz) 0.9288 0.8810

Epicatechin/Catechin (4) H-6 5.94 d (2.4 Hz) 0.9740 0.7974
Epicatechin/Catechin (4) H-2′ 6.97 d (1.9 Hz) 0.8104 0.7525

Hyperforin (5) H3-12 1.08 d (6.5 Hz) 0.8842 0.8380
Sucrose (6) H-3′ 4.09 d (8.2 Hz) 0.9945 0.9080

Shikimic acid (7) H-4 4.36 m (ν1/2 4.7 Hz) 0.8412 0.8706Molecules 2020, 25, x FOR PEER REVIEW 6 of 13 
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can be seen that the application of the bin size 0.01 ppm often results in split signals. In contrast, bins 
with boundaries of 0.04 ppm include multiple signals (Figure 4a, 0.04 ppm). Anderson et al. 
calculated that bins of 0.01 and 0.02 ppm enclose on average one peak per bin, whereas bins of 
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with the concentration of the selected ingredients, the coefficients of determination (R2) were 
compared (Table S.2). This comparison was performed for conventional 1H-NMR and PSYCHE 

Figure 4. Selected sections of conventional 1H-NMR (black) and PSYCHE (red) spectra of a
representative Hypericum perforatum sample evaluated with different bin sizes to display signals
at: (a) 1.08 ppm (d, 6.5 Hz) H3-12 of hyperforin (5); (b) 5.94 ppm (d, 2.4 Hz) H-6 of epicatechin/catechin
(4); and (c) 6.31ppm (d, 15.8 Hz) H-8′ of chlorogenic acid (1). For each signal, three bin sizes are shown
(from up to down: 0.01, 0.02, and 0.04 ppm). The dashed vertical grey line marks the borders of each
bin. The chosen bin for evaluation is highlighted with an asterisk.

For uniform binning, different bin sizes were used by different authors. We tested the regularly
used bin sizes 0.01 ppm [34], 0.02 ppm [35] and 0.04 ppm [8]. In Figure 4 (extended in Figure S.2),
it can be seen that the application of the bin size 0.01 ppm often results in split signals. In contrast,
bins with boundaries of 0.04 ppm include multiple signals (Figure 4a, 0.04 ppm). Anderson et al.
calculated that bins of 0.01 and 0.02 ppm enclose on average one peak per bin, whereas bins of 0.04 ppm
contain four [31]. To check if different bin sizes lead to a changing quantitative correlation with
the concentration of the selected ingredients, the coefficients of determination (R2) were compared
(Table S.2). This comparison was performed for conventional 1H-NMR and PSYCHE experiments.
No significant difference (Wilcoxon–Mann–Whitney, p > 0.05) between the bin sizes could be determined
(Figure S.3). However, we decided to use 0.02 ppm for further processing, because the R2 average was
the highest, and the same size was successfully used in other studies [35,36].
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Figure 5. Linear regression between the integral of the signal at 1.08 ppm from the 1H-qNMR
measurement, and the corresponding bin value of the conventional 1H-NMR (1Hconv, black) and the
PSYCHE (grey) experiment with different bin sizes. The coefficient of determination, R2, was calculated
for each graph.

One goal of this analysis was to check if PSYCHE may have advantages in comparison to
conventional 1H-NMR, generated by uniform binning. Figure 6 shows the boxplots of the R2 values,
generated from the PSYCHE and the conventional 1H-NMR experiments. The R2 values are not
significantly different from each other (Wilcoxon–Mann–Whitney, p > 0.05). However, the data from
conventional 1H-NMR tend to reach slightly higher R2 values. This indicates that the PSYCHE
experiment has no advantage in terms of quantification during the binning process.
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and the PSYCHE experiment with a bin size of 0.02 ppm. Significance Test: Wilcoxon–Mann–Whitney
paired (shown is p-value).

2.3.2. Multivariate Data Analysis of Different Hypericum Species

For 21 Hypericum species with up to three biological replicates, both a conventional 1H-NMR and a
PSYCHE spectrum were recorded. All data sets were identically processed, as described in the material
and methods section. As already known from earlier studies [7,14,16,37,38], the interspecific variance
within the genus Hypericum is huge. The obtained spectra are highly diverse (Figures S.4 and S.5),
so no alignment or peak picking was carried out. The spectra are exceptionally varying in the region
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of olefinic and aromatic protons (5.5–8.0 ppm), and in signals belonging to phloroglucinol-related
resonances (1.0–2.0 ppm). Consequently, the spectra were binned without alignment and peak picking
or adaptive binning to avoid forcing unequal signals to fall in the same bin. The scores plot of the
PCA performed with conventional 1H-NMR data is displayed in Figure 7a. The scores plot based on
PSYCHE data demonstrates similar clusters and differs only marginally (Figure 7b).
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(a) conventional 1H-NMR and (b) PSYCHE spectra.

The bin tables were freed from bins that did not exceed the limit of detection (LOD, calculated as
three times the standard deviation of the noise regions (10–11 ppm)) to exclude bins with no
informational content. In the case of PSYCHE data, due to signal narrowing by homodecoupling,
the signal width is reduced so that the signal will be expected to be distributed over a lower number
of bins; ideally it is found in one bin only. However, the number of bins beyond the LOD was
comparable for both methods. Within the bin table of the conventional 1H-NMR data, 9%, and in
the case of PSYCHE data, 10%, of the bins could be removed. Utilizing the reduced data for PCA,
no changes were observed in the first four principal components (PCs), indicating that the separation
in PCA is independent of noise bins (Figure S.6). It can be concluded that for the Hypericum data set,
uniform binning with excluding noise data has, in general, no advantage in comparison to conventional
1H-NMR. Santacruz et al. used adaptive intelligent binning, and were able to reduce their initial
data matrix of 168 bins from the conventional 1H-NMR to 113 bins from the PSYCHE spectra [10].
Although they did not comment on that, this bin reduction could be a reason for the better PLS results
based on PSYCHE than with the conventional 1H-NMR data. The advantage of less complex spectra is
possibly better exploited with adaptive intelligent binning than with uniform binning, and should be
considered when comparing samples with mainly quantitative changes.

Even if the noise bin reduction has no impact on the PCA result in the Hypericum data set,
the PSYCHE spectra simplify the assignment of signals of interest. In Figure 8, three examples of
interesting regions are highlighted. Regarding region A (Figure 8), the two peaks at 1.55 ppm could
correspond to one doublet with J 5.6 Hz, but in the PSYCHE spectrum, it is unambiguous that these are
two singlets with similar chemical shifts. In contrast, the signal in region B (Figure 8) is a true doublet
(J 6.5 Hz), which becomes a singlet by homodecoupling. Intriguing is also region C (Figure 8), where the
spectroscopist would initially assume a quartet, but the PSYCHE spectrum reveals that these are
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three overlapping signals with similar coupling constants. These few examples already show that the
PSYCHE experiment can provide important information for the interpretation of overlapping regions.Molecules 2020, 25, x FOR PEER REVIEW 9 of 13 
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The application of PSYCHE to complex samples like plant extracts is helpful for structural
elucidation, and also reveals when combined with multivariate data analysis, good results. However,
the results are comparable to the conventional 1H-NMR, and therefore, the PSYCHE will never replace
the 1H-NMR in this kind of analysis. By adding the PSYCHE experiment to the metabolomics workflow,
the total experimental time will elongate, although the PSYCHE acquisition time was herein reduced.
However, the time-consuming spectra interpretation and structure elucidationcan be accelerated by
including PSYCHE for selected samples, so that the time from data acquisition to answering the
research question will be shorter.

In particular, choosing the right parameters for the PSYCHE experiment is difficult, so different
types of artifacts are still included. The additional optimization of the gradient amplitude and
the duration of the pulse (for a given bandwidth) might also improve the results. Furthermore,
new modified pulse sequences can even improve the spectral purity of the basic PSYCHE, like the
triple spin-echo PSYCHE [26] and the SAPPHIRE-PSYCHE [17], which shows the great potential of
these methods.

3. Materials and Methods

3.1. Plant Material and Samples

For the metabolomics experiment, 29 genotypes of 21 different Hypericum species (Table S.1) were
cultivated in the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben.
The seeds were provided by the genebanks in IPK and Kew Gardens in London. The cultivating
processes and conditions are as described in Rizzo et al. [39]. Depending on the germination success,
each genotype was represented with up to 6 plants, where one to three biological replicates were
generated (Table S.1). In November 2018, the leaves of all the samples were collected into 20 mL
grinder polyvials (Zinsser Analytic GmbH, Eschborn, Germany) and immediately frozen in liquid
nitrogen. After lyophilization (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode, Germany,
144 h), two stainless steel balls (5 mm) were added to each sample and they were powdered twice
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for 15 s with the Cryogenic Plant Grinder (Labman, −75 ◦C, 5% humidity, 30 Hz). A break of 30 s in
between avoided the warming of the samples.

3.2. Sample Preparation

In total, 40 mg of each plant material was directly extracted with 1 mL methanol-d4 (99.8%,
Deutero GmbH, Kastellaun, Germany), containing 0.935 mM HMDS (hexamethyl disiloxane) as the
internal standard. After 30 s of vigorous mixing with vortex genie 2 (Scientific industries, Bohemia,
NY, USA), 15 min of ultrasonic bath extraction was applied. The samples were centrifuged for 10 min
at 14,000 rpm (5415 C Eppendorf, Eppendorf AG, Hamburg, Germany) to separate the plant powder.
Then, 0.73 mL of the supernatants was transferred to Deu-Quant-5-7 NMR tubes (Deutero).

For method development, a mixture of chlorogenic acid (Sigma Aldrich, Steinheim, Germany,
1.73 mg/mL) and rutin (Roth, Karlsruhe, Germany, 3.20 mg/mL) was solved in methanol-d4.

3.3. NMR Data Acquisition

The spectra were recorded on an Agilent VNMRS 600 NMR spectrometer (Varian, Palo Alto,
CA, USA) at 25 ◦C equipped with a 5 mm inverse detection cryoprobe using standard CHEMPACK 8.1
pulse sequences s2pul, PS1D and PSYCHE (for parameter and pulse sequences see data repository,
respectively) implemented in the Varian VNMRJ 4.2A software. The signals were referenced to internal
HMDS at 0.062 ppm. The compound mixture and plant extract spectra were measured with a spectral
width of 10 and 13 ppm, respectively. Quantitative 1H-NMR (1Hq) spectra were measured with
the following parameters: pulse angle = 90◦, relaxation delay (d1) + acquisition time (at) = 30.0 s,
number of scans (nt) = 128, and digital resolution = 0.37 Hz/point. Conventional 1H-NMR (1H)
spectra were aquired with the following: pulse angle = 30◦, d1 + at = 3.0 s, nt = 40, and digital
resolution = 0.95 Hz/point. PS1D (Zangger–Sterk) spectrum were recorded with d1 + at = 3 s, nt = 4,
digital resolution = 0.37 Hz/point, B1max = 0.1526 kHz, pulse width = 17 ms, and gradient = 1.5 G/cm.
The PSYCHE spectra were acquired with d1 + at = 1.7 s, nt = 4, and digital resolution = 1.47 Hz/point
for parameter adjustment, and d1 + at = 3.0 s, nt = 16, and digital resolution = 0.97 Hz/point for
metabolomics measurements. The applied double saltire Chirp pulses were used with swept pulse flip
angle = 10◦, τPS = 15 ms, pulse width = 30 ms, and gradient = 1.0 G/cm.

3.4. NMR Data Processing and Data Analysis

The data processing was carried out with MestreNova (12.0.4-220023, Mestrelab Research, S.L.,
Santiago de Compostela, Spain). After automatic Fourier transformation with the standard VNMRJ
window function and zero filling, phase correction and baseline correction (Bernstein polynomial
fit) were applied. The signal to noise ratios (SNR) of H. perforatum extracts were calculated with
MestreNova, as the ratio of the intensity of the signal δ 6.70–6.78 ppm to the standard deviation of the
noise (δ 8.1–10.0 ppm). For the metabolomics experiments, the spectra were reduced to integrated
regions of equal width (0.01 ppm, 0.02 ppm, or 0.04 ppm). A binned data table (.csv) was generated.

Data analysis was performed on the binned data of the conventional 1H-NMR and PSYCHE
spectra with R version 3.5.1 [40]. The bins corresponding to spectral regions of residual methanol
(δ 3.27–3.33 ppm) and water (δ 4.7–5.0 ppm) were removed. Bin values were normalized to the
quantitative internal standard HMDS. For principal component analysis (PCA), the pcaMethods (1.78.0)
package was utilized. For the reduced data set, all bins below the limit of detection (LOD) in all
samples were removed. The LOD was determined as three times the standard deviation of the noise
(δ 10 to 11.0 ppm and −1.0 to −0.2 ppm).

Raw data of NMR measurements, used pulse sequences, as well as the processed bin tables are
freely available in the RADAR repository [41].
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4. Conclusions

In this study, the PSYCHE experiment was optimized for the Hypericum plant extracts, representing
complex mixtures of various compound classes. The swept pulse angle and the pure shift τ-delay were
adapted to get satisfactory results for coupling constants larger than 6 Hz. This required a measuring
time of 32 min, which is 16 times longer than the conventional 1H-NMR. However, the method
presented here was much shorter than the ones reported before. The extraction of quantitative
information was possible from the binned PSYCHE spectra, and was not significantly different to the
results from the binned conventional 1H-NMR. With the uniform binning method, which is used for the
spectra of compositionally different Hypericum extracts, the gain in resolution through homodecoupling
did not affect multivariate data analyses, such as PCA. So, the PCA of both methods leads to similar
results. However, the PSYCHE spectra are able to support the data interpretation and compound
identification of the NMR spectra by simplifying the crowded spectral parts. This is the real power of
the Pure Shift methods. Therefore, we recommend the implementation of Pure Shift methods in the
follow-up experiments of the NMR metabolomics workflow, and the use of them to interpret the data.

Supplementary Materials: The following are available online. Figure S.1: Chemical structures and corresponding
1H-NMR data. Table S.1: List of plant material. Figure S.2: Graphical representation of different bin sizes for
selected quantified signals. Table S.2: Quantitative correlation of bins of different signals. Figure S.3: Boxplot of
correlation coefficient for different experiments with different bin sizes. Figure S.4: Stacked conventional 1H-NMR
spectra of Hypericum species. Figure S.5: Stacked PSYCHE spectra of Hypericum species. Figure S.6: PCA scores
plots of different experiments.
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