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Medical diagnostic imaging is essential for the differential diagnosis of cervical
lymphadenopathy. Here we develop an ultrasound radiomics method for accurately
differentiating cervical lymph node tuberculosis (LNTB), cervical lymphoma, reactive
lymph node hyperplasia, and metastatic lymph nodes especially in the multi-operator,
cross-machine, multicenter context. The inter-observer and intra-observer consistency of
radiomics parameters from the region of interest were 0.8245 and 0.9228, respectively.
The radiomics model showed good and repeatable diagnostic performance for multiple
classification diagnosis of cervical lymphadenopathy, especially in LNTB (area under the
curve, AUC: 0.673, 0.662, and 0.626) and cervical lymphoma (AUC: 0.623, 0.644, and
0.602) in the whole set, training set, and test set, respectively. However, the diagnostic
performance of lymphadenopathy among skilled radiologists was varied (Kappa
coefficient: 0.108, *p < 0.001). The diagnostic performance of radiomics is comparable
and more reproducible compared with those of skilled radiologists. Our study offers a
more comprehensive method for differentiating LNTB, cervical lymphoma, reactive lymph
node hyperplasia, and metastatic LN.

Keywords: radiomics, cervical lymph nodes tuberculosis, cervical lymphoma, reactive lymph node hyperplasia,
metastatic lymph node
Abbreviations: LN, lymph node; TB, tuberculosis; LNTB, lymph node tuberculosis; GLCM, gray-level co-occurrence matrix;
GLRLM: gray-level run-length matrix; GLSZM, gray-level size zone matrix; GLDZM, gray-level distance zone matrix;
NGTDM, neighborhood gray tone difference matrix; NGDLM, neighboring gray-level dependence matrix; LASSO, least
absolute shrinkage and selection operator; SVM, support vector machine; ROC, receiver operating characteristic; ROI, region
of interest; ICCs, intraclass correlation coefficients; PPV, positive predictive value; NPV, negative predictive value; CEUS,
contrast-enhanced ultrasound.
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INTRODUCTION

Lymph nodes (LN), which are distributed throughout the body, are
an important immune organ (1). There are many reasons for the
swelling of the shallow lymph nodes, including local or systemic
inflammatory infections, tumors, blood system diseases, etc. (2). An
accurate diagnosis of cervical lymphadenopathy plays an important
role in clinical management. Currently, the diagnostic assessment of
cervical lymphadenopathy focuses on distinguishing between
benign and malignant LNs. However, there are no highly accurate
methods for the differential diagnosis of LN tuberculosis (LNTB),
cervical lymphoma, metastatic LN, and reactive LN hyperplasia
(3–5).

Globally, tuberculosis (TB) is one of the 10 leading causes of
death (6, 7). About one in four people worldwide infected with
Mycobacterium tuberculosis are susceptible to developing TB
disease (8). Cervical LNTB is one of the most common types of
extrapulmonary TB, the representative symptom of which is
lymph node enlargement (9). Its treatment mainly depends on
medical interventions. Ultrasound has irreplaceable value for the
pretreatment diagnosis and treatment efficacy assessment of
LNTB (10–12). Cervical lymphoma is a malignant tumor
characterized by enlarged LN. Cervical metastatic LN refers to
regional nodal involvement by cancer in the head and neck and
other organs in the body. Identifying suspicious lymph node
metastases via preoperative ultrasound is critical to clinical
management. Reactive LN hyperplasia, with the typical
symptom of enlargement of lymph tissue, is benign and is
usually stimulated by different kinds of antigens. There are
some overlapping clinical and imaging appearances for the
differential diagnosis of cervical lymphadenopathy.

Recently, owing to the rapid development of ultrasound
technology and equipment, ultrasound has become the first-line
method for diagnosing superficial lymph node lesions. Ultrasound
is a non-invasive method with high penetration depth and has the
ability to conduct real-time imaging (13–16). It can also provide
multiparameter information, such as lymph node structure,
elasticity, and blood perfusion, which is beneficial for the accurate
assessment of cervical lymphadenopathy (17). The morphological
and structural features of LN are usually derived from ultrasound
images by experienced radiologists. However, the diagnostic
accuracy of visual observation is subjective and is largely
dependent on the radiologist’s experience, which limits the
accuracy and repeatability of diagnosis.

Radiomics, as an excellent computer-aided diagnosis method,
especially in combination with multicenter clinical information,
has great potential for disease identification, diagnosis, and
prognosis evaluation (18–20). Radiomics is a process through
which imaging features are extracted from medical images in a
high-throughput way, transformed into high-resolution,
mineable data, and quantitatively analyzed (21). Radiomics has
shown good ability for the detection of lymphoma and metastatic
LN in a binary classification manner (22–24). However, few
studies explored whether radiomics has good capability in the
multi-classification discrimination of LNTB, cervical lymphoma,
reactive LN hyperplasia, and metastatic LN (25, 26).
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Herein a multicenter, retrospective, automated radiomics
model based on superficial lymph node B-mode images was
built to achieve accurate diagnosis for four typical causes of
cervical lymphadenopathy in this study.
MATERIALS AND METHODS

Design
This retrospective,multicenter studywasapprovedby the institutional
ethics committees of all medical centers involved. The ethics
committee waived the requirement of written informed consent for
participation. The identifier NCT04497714was assigned to our study
at ClinicalTrials.gov. In this study, 1,105 patients with
clinicopathologically confirmed LNTB, cervical lymphoma, reactive
LN hyperplasia, or metastatic LN were collected from six hospitals
from January 2017 to January 2020. These hospitals were The Second
Affiliated Hospital of Zhejiang University School of Medicine,
Hangzhou Red Cross Hospital, Xi’an Chest Hospital, Sheng Jing
Hospital of China Medical University, Sichuan Provincial People’s
Hospital, and Infectious Disease Hospital of Heilongjiang Province.
We reviewed the patients’ electronic medical records, and all patients
were enrolled with pathological reports.

Patients
The cervical lymph node ultrasound images were collected from
six hospitals with jpeg, jpg, or bmp format. These images had
been generated by different models of ultrasound instrument
(Philips, Mindray, and GE Healthcare), so image quality control
was performed before the data processing procedures.
Ultrasound images were taken before the puncture. The time
interval between the pathological results obtained after the
ultrasound images were taken was 24 h. All enrolled patients
were pathologically confirmed with LNTB, cervical lymphoma,
reactive lymph nodes hyperplasia, and metastatic LN.

The inclusion criteria were as follows (1): cervical
lymphadenopathy was confirmed by pathological examination and
(2) included at least two ultrasound static images of the target lymph
node (transverse and longitudinal images) before the puncture.

The exclusion criteria were as follows (1): patients with HIV
(2), the lesion was not confirmed by pathological examination,
and (3) the quality of the ultrasound images was poor.

The general clinical data of patients (age, gender, lesion size,
and pathological imaging results of the lesions) were recorded.

Procedures
The patient was in the supine or lateral position to expose the
neck. The neck ultrasound examination was performed by
experienced radiologists. First, gray-scale ultrasound imaging
was performed to observe the size, boundary, hilum of lymph
node, and the longitudinal diameter (L) and short diameter (S) of
each lymph node on the maximum longitudinal section. After
collecting the image data, three skilled radiologists with at least 5
years of experience in superficial LN ultrasound examination
interpreted the randomly ordered cervical lymph node
ultrasound images blindly. The diagnostic performance of each
May 2022 | Volume 12 | Article 856605
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radiologist in cervical lymphadenopathy was compared with the
pathological results.

In the ultrasound-based radiomics process, the collected data
were randomly assigned to a training set (60%) and a test set (40%).
The lymph node boundaries were delineated by two radiologists
whowere unaware of the purpose of the study. The inter- and intra-
observer consistency values of the radiomics parameters extracted
from the region of interest (ROI) were tested by calculating the
intraclass correlation coefficient (ICC). The radiomics parameters
were extracted using a MATLAB (R2020a) package of radiomics
analysis from Github (github.com/mvallieres/radiomics), and the
statistical modeling was performed by R software (version 3.6.2).
The quantitative features of radiomicswere extracted fromB-mode
ultrasound images, including11 statistical features, 26 gray-level co-
occurrence matrix (GLCM) features, 13 gray-level run-length
matrix (GLRLM) features, 16 gray-level size zone matrix
(GLSZM) features, 16 gray-level distance zone matrix (GLDZM)
features, 5 neighborhood gray-tone difference matrix (NGTDM)
features, and 17 neighboring gray-level dependence matrix
(NGDLM) features. The least absolute shrinkage and selection
operator (LASSO) algorithm was used to select the features, and
the support vector machine (SVM) algorithm was applied to
differentiate four causes of cervical lymphadenopathy. In this
study, a multiple classification of LNTB, cervical lymphoma,
reactive LN hyperplasia, and metastatic LN was performed using
LASSO–Vote–SVM model, a customized version of the LASSO–
SVMmodel, to obtain the category that the sample belongs to. The
receiver operating characteristic (ROC) curves of the radiomics
model and of the three skilled radiologists were plotted, and the
Kappa coefficientwithin radiologistswas calculated. The areaunder
the curve (AUC), sensitivity, and specificity of the radiomicsmodel
and those of the radiologists were calculated based on R packages
“pROC” and “ROCit”. McNemar’s test was used for comparing the
sensitivity and specificity between the radiomics model and the
radiologists.Delong’s testwas used for comparing theAUCsamong
radiologists and the radiomics model. Statistical significance was
defined as p-value <0.05, and the multi-comparison p-value was
adjusted by Bonferroni correction.
RESULTS

Patients’ Distribution and Demographic
Characteristics
Between January 1, 2017 and January 1, 2020, 1,245 cervical
lymphadenopathy ultrasound images were obtained from six
Frontiers in Oncology | www.frontiersin.org 3
different hospitals (Figure 1). The average age of the enrolled
patients was 48.1 ± 18.9, and 579 male patients and 526 female
patients were enrolled (Table 1). Figure 2 depicts the workflow
of patient enrollment, data pre-processing, and radiomics
model development for multiple classification diagnosis of
cervical lymphadenopathy. After the image quality control
step, 1,105 images (one image per patient) were retained for
our study, including 314 images (28% of total) with LNTB, 216
images (20% of total) with cervical lymphoma, 332 images (30%
of total) with metastatic LN, and 243 images (22% of total) with
reactive LN hyperplasia (Table 1). Among the 1,105 total
images, 308 were obtained from Hangzhou Red Cross
Hospital, 38 were obtained from Infectious Disease Hospital
of Heilongjiang Province, 184 were obtained from Sichuan
Provincial People’s Hospital, 24 were obtained from Sheng
Jing Hospital of China Medical University, 166 images were
obtained from Xi’an Chest Hospital, and 385 were obtained
from The Second Affiliated Hospital of Zhejiang University
School of Medicine.
Inter-/Intra-Observer Consistency of the
Radiomics Parameters From Delineated
ROI in Lymphadenopathy
The ROI was delineated blindly according to the lymph node
boundary by two colleagues (CZ and YZ) who were unaware of
the purpose of the study (Figure 3A). Using MATLAB software,
104 features were extracted, including 11 statistical features, 26
GLCM features, 13 GLRLM features, 16 GLSZM features, 16
GLDZM features, 5 NGTDM features, and 17 NGDLM features.
The ICCs were used to evaluate the inter-/intra-observer
repeatability of the radiomics parameters from the delineated
ROI (Figure 3B). The inter-observer and intra-observer
consistency were 0.8245 (0.7927–0.8563) and 0.9228 (0.9053–
0.9403), respectively (Figure 3C). Fifteen features with ICC
lower than 0.7 were deleted in the model building step to
obtain a repeatability result (Figure 3B).
Diagnostic Performance of
Lymphadenopathy in the Radiomics
Model and the Radiologists
The whole dataset was randomly assigned into a training set
consisting of 663 (60%) cases and a testing set consisting of 442
(40%) cases. For our study, the multinomial LASSO–logistic
regression model and the LASSO–Vote–SVM model were selected.
A B

FIGURE 1 | (A) Distribution of cervical lymphadenopathy in six medical centers. (B) Distribution of four categories of cervical lymphadenopathy.
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In the training set, the two machine learning models had a similar
diagnostic performance, but in the test set, the accuracy of the
LASSO–Vote–SVM model was better than the LASSO–logistic
regression model (0.666, 0.655–0.677; 0.783, 0.773–0.793; 0.773,
0.764–0.784; and 0.685, 0.676–0.693 for LNTB, cervical lymphoma,
reactive LN hyperplasia, and metastatic LN, respectively)
(Supplementary Table S1).

Based on these results, we chose the LASSO–Vote–SVM
model to calculate the radiomics model’s performance for
differentially diagnosing cervical lymphadenopathy. Besides
this, three skilled radiologists read the whole image set
blindly, and the results were collected. Tables 2, 3 show the
sensitivity, specificity, accuracy, negative predictive value, and
FIGURE 2 | Enrollment flow chart of this study.
A

B

C

FIGURE 3 | (A) ROI (region of interest) was delineated according to the
lymph node boundary by two radiologists. (B,C) Intraclass correlation
coefficient (ICC) scores for inter- observer and intra-observer measurements
TABLE 1 | Case distribution in six medical centers.

Variables Hangzhou Red Cross
Hospital

Heilongjiang Infectious Disease
Control Hospital

Sichuan Provincial
Cancer Hospital

Sheng Jing
Hospital

Xi’an Chest
Hospital

The
Second
Affiliated
Hospital

of
Zhejiang
University

All
Center

Number of
patients

308 38 184 24 166 385 1,105

Lymph node
tuberculosis

144 10 52 2 66 40 314

Lymphoma 58 1 60 5 2 90 216
Reactive
hyperplasia

54 1 38 10 82 58 243

Metastatic lymph
node

52 26 34 7 16 197 332

Male 143 19 85 9 90 233 579
Female 165 19 99 15 76 152 526
Age 44.4 ± 20.0 48.6 ± 17.2 46.7 ± 19.9 42.7 ± 15.2 38.4 ± 17.2 56.1 ±

15.3
48.1 ±
18.9
Ma
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positive predictive value of the radiomics model and the
radiologists (R1, R2, and R3) in the diagnosis of LNTB,
cerv ica l lymphoma, reac t ive LN hyperp las ia , and
metastatic LN.

For LNTB, the AUC of radiomics model is 0.673 (0.637–
0.710), 0.662 (0.613–0.710), and 0.626 (0.567–0.684) in the
whole set, training set, and test set, respectively. For lymphoma,
the AUC of the radiomics model is 0.623 (0.579–0.666), 0.644
(0.613–0.699), and 0.602 (0.533–0.674) in the whole set,
training set, and test set, respectively. For reactive
hyperplasia, the AUC of the radiomics model is 0.655 (0.614–
0.695), 0.661 (0.609–0.714), and 0.602 (0.536–0.668) in the
whole set, training set, and test set, respectively. For metastatic
LN, the AUC of the radiomics model is 0.708 (0.673–0.743),
0.717 (0.672–0.761), and 0.683 (0.626–0.740) in the whole set,
training, and test set, respectively (Table 4 and Supplementary
Table S2).

In Supplementary Table S3, 177 (16.0%), 134 (12.1%), 299
(27.1%), and 499 (44.8%) lesions were diagnosed as LNTB,
cervical lymphoma, reactive LN hyperplasia, and metastatic
LN, respectively, by radiologist 1 (R1). In total, 233 (21.1%),
225 (20.4%), 130 (11.8%), and 516 (46.7%) lesions were
diagnosed as LNTB, lymphoma, reactive hyperplasia, and
metastatic LN, respectively, by radiologist 2 (R2). Moreover, 24
(2.2%), 32 (2.9%), 469 (42.5%), and 578 (52.4%) lesions were
diagnosed as LNTB, cervical lymphoma, reactive LN hyperplasia,
and metastatic LN, respectively, by radiologist 3 (R3). A low
agreement among the three radiologists in the diagnosis of
lymphadenopathy was found in this study, especially in LNTB
and lymphoma. The Kappa coefficient was 0.108 (*p < 0.001).
For LNTB, the AUC of the three radiologists varies from 0.502
(0.443–0.560) to 0.615 (0.565–0.664) in the whole set, training
set, and test set. For lymphoma, the AUC of the three radiologists
Frontiers in Oncology | www.frontiersin.org 5
varies from 0.534 (0.478–0.589) to 0.638 (0.569–0.707) in the
whole set, training set, and test set (Table 4 and Supplementary
Table S2).
Comparison Among the Radiomics Model
and the Radiologists in the Multiple
Classification Diagnosis of Cervical
Lymphadenopathy
Then, we compared the radiomics model (LASSO–Vote–SVM)
with the three skilled radiologists (with more than 5 years of
experience in the diagnosis of cervical lymphadenopathy by
ultrasound) for the multiple classification diagnosis of cervical
lymphadenopathy. The ROC plots of the radiomics model and
the skilled radiologists are shown in Figure 4 and
Supplementary Figures S1, S2. The AUC of the radiomics
model in the diagnosis of LNTB was statistically higher than
the AUCs of radiologists 1–3 in the whole set, and it was
statistically higher than radiologist 3 in the training set and the
test set (all p < 0.008) (Supplementary Table S4). The radiomics
model showed higher sensitivity and specificity compared with
radiologists 1–3 in the whole set, training set, and test set
(Supplementary Tables S5, S6) in the diagnosis of LNTB. This
performance for LNTB shows that radiomics might have a
potent differentiating capability in LNTB and could assist
radiologists to make more accurate diagnoses.

For lymphoma, the AUC of the radiomics model was higher
than the AUC of radiologist 3 in the whole set and the training set
(all p < 0.008), but the difference between two AUCs was not
statistically significant in the test set (p = 0.03366, adjusted a =
0.05/6). For the diagnosis of metastatic LN, the radiomics model
showed a slight improvement over the radiologists in the whole set
and the training set (whole set: p3 = 0.004136; training set: p2 =
TABLE 2 | Comparison between radiomics model and senior radiologists in training set.

Disease Index Radiomics model R1 (95%CI) R2 (95%CI) R3 (95%CI)

Median 95%CI Median 95%CI Median 95%CI Median 95%CI

Lymph node tuberculosis Sensitivity 0.599 (0.517–0.680) 0.301 (0.259–0.337) 0.375 (0.315–0.403) 0.025 (0.010–0.041)
Specificity 0.763 (0.710–0.806) 0.898 (0.886–0.912) 0.852 (0.834–0.875) 0.980 (0.972–0.987)
Accuracy 0.716 (0.670–0.754) 0.727 (0.711–0.747) 0.718 (0.693–0.740) 0.707 (0.691–0.725)
Negative predictive value (NPV) 0.824 (0.805–0.852) 0.763 (0.744–0.781) 0.771 (0.755–0.792) 0.716 (0.700–0.733)
Positive predictive value (PPV) 0.502 (0.440–0.566) 0.541 (0.486–0.599) 0.5 (0.445–0.552) 0.325 (0.156–0.543)

Lymphoma Sensitivity 0.328 (0.210–0.482) 0.338 (0.285-0.391) 0.351 (0.299-0.398) 0.093 (0.062-0.111)
Specificity 0.931 (0.895-0.968) 0.930 (0.917-0.940) 0.834 (0.804-0.853) 0.985 (0.978-0.991)
Accuracy 0.817 (0.790-0.849) 0.816 (0.798-0.834) 0.738 (0.713-0.754) 0.812 (0.791-0.825)
NPV 0.854 (0.835-0.881) 0.855 (0.835-0.868) 0.842 (0.823-0.856) 0.819 (0.800-0.833)
PPV 0.549 (0.436-0.651) 0.534 (0.473-0.607) 0.331 (0.282-0.399) 0.6 (0.469-0.706)

Reactive
Hyperplasia

Sensitivity 0.441 (0.341-0.537) 0.467 (0.418-0.506) 0.256 (0.212-0.290) 0.593 (0.554-0.649)
Specificity 0.903 (0.871-0.928) 0.782 (0.767-0.805) 0.918 (0.906-0.937) 0.624 (0.601-0.650)
Accuracy 0.798 (0.769-0.825) 0.713 (0.693-0.734) 0.772 (0.755-0.793) 0.620 (0.598-0.637)
NPV 0.851 (0.832-0.870) 0.839 (0.821-0.858) 0.815 (0.798-0.833) 0.847 (0.827–0.873)
PPV 0.558 (0.491–0.618) 0.379 (0.343–0.407) 0.465 (0.412–0.532) 0.312 (0.280–0.338)

Metastatic
LN

Sensitivity 0.676 (0.594–0.738) 0.693 (0.665–0.743) 0.683 (0.655–0.729) 0.678 (0.632–0.715)
Specificity 0.770 (0.696–0.823) 0.655 (0.635–0.682) 0.625 (0.602–0.645) 0.545 (0.514–0.566)
Accuracy 0.742 (0.705–0.789) 0.667 (0.656–0.685) 0.641 (0.622–0.667) 0.583 (0.562–0.603)
NPV 0.847 (0.819–0.877) 0.834 (0.814–0.861) 0.821 (0.800–0.849) 0.795 (0.777–0.818)
PPV 0.553 (0.519–0.625) 0.466 (0.446–0.488) 0.439 (0.411–0.465) 0.390 (0.360–0.418)
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0.007323; p3 < 0.001), but in the test set, there was no statistically
significant difference among the radiomics model and radiologists
(all p > 0.008) (Supplementary Table S4). In Supplementary
Table S6, the radiomics model showed a higher specificity
compared with at least two radiologists in all sets in the multiple
classification diagnosis of LNTB, cervical lymphoma, reactive LN
hyperplasia, and metastatic LN.

The ultrasound radiomics method could provide good
capability in differentiating LNTB, cervical lymphoma, reactive
LN hyperplasia, and metastatic LN. In the multi-operator, cross-
machine, multicenter context, the diagnostic performance of
radiomics is comparable and more reproducible compared
with those of the skilled radiologists.
DISCUSSION

The radiomics model developed in our retrospective study showed
good accuracy and stability in the multiple classification diagnosis of
cervical lymphadenopathy. We collected cervical lymphadenopathy
ultrasound images acquired using different instruments in six
hospitals with different geographical locations, including three
tuberculosis-designated hospitals and three general hospitals. It
was both an opportunity and a challenge for the radiomics model
Frontiers in Oncology | www.frontiersin.org 6
training, especially for the multiple classification diagnosis of four
causes of cervical lymphadenopathy. Through training and
optimization, a radiomics model suitable for the multi-
classification diagnosis of cervical lymphadenopathy was trained.
The AUC of radiomics was comparable with those of the skilled
radiologists who have the best diagnostic performance in cervical
lymphadenopathy in the whole, training, and test sets in this study.

Clinical cervical lymph node lesions are common and varied
in nature, and the clinical treatments for different types of
cervical lymphadenopathy are different, but conventional
ultrasound has a certain limit in determining the nature of the
lesions. In our study, even though the radiologists had more than
5 years of experience in superficial LN ultrasound examination,
the disparity between different radiologists is obvious in the
diagnosis of multiple classes of cervical lymphadenopathy.
Considering the particularity of tuberculosis in China, doctors
in tuberculosis-designated hospitals have more experience in the
diagnosis of tuberculosis than in the diagnosis of other lymph
node diseases, and they are more sensitive in the differential
diagnosis of LNTB. The inter-radiologist consistency for the
diagnosis of cervical lymphadenopathy had obvious statistical
difference (Supplementary Table S3).

However, the diagnostic performance of the radiomics model
was consistent between the training set and the test set (Tables 2, 3),
which illustrates that the radiomics model could be a stable classifier
TABLE 4 | Area under the curve between the radiomics model and the senior radiologists in the test set.

Data set Disease Radiomics R1 R2 R3

Test set Lymph node tuberculosis 0.626 (0.567–0.684) 0.582 (0.522–0.640) 0.605 (0.546–0.664) 0.502 (0.443–0.560)
Lymphoma 0.602 (0.533–0.672) 0.638 (0.569–0.707) 0.594 (0.525–0.664) 0.541 (0.472–0.610)
Reactive hyperplasia 0.602 (0.536–0.668) 0.646 (0.581–0.711) 0.580 (0.514–0.646) 0.617 (0.551–0.682)
Metastatic lymph node 0.683 (0.626–0.740) 0.700 (0.644–0.757) 0.652 (0.593–0.710) 0.625 (0.566–0.684)
May 2022 | Volume
TABLE 3 | Comparison between radiomics model and senior radiologists in test set.

Disease Index Radiomics model R1 (95%CI) R2 (95%CI) R3 (95%CI)

Median 95%CI Median 95%CI Median 95%CI Median 95%CI

Lymph node tuberculosis Sensitivity 0.496 (0.317–0.646) 0.297 (0.247–0.353) 0.362 (0.321–0.440) 0.026 (0–0.049)
Specificity 0.736 (0.634–0.830) 0.891 (0.869–0.909) 0.852 (0.817–0.879) 0.979 (0.968–0.991)
Accuracy 0.667 (0.619–0.703) 0.724 (0.693–0.748) 0.71 (0.678–0.748) 0.71 (0.683–0.735)
Negative predictive value (NPV) 0.786 (0.752–0.824) 0.764 (0.736–0.792) 0.775 (0.745–0.801) 0.719 (0.692–0.742)
Positive predictive value (PPV) 0.426 (0.362–0.492) 0.517 (0.432–0.590) 0.495 (0.422–0.580) 0.348 (0–0.530)

Lymphoma Sensitivity 0.225 (0.074–0.410) 0.313 (0.239–0.399) 0.342 (0.265–0.413) 0.08 (0.050–0.125)
Specificity 0.918 (0.853–0.976) 0.927 (0.912–0.948) 0.827 (0.799–0.873) 0.986 (0.977–0.997)
Accuracy 0.783 (0.754–0.826) 0.805 (0.779–0.833) 0.735 (0.711–0.772) 0.807 (0.787–0.838)
NPV 0.833 (0.804–0.862) 0.844 (0.825–0.874) 0.836 (0.815–0.864) 0.813 (0.792–0.840)
PPV 0.426 (0.318–0.563) 0.522 (0.408–0.625) 0.338 (0.241–0.404) 0.586 (0.412–0.784)

Reactive
hyperplasia

Sensitivity 0.387 (0.283–0.552) 0.451 (0.388–0.527) 0.254 (0.205–0.321) 0.611 (0.538–0.665)
Specificity 0.879 (0.802–0.933) 0.784 (0.750–0.808) 0.923 (0.895–0.940) 0.624 (0.586–0.658)
Accuracy 0.771 (0.738–0.803) 0.71 (0.679–0.742) 0.776 (0.745–0.802) 0.618 (0.592–0.651)
NPV 0.834 (0.815–0.869) 0.836 (0.807–0.862) 0.813 (0.786–0.839) 0.848 (0.811–0.877)
PPV 0.474 (0.366–0.603) 0.368 (0.321–0.423) 0.486 (0.391–0.566) 0.308 (0.269–0.355)

Metastatic lymph node Sensitivity 0.606 (0.486–0.678) 0.693 (0.620–0.735) 0.677 (0.611–0.721) 0.669 (0.611–0.736)
Specificity 0.729 (0.627–0.813) 0.66 (0.620–0.691) 0.625 (0.596–0.659) 0.535 (0.504–0.580)
Accuracy 0.692 (0.632–0.730) 0.67 (0.643–0.685) 0.643 (0.604–0.671) 0.577 (0.548–0.610)
NPV 0.81 (0.769–0.842) 0.831 (0.792–0.860) 0.818 (0.779–0.849) 0.795 (0.758–0.820)
PPV 0.493 (0.432–0.550) 0.462 (0.430–0.493) 0.436 (0.398–0.480) 0.382 (0.341–0.425)
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for cervical lymphadenopathy without constraints of subjective
factors and disease distribution among different hospitals. For the
diagnosis of LNTB, theAUCof the radiomicsmodelwas higher than
that of at least one radiologist in all sets (Supplementary Table S4).
The radiomics model also showed higher sensitivity and specificity
compared with radiologists 1–3 in all sets in the diagnosis of LNTB
(Supplementary Tables S5, S6). For lymphoma, reactive
hyperplasia, and metastatic LN, the radiomics model showed
higher specificity compared with those of at least two radiologists
in all sets (Supplementary Table S6). The selected radiomics
features from the ultrasound image can discriminate between
different lymph node diseases—for example, the first-order,
GLRLM, and GLDZM features are selected between LNTB and
lymphoma. The first-order features describe the distribution of echo
intensities in an image. The GLRLM and GLDZM features quantify
the gray-level run-length and gray-level size zone in the image. It
might be hard to recognize the high-dimensional features in an
ultrasound image by naked eyes. The radiomics model trained for
cervical lymphadenopathy in our study could improve the diagnostic
ability of ultrasound radiologists and might reduce unnecessary
core-needle biopsy in cervical lymphadenopathy.

In recent years, radiomics technology has been widely used in
LN diagnosis. Tian et al. developed a radiomics model to predict
LN metastasis in patients with confirmed colorectal cancer (27).
Another radiomics model was used to manifest atypical primary
central nervous system lymphoma (28). Coroller et al. used
Frontiers in Oncology | www.frontiersin.org 7
lymph node radiomic features for predicting the pathological
response to neoadjuvant chemoradiation (29). Another study
developed a radiomic model to distinguish non-tuberculous
mycobacteria from other causes of lymphadenopathy based on
CT images from one hospital and obtained an AUC of 89% (30).
Considering that this study contains four categories of lymph
nodes from six medical centers, it is more complicated and
difficult than a binary classification study and much closer to
clinical practice, but the classification accuracy is not
compromised. Therefore, the method in this study shows great
prospects in the multi-classification discrimination of LNTB,
cervical lymphoma, reactive LN hyperplasia, and metastatic LN.

In future studies, many improvements should be made to our
radiomics model since the current study had some limitations.
The sample size of this study was not large enough, and more
effective cases need to be accumulated in subsequent studies to
optimize the model. The clinical diagnostic validity of this
radiomics model will be tested in future clinical trials with
more features. Besides this, our study only focused on B-mode
ultrasound. However, it is better for a radiomics model to extract
more quantitative data from multimodal ultrasound images,
including ultrasound elastography, Doppler ultrasound, and
contrast-enhanced ultrasound. In subsequent studies, we will
collect more data from multimodal images and develop suitable
radiomics methods to improve the multi-classification accuracy
of cervical lymphadenopathy.
FIGURE 4 | Receiver operating characteristic between the radiomics model and radiologists in the whole set.
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