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Abstract: The leaf rust pathogen, Puccinia triticina (Pt), threatens global wheat production.
The deployment of leaf rust (Lr) resistance (R) genes in wheat varieties is often followed by the
development of matching virulence in Pt due to presumed changes in avirulence (Avr) genes
in Pt. Identifying such Avr genes is a crucial step to understand the mechanisms of wheat-rust
interactions. This study is the first to develop and apply an integrated framework of gene expression,
single nucleotide polymorphism (SNP), insertion/deletion (InDel), and copy number variation (CNV)
analysis in a rust fungus and identify candidate avirulence genes. Using a long-read based de novo
genome assembly of an isolate of Pt (‘Pt104’) as the reference, whole-genome resequencing data
of 12 Pt pathotypes derived from three lineages Pt104, Pt53, and Pt76 were analyzed. Candidate
avirulence genes were identified by correlating virulence profiles with small variants (SNP and
InDel) and CNV, and RNA-seq data of an additional three Pt isolates to validate expression of genes
encoding secreted proteins (SPs). Out of the annotated 29,043 genes, 2392 genes were selected as SP
genes with detectable expression levels. Small variant comparisons between the isolates identified
27–40 candidates and CNV analysis identified 14–31 candidates for each Avr gene, which when
combined, yielded the final 40, 64, and 69 candidates for AvrLr1, AvrLr15, and AvrLr24, respectively.
Taken together, our results will facilitate future work on experimental validation and cloning of Avr
genes. In addition, the integrated framework of data analysis that we have developed and reported
provides a more comprehensive approach for Avr gene mining than is currently available.

Keywords: Puccinia triticina; avirulence gene; next-generation sequencing; single nucleotide
polymorphism; copy number variation

1. Introduction

Leaf rust, caused by Puccinia triticina (Pt), is the most widespread rust disease of wheat and the most
damaging biotic stress of wheat globally, causing losses of around 3.25% globally [1]. Severe regional
epidemics of the disease have occurred in many wheat growing areas including Western Australia in
1999 [2], and Kansas, USA, in 2007 where it caused 14% yield losses [3]. The deployment of leaf rust
(Lr) resistance (R) genes in wheat varieties is the most effective and economical method for reducing
yield losses and ensuring adequate quantities of pesticide-free food. However, Pt has great capacity to
evolve virulence matching resistance in wheat cultivars to render them susceptible [4], as exemplified
by the annual report of more than 50 virulence phenotypes detected annually in the United States [5].
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In addressing this challenge, it is crucial to get a better understanding of the genetic basis of wheat-rust
interactions at the molecular level.

Based on the gene-for-gene hypothesis [6], a model at the molecular resolution with two layers of
plant immunity was proposed for plant-pathogen interactions [7]. In the first layer, pathogen-associated
molecular patterns (PAMPs) are recognized by plant pattern recognition receptors (PRRs), resulting
in PAMP-triggered immunity (PTI). In the second layer, a pathogen may breach PTI by deploying
effectors (secreted proteins) that modify plant metabolism and defense response, and in turn, the plant
host may evolve resistance proteins that specifically recognize pathogen effectors either directly [8] or
indirectly [9] and result in effector-triggered immunity (ETI). Compared to PTI, ETI manifests as a
hypersensitive response (HR) involving localized cell death and is more rapid and robust. However,
the host ETI response can be evaded by a pathogen through modification of avirulence (Avr) genes,
with the selection force driving the coevolution of R genes in plants and Avr genes in pathogens.

Identifying Avr genes in Pt and the corresponding R genes in wheat is crucially important in
understanding the genetic basis of wheat–rust interactions and in developing new approaches and
diagnostic tools to reduce the losses caused by Pt. Although more than 80 leaf rust R genes have been
catalogued [10], no single Avr gene in Pt has been identified yet [11]. Despite the presence of virulence
for the R gene Lr1 in Australia, this gene was used effectively for many years by combining it with
other R genes for multiple gene resistance [12]. For the R gene Lr15, the frequencies of virulence are low
in Australia but relatively common in most geographical areas [13]. Like Lr1, the R gene Lr24 remains
important in Australia because it can be combined with other R genes to provide protection against all
known pathotypes of Pt [2]. Due to the usefulness of these three R genes, we undertook a comparative
genomics approach to identify candidate avirulence genes matching each in Pt. Australia is isolated
from other major world wheat growing regions and wheat infecting rust fungi do not undergo sexual
recombination there due to lack of alternate hosts [2,14]. Mutations within the wheat rust fungi are well
documented in Australia and long-term rust surveys in this region suggest that new pathotypes mainly
arise from single-step mutations. Clonal lineages have arisen within the rust pathogen populations via
the sequential addition of single virulence [15]. The major Pt lineage in Australia between 1988 and
2010 was derived from the founding pathotype 104–2,3,(6),(7),11 (isolate S423; referred to as Pt104)
(Park, unpublished), first detected in Australia in 1984 [16]. For this study, we selected six clonally
derived isolates within this Pt104 lineage, two isolates from a second lineage known as Pt53 [17],
and four isolates from a third lineage Pt76 (Park, unpublished) for genomic comparisons.

Although difficulties in maintaining pure isolates of obligate biotrophs like Pt have hindered
genetic studies, next-generation sequencing (NGS) technology holds the promise of accelerating
biological research and discovery in rust genomics. Compared to traditional polymerase chain reaction
(PCR)-based approaches of genetic studies towards limited targeted regions, NGS enables genome-
wide identification of candidate avirulence genes by comparing wild and mutated DNA sequences.
Multiple reference genomes are now publicly available for each of the three wheat rust pathogens Pt,
Puccinia graminis f. sp. tritici (Pgt), and Puccinia striiformis f. sp. tritici (Pst) [18]. With the availability of
reference genomes, advances have been made for all three wheat rust fungi in genome-wide studies
for effector mining, including studies on Pst [19–21], Pgt [22], and Pt [23], which have detected a panel
of candidate avirulence genes for functional validation. One earlier study identified 15 candidates
for 14 Avr genes using gene expression and RNA SNP analysis [24]. Moreover, two recent studies
successfully identified and validated two Avr genes AvrSr50 [25] and AvrSr35 [26] in Pgt. In contrast to
an array of studies on Pgt and Pst, the whole-genome sequencing studies on Pt are limited [23,27].

In addition to the analysis of gene expression, single nucleotide polymorphisms (SNPs),
and insertions/deletions (InDels) [21,23,27,28], copy number variations (CNVs) have been highlighted
as a new and significant source of genetic polymorphism that contributes to phenotypic diversity such
as virulence in diverse fungal species [29]. In fact, the contribution of CNVs to population genetic and
phenotypic diversity has been exemplified by a range of fungal studies, including studies on yeast
Saccharomyces cerevisiae (Ascomycota, Saccharomycetes) [30,31], the wheat pathogen Zymoseptoria tritici
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(Ascomycota, Dothideomycetes) [32], and the human fungal pathogen Cryptococcus deuterogattii
(Basidiomycota, Tremellomycetes) [33]. It has also been noted that the degree of CNV in fungal
populations is not always correlated with the degree of SNP variation, which indicated that CNV
analysis could reveal an important yet hidden layer of genetic information independent of SNPs/InDels.
Despite the important role of CNVs as aforementioned [29], genome-wide studies of CNV analysis for
wheat rust fungi are lacking.

The present study is the first to attempt an integrated analysis of gene expression, SNP, InDel,
and CNV in association with virulence phenotype to identify candidate avirulence genes in P. triticina.
Sequencing was performed on DNA samples of 12 Pt isolates from three clonal lineages and RNA
samples of three Pt isolates representing field-collected pathotypes that dominated Pt populations in all
mainland states in Australia [15,16]. Using a published long-read-based genome assembly of Pt104 [27],
a haplotype-phased genome of the founding isolate of the lineage Pt104, we generated SNP, InDel,
and CNV profiles for each isolate followed by comparative analysis to identify 40, 64, and 69 candidates
for AvrLr1, AvrLr15, and AvrLr24, respectively. This study not only provides important new resources
for future research of Pt in Australia and beyond but also demonstrates a practical framework of
integrated analysis from multiple genomic aspects to explore candidate avirulence genes.

2. Materials and Methods

2.1. DNA Sequencing

All isolates used in this study were identified in annual nationwide race surveys of pathogenicity
in Pt in Australia (Park 2008; Park, unpublished data) and were curated in the Plant Breeding Institute
Rust Collection, The University of Sydney, Australia. Each isolate was established from a single pustule
from a region of low-density infection and increased on wheat plants of the susceptible variety Morocco.
For rust infection, wheat plants were grown at high density (~25 seeds per 12 cm pot with compost as
growth media) to the one leaf stage (~7 days) in a greenhouse microclimate set at 18–25 ◦C temperature
and with natural day light. The identity and purity of each isolate was verified by pathogenicity tests
with a set of host differentials. Mature spores were collected, dried, and stored at −80 ◦C. From dried
dormant spores, DNA was extracted as described elsewhere [34] and sent to Novogene (Hong Kong,
China) for Illumina short-read sequencing. TruSeq library of DNA samples for the 12 Pt isolates were
constructed with a 150 bp paired-end and sequenced on a HiSeq X instrument (Illumina, San Diego,
CA, USA).

2.2. RNA Sequencing

The three Pt isolates (S96, S108, and S473) and wheat cultivar Chinese Spring (without the
resistance genes Lr1, Lr15 and Lr24) were used for RNA sequencing. For each isolate, infected leaves
were harvested at 3, 5, and 7 days after inoculation and immediately stored in liquid nitrogen.
Samples were ground to a fine powder in liquid nitrogen and total RNA from rust pathogen and wheat
leaf was extracted with the ISOLATE II RNA Mini Kit (Bioline, London, UK). After DNase treatment
(Promega, Madison, WI, USA), RNA was purified by on-column DNase treatment and the quality was
checked using the Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). About 10 µg of total RNA was
processed with the Illumina mRNA-Seq Sample Preparation kit for library preparation. Each library
was sequenced using the Illumina HiSeq 2500 platform (125 bp paired-end reads) at Ramaciotti Centre
for Genomics (Sydney, Australia).

2.3. RNA-Seq Analysis for the Selection of Expressed Effectors

The quality of the raw data of RNA sequencing was assessed using FastQC v0.11.8 with default
options. The data were trimmed with Trimmoatic v0.38 with parameters “LEADING:3 TRAILING:3
SLIDINGWINDOW:4:25 MINLEN:36.” After trimming, the quality of data was assessed again before
mapping. The paired-end reads data of each isolate was mapped to Pt104 individually using
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STAR 2.7.0 [35]. The alignments were selected using SAMtools 1.6 view command with parameters
“-q 10.” The generated BAM files were sorted and indexed using SAMtools. From BAM files, the mapped
reads were counted using the Bioconductor package Rsubread v2.0.1 [36], which generated the counts
of mapped reads for each gene. Based on the gene annotation of the Pt104 assembly, effectors were
predicted using EffectorP 2.0 [37], a machine learning classifier for fungal effector prediction. To validate
the predicted effector gene, if the count values of mapped reads reached at least 10 in one or more of
the three RNA-seq samples, this gene was regarded as being expressed and selected. Ortholog searches
between Pt104 and Pt Race 1 genomes were performed using Proteinortho v5.16 (synteny mode) [38].
The localizations of effectors in plant cells were predicted using LOCALIZER v1.0.4 [39] and ApoplastP
v1.0.1 [40].

2.4. Quality Assessing, Trimming, and Mapping for Whole-Genome Sequencing

The quality of original pair-end reads data were assessed using FastQC v0.11.8 [41] with
default options. The data were trimmed with Trimmomatic v0.38 [42] with parameters “LEADING:3
TRAILING:3 SLIDINGWINDOW:4:25 MINLEN:36.” The quality of data was assessed again before
mapping. The pair-end reads data of each isolate was mapped to Pt104 assembly individually using
bwa v0.7.17 [43] with the BWA-MEM algorithm. High quality alignments were selected using SAMtools
1.6 [44] view command with parameters “-q 30.” The generated BAM files were sorted and indexed
using SAMtools for subsequent data analysis. The mapping information summary was generated
using SAMtools and BEDTools v2.25 [45].

2.5. SNP and InDel Calling and Comparative Genomic Analysis

From the indexed and sorted BAM files, small genomic variants were called using GATK
v3.8.0 [46]. For each BAM file, regions around InDels were identified and realigned using GATK
RealignerTargetCreator and IndelRealigner [47]. Genome-wide variant calling per isolate was
performed using GATK HaplotypeCaller, and joint genotyping on all isolates was performed using
GATK GenotypeGVCFs [48]. Variants were filtered using vcffilter command of vcflib [49] with
parameters “DP > 10 and QUAL > 20.” From the virulence profiling of 12 Pt isolates against 21 R
genes, a heatmap with a dendrogram was inferred and visualized using the Bioconductor package
ComplexHeatmap v2.2.0 [50]. Based on the genomic variants detected, a phylogenetic tree of the 12 Pt
isolates were inferred using SNPhylo ver. 20160204 [51] and visualized by the Bioconductor package
ggtree v2.0.4 [52]. The R package circlize v0.4.8 [53] was used to create the Circos plot of genomic
landscape for small genomic variants.

Using the Bioconductor packages VariantAnnotation v1.32.0 [54], rtracklayer v1.36.0 [55],
and GenomicFeatures v1.38.2 [56], the identified genomic variants including SNPs and InDels
were annotated and the functional impact of the variants were predicted and classified into major
categories such as synonymous (SY), nonsynonymous (NSY), and frameshift across all isolates. For the
identification of candidate avirulence genes, the differential variants with functional impact located
within SP gene within each pairwise comparison (avirulence vs. virulence) were selected, which were
examined across pairwise comparisons targeting at the same Avr gene, and those genes showing
presence across all pairwise comparisons were considered as the final candidate avirulence genes.

2.6. Copy Number Variation Analysis

CNV analysis was performed using the Bioconductor package cn.MOPS 1.32.0 [57]. By using a
mixture of Poisson models for read depths across multiple isolates in each genomic region, cn.MOPS
can remove the effect of read depth variation along chromosomes and gain high sensitivity and a
lower false positive rate. The BAM files were converted into read count matrices using the function
getReadCountsFromBAM of cn.MOPS with the parameter “WL = 300.” The value of parameter WL
(window length) was carefully chosen to make sure that on average, about 100 reads, were contained
in each segment. The R package circlize v0.4.8 [53] was used to create the Circos plot of genomic
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landscape for CNVs. The example of a CNV was visualized using cn.MOPS. The differential CNVs
were identified by comparing avirulent and virulent isolates, which were then inspected for the
presence of the effector-encoding genes.

3. Results

3.1. Secretome Prediction by EffectorP and Validation by RNA Sequencing

The current study used our recently reported Pt104 genome assembly as the reference, which is
long-read based and represents the best quality Pt genome assembly available to date [27]. Six presumed
mutational derivatives of the isolate used to generate this reference genome assembly, two from a
second lineage (the Pt53 lineage) and four from a third lineage (the Pt76 lineage), were selected for this
study. The 12 isolates showed various virulence/avirulence profiles on catalogued resistance genes
(Supplementary File S1).

EffectorP 2.0 [37] was used to predict secreted protein (SP) encoding genes from among the
29,043 genes previously annotated for the Pt104 genome [27]. This identified 5325 genes encoding
potential effectors, each with an effector probability. To further validate the predicted SPs, RNA sequence
data for two isolates that were avirulent on Lr1, Lr15, and Lr24 (S96 and S108) and one isolate that was
avirulent on Lr15 and Lr24 (S473) were used to select the SPs with detectable expression. After quality
trimming, 77.2–129.1 million reads were obtained (Supplementary File S2). The trimmed RNA-seq data
for each sample were mapped to the Pt104 genome individually. On average, 17.6–49.6 million reads
(14.0–40.8% of total reads) could be successfully mapped to the reference; the remaining unmapped
reads were dropped as they were largely from the wheat host transcriptome. For each SP gene, if the
count values of the mapped reads were no less than 10 in at least one of the three samples used for
RNA-seq, then this SP gene was regarded as being expressed and selected. Out of 5325 predicted SPs,
2392 were thus selected for subsequent effector mining (Supplementary File S3).

3.2. Mapping Whole-Genome Sequencing Data

To identify candidates for AvrLr1, AvrLr15, and AvrLr24, six Pt isolates from the Pt104 lineage
(S467, S474, S521, S523, S547, and S576), two isolates from the Pt53 lineage (S365 and S563), and four
isolates from the Pt76 lineage (S594, S625, S629, and S631) with contrasting virulence profiles were
selected for whole-genome sequencing. The dendrogram depicting the virulence profiles of these
isolates in Figure 1A illustrates the relatedness of these isolates based on virulence/avirulence profiles
(Supplementary File S1), with three clades corresponding to the three clonal lineages.

After quality trimming, 66.3–96.1 million reads were obtained (Table 1). To genotype the isolates,
each was individually mapped to the reference genome Pt104. Across the 12 isolates, between 56.8 and
87.9 million reads (75.0–93.1% of total reads) were mapped to the reference (Table 1). The percentage of
mapped reads in the reference genome was 97.7–99.4%, which meant that almost all genes annotated
in the reference could be genotyped for every isolate. The bam files generated from mapping were
used for SNP, InDel, and CNV analysis as described in the following sections.
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Figure 1. Heatmap and dendrogram based on pathogenicity (virulence/avirulence) of 12 Puccinia triticina
(Pt) isolates, and a phylogenetic tree based on the identified single nucleotide polymorphism (SNPs)
across the 12 Pt isolates. (A) The dendrogram separates the 12 isolates into three distinct clades.
(B) The phylogenetic tree also separates the 12 isolates into three clades, consistent with those of the
dendrogram. The numbers shown on the tree branches are the percentage of bootstrap replicates (1000)
supporting the cluster.

Table 1. Mapping information for the 12 Puccinia triticina (Pt) isolates.

Isolate Total Reads
(Quality Trimmed)

Reads Mapped
to Reference

Percentage
Mapped Reads

Average
Coverage Fold

Percentage of Mapped
Bases in Reference

S365 81,605,446 75,995,860 93.1% 72.7 98.2%

S563 72,359,456 66,985,626 92.6% 62.5 98.1%

S467 71,491,329 66,285,859 92.7% 62.0 99.4%

S474 66,268,039 57,035,893 86.1% 53.6 99.3%

S521 75,331,554 62,273,511 82.7% 58.2 99.3%

S523 75,802,433 56,814,472 75.0% 54.5 99.3%

S547 72,921,641 63,758,642 87.4% 59.9 99.3%

S576 69,188,369 63,626,559 92.0% 59.1 99.3%

S594 89,362,930 80,982,321 90.6% 75.5 97.8%

S625 69,718,296 64,161,304 92.0% 60.5 97.7%

S629 96,147,346 87,921,703 91.4% 81.7 97.9%

S631 78,547,125 69,753,222 88.8% 65.5 97.9%

3.3. Genome-Wide Polymorphism and Phylogenetic Analysis

A detailed view of genome-wide polymorphism was obtained by identifying small genomic
variants including SNPs and InDels using GATK [48] and the bam files generated from the mapping
as aforementioned. Between 525,308 and 686,935, variants were identified, with 72.4–93.2% of these
being present in a heterozygous state (Table 2). The percentages of heterozygosity were similar within
each clade but varied between clades, supporting the postulated relatedness of the isolates based
on phenotypic studies. The genome-wide variant frequency was 2.9–3.9 variants/Kbp. The genomic
landscape of predicted gene, secreted protein with detectable expression, and genetic variation across
the 12 isolates represented by a Circos plot is shown in Figure 2. The numbers of SNP and InDel
variants were 451,414–606,306 and 71,807–80,629, respectively, and the ratio of SNP/InDel was 6.1–7.6:1,
indicating that most small genomic variants were SNPs.



Genes 2020, 11, 1107 7 of 17

Table 2. Summary of small genomic variants in the 12 Pt isolates.

Isolate Total
Variants SNP InDel Insertion Deletion Heterozygous

SNP
Heterozygous

InDel
Percentage of

Heterozygosity

S365 686,935 606,306 80,629 45,961 34,668 478,487 39,772 75.4%
S563 683,433 603,530 79,903 45,531 34,372 478,208 39,448 75.7%
S467 529,092 454,513 74,579 44,710 29,869 450,156 38,851 92.4%
S474 525,308 451,414 73,894 44,211 29,683 446,808 38,494 92.4%
S521 529,110 454,715 74,395 44,474 29,921 450,188 38,884 92.4%
S523 581,330 505,061 76,269 45,163 31,106 500,500 41,167 93.2%
S547 529,291 454,915 74,376 44,490 29,886 450,085 38,905 92.4%
S576 527,896 453,762 74,134 44,379 29,755 449,108 38,612 92.4%
S594 558,307 485,758 72,549 42,137 30,412 373,086 31,204 72.4%
S625 555,027 483,220 71,807 41,651 30,156 372,931 31,133 72.8%
S629 560,570 487,576 72,994 42,382 30,612 374,965 31,388 72.5%
S631 555,702 483,678 72,024 41,857 30,167 372,691 30,791 72.6%

Figure 2. Genomic landscape of predicted genes, secreted proteins with detectable expression level,
and genetic variations across 12 Pt isolates represented by the Circos plot of the top 48 contigs ranked
by contig length (75.3% of the Pt104 genome). Tracks from outside to inside are: (1) contigs; (2)–(5)
density of gene, secreted protein (SP), SNP (single-nucleotide polymorphism), and InDel (insertion or
deletion) in nonoverlapping 100 kb windows. Each major tick on the contig track is for 1 Mb length.

Based on the SNPs detected across the whole-genome, a phylogenetic tree was inferred (Figure 1B).
The topology of the phylogenetic tree was consistent with the putative relatedness of the isolates derived
from the previous phenotype study (Figure 1A,B). Both the phylogenetic tree and the dendrogram
derived from virulence profiles showed three distinct clades, and each clade comprised the same set
of isolates.

3.4. Functional Impact of Small Genomic Variants

To evaluate the functional impact of small genetic variants, the variants were annotated using the
Bioconductor package VariantAnnotation [54]. Of the total genomic variants identified, 79,896–104,269
(about 15.2%) were located within a coding region, covering 15,560–17,989 genes (Table 3). Variants
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within a coding region were classified into four types, namely, SY, NSY, frameshift (InDels causing
frameshifts whose sizes were not divisible by three), and nonsense (premature stop codons). Among the
12 isolates, the average counts for each type as aforementioned were 27,806, 49,615, 7711, and 1379,
respectively. Excluding SY variants, which did not result in an amino acid change, all other variants
may have functional impact; all were, therefore, inspected further in the subsequent analysis of genomic
pairwise comparisons. Interestingly, although the numbers of coding variants varied, the ratios of
coding variants vs. total variants remained almost the same across the 12 isolates. This was also true
for the ratios of nonsynonymous and synonymous variants vs. coding variants.

Table 3. Summary of the functional impacts of small genomic variants in the 12 Pt isolates.

Isolate Coding
Variants

Percentage of
Coding Variants

Genes
Covered

Synonymous
Variants

Nonsynonymous
Variants

Frameshift
Variants

Nonsense
Variants

S365 104,269 15.2% 17,989 33,534 60,875 8136 1724
S563 103,663 15.2% 17,938 33,392 60,528 8036 1707
S467 80,511 15.2% 15,681 25,843 45,740 7734 1194
S474 79,896 15.2% 15,597 25,748 45,298 7634 1216
S521 80,514 15.2% 15,682 25,939 45,630 7747 1198
S523 88,416 15.2% 16,834 28,584 50,655 7788 1389
S547 80,496 15.2% 15,686 25,865 45,737 7688 1206
S576 80,238 15.2% 15,655 25,745 45,635 7647 1211
S594 84,957 15.2% 15,567 27,235 48,775 7521 1426
S625 85,022 15.3% 15,575 27,359 48,694 7543 1426
S629 85,340 15.2% 15,628 27,281 49,085 7544 1430
S631 84,818 15.3% 15,560 27,149 48,727 7516 1426

3.5. Small Genomic Variations Correlated with Avirulence/Virulence Phenotype

Paired comparisons between avirulent and virulent isolates were designed based on phylogenetic
relatedness and contrasting pathogenicity for the resistance genes Lr1, Lr15, and Lr24 (Figure 1).
For AvrLr1, four paired avirulent versus virulent comparisons were selected: S594 vs. S629, S625 vs.
S629, S594 vs. S631, and S625 vs. S631. Similarly, for AvrLr24 and AvrLr15, four (S467 vs. S547, S474 vs.
S547, S521 vs. S547, and S576 vs. S547) and three (S467 vs. S523, S474 vs. S523, and S365 vs. S563)
paired comparisons were selected, respectively.

To detect candidates for each Avr gene, the SP genes covering differential variants with functional
impact within each pairwise comparison were selected, then these selected SP genes were examined
across pairwise comparisons and those showing presence across all pairwise comparisons were
considered as candidate avirulence genes. For example, for AvrLr15, there were 451 differential variants
located within 237 SP genes between S467 and S523, 414 differential variants within 239 SP genes
between S474 and S523, and 214 differential variants within 89 SP genes between S365 and S563
(Supplementary File S4). Intersecting these three sets of genes resulted in 38 candidates for AvrLr15.
Similarly, for AvrLr1 and AvrLr24, genomic pairwise comparisons detected 27 and 40 candidates,
respectively. For the candidates of AvrLr1, AvrLr15, and AvrLr24, 44–58% were identified by NSY,
5–22% by frameshift, and 33–38% by mixed types (e.g., a combination of NSY and frameshift)
(Supplementary File S5).

3.6. Copy Number Variations across the Pt Isolates

Compared to small genomic variants (SNPs and InDels), genome-wide CNVs spanned larger
regions and represent a different layer of genomic variation that may contribute critically to fungal
pathogenicity. The Bioconductor package cn.MOPS, a central CNV identification tool capable of
detecting the digitized copy number of genomic regions and simultaneous analysis of multiple isolates,
was used to examine genome-wide duplications and deletions across the 12 Pt isolates [57]. A total
of 307–2235 CNVs were detected across these isolates (Table 4). The CNVs detected in S594, S625,
S629, and S631 are depicted in Figure 3. The total size of CNVs had a broad range from 1,997,415 to
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10,609,561, corresponding to 1.4% and 7.5% of the reference assembly. The total numbers and sizes of
CNVs were similar within each clade and varied between clades across the 12 isolates (Figure 1, Table 4),
which again confirmed the putative relatedness of the isolates. Out of the total CNVs identified,
44.8–50.2% spanned gene-encoding regions and there were 385–2039 CNV-spanned genes (i.e., genes
overlapped by CNVs) per genome. Out of the total CNV-spanned genes in each isolate, 16–69 were
predicted SP-encoding genes.

Table 4. Summary of copy number variations (CNVs) in the 12 Pt isolates.

Isolate CNV
Count

CNV Median
Size (bp)

CNV Total
Size (bp)

Percentage of Bases
of Reference

Overlapping-
Gene CNVs

Overlapping-SP
Gene CNVs

Affected
Genes

Affected
SP Genes

S365 2231 1800 10,609,561 7.5% 1021 59 2039 69
S563 2235 1800 10,507,349 7.5% 1018 58 2014 67
S467 307 2100 2,381,715 1.7% 154 13 428 18
S474 324 2100 2,342,069 1.7% 155 12 432 17
S521 318 2100 2,202,295 1.6% 152 12 389 16
S523 324 1800 1,997,415 1.4% 149 10 385 16
S547 328 2100 2,418,223 1.7% 147 16 410 24
S576 310 2100 2,247,015 1.6% 152 13 407 18
S594 1713 2100 9,297,278 6.6% 819 52 1731 63
S625 1692 2100 9,263,378 6.6% 824 56 1736 68
S629 1688 2100 9,207,278 6.6% 804 54 1710 66
S631 1704 2100 9,066,903 6.5% 807 50 1692 61

Figure 3. Genomic landscape of detected CNVs (copy number variations) for Pt isolates S594, S625,
S629, and S631, which comprised the four isolates used to identify candidates for AvrLr1. Tracks from
outside to inside are: (1) contigs and (2)–(5) CNV locations for S594, S625, S629, and S631. The height of
each point represents the related copy number value. Red/green/blue, respectively, indicates the copy
number is greater than, equal to, and less than 2. Each major tick on the contig track is for 1 Mb length.

3.7. Copy Number Variations Correlated with Avirulence/Virulence Phenotype

To identify genes spanned by differential CNVs that may correlate with a given Avr gene,
we compared the CNVs using the same isolate groups constructed for SNP and InDel comparisons
as aforementioned. For AvrLr1, the CNV comparison was performed between isolates S594, S625,
S629, and S631, revealing the presence of 511 differential CNVs in these four isolates. Out of these
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differential CNVs, 198 CNVs overlapped with gene coding regions, which affected 363 genes in total.
Of these 363 CNV-affected genes, 14 genes were SPs, which were identified as the candidates for AvrLr1
(Supplementary File S6). Similarly, for AvrLr24, 707 differential CNVs were found across isolates S467,
S474, S521, S576, and S547, and 323 CNVs spanned the gene coding regions. A total of 31 SP genes
harbored by these differential CNVs were identified as candidates for AvrLr24. A CNV that overlapped
an SP gene is illustrated in Figure 4. For AvrLr15, differential CNVs were derived from two subgroups,
S467, S474, and S523 as one subgroup and S365 and S563 as the other, and 1003 differential CNVs were
identified. A total of 29 SP genes were detected as the candidates for AvrLr15 (Supplementary File S6).

Figure 4. An illustration of a CNV detected at region 1,645,501–1,647,900 of contig 000008F. Isolate S547
(the red line) had the copy number 5 (copy number gain), and the other 11 isolates (grey lines) had the
normal copy number 2. The candidate GN104ID162_006610 for AvrLr24 was identified by this CNV
(Supplementary File S6). The x-axis represents the genomic position, and the y-axis represents (A–D)
normalized read counts, read count ratios, local assessment scores, and CNV calls produced by the
segmentation algorithm [57].

3.8. Final Candidate Avirulence Genes and Their Biological Annotations

By integrating the results derived from comparisons of small genomic variants and CNVs,
we identified 40, 64, and 69 candidates for AvrLr1, AvrLr15, and AvrLr24, respectively (Table 5).
A previous transcriptome study using Pt Race 1 as the reference genome reported one candidate
(PTTG_25509) for AvrLr24 [24]. However, no orthologs of the Pt Race 1 PTTG_25509 gene were
found in Pt104. The likely reason for this is the differences between the short-read based genome
assembly of Pt Race 1 for an American isolate and the long-read based genome assembly of Pt104
for an Australian isolate. Using LOCALIZER v1.0.4 [39] and ApoplastP v1.0.1 [40], the locations
of 17–34 candidate effectors in the plant cell could be predicted as following: 4–13 in the apoplast,
2–7 in the chloroplast, 2–3 in the mitochondrion, 6–10 in the nucleus, and 2–6 in multiple locations
(e.g., in chloroplasts, mitochondria, and nuclei) (Supplementary File S7). The biological functions of
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candidate avirulence genes were further inspected based on the Pt104 annotation using databases such
as InterProScan (a database of protein families, domains and functional sites), MEROPS (peptidase
database), and transcription factor (TF) families (Supplementary Files S8 and S9) [27]. For each Avr
gene, 22–28% of the candidates could be annotated. The biological annotations of candidate avirulence
genes are further discussed in the following section.

Table 5. Summary of candidates identified by single nucleotide polymorphism (SNP)/insertion/deletion
(InDel) and CNV for AvrLr1, AvrLr15, and AvrLr24.

Avr Gene SNP/InDel Candidates CNV Candidates Overlapped Candidates Final Candidates

AvrLr1 27 14 1 40
AvrLr15 38 29 3 64
AvrLr24 40 31 2 69

4. Discussion

The leaf rust fungus Pt is the most widely distributed wheat rust pathogen worldwide and is
responsible for most of the wheat crop yield loss arising from rust [1]. Despite the significance of leaf rust,
our understanding of Pt-wheat interactions related to pathogenicity as well as the genomic resources
available for this pathogen remains limited. In the present study, we generated whole-genome sequence
for 12 Pt isolates and RNA sequence for a further three Pt isolates and carried out an integrated study
that simultaneously analyzed gene expression, SNP, InDel, and CNVs in relation to virulence profile,
and identified 40, 64, and 69 candidates for AvrLr1, AvrLr15, and AvrLr24, respectively. This study has
not only provided important new genomic resources for research into Pt but also established a practical
framework of integrated analysis from multiple genomic aspects to explore candidate avirulence genes.

The high-quality genome assembly and annotation of the founding isolate Pt104 provides a
good foundation for accurate genotyping [27]. Furthermore, careful selection of isolates with similar
genetic background with contrasting virulence that differ only on one or two host R genes minimized
differences not related to pathogenicity and greatly assisted the effective identification of candidate
avirulence genes. AvrSr50 was successfully identified using this approach, by comparing an isolate
with virulence for Sr50 (Pgt632) with a very closely related avirulent isolate Pgt279 [25]. This approach
was similarly used in AvrLr20 mining using 10 pairs of isolates differing in avirulence/virulence only to
Lr20 [23], and in identifying candidate avirulence genes in P. hordei for the resistance genes Rph3, Rph13,
and Rph19 using five stepwise mutant isolates within a single putative clonal lineage [28]. In this study,
for Lr1, all four isolates S594, S625, S629, and S631 within the top clade of the phenotype dendrogram
(Figure 1A) were selected. For Lr24 and Lr15, pairwise comparisons were both constructed by virulent
isolates (S547 and S523, respectively) and closely related avirulent isolates within the middle clade of
the dendrogram. However, as the selected pairs for Lr15 also contained covariates of AvrLr20 and
AvrLr23 (Figure 1A), an additional pair of S365 vs. S563 from the bottom clade was added to diminish
this cofounding effect.

Genome-wide comparisons were made for the 12 Pt isolates by mapping the Illumina sequencing
reads of these pathotypes to the Pt104 genome. Across these isolates, the median mapping rate
was 91% and the mapping rates ranged from 83% to 93% except for the isolate S523 (75%) (Table 1).
The improvement of this mapping rate over that of our study on AvrLr20 [23] based on the Pt Race 1 [58]
reference genome is likely due to the higher quality of our Pt104 assembly and the closer relatedness of
the isolates studied to the isolate used for the Pt104 reference.

Based on the genome-wide SNPs identified, a phylogenetic tree was constructed (Figure 1B).
The overall topology of this phylogenetic tree is consistent with the dendrogram showing the relatedness
of these isolates based on virulence (Figure 1A), with three clades comprising the same set of isolates.
This observation fully supports the hypothesis that these isolates have evolved most likely by simple
step mutations from founding isolates [15]. Furthermore, the three clades in the phylogenetic tree
also showed consistent distinctions in mapping and variant statistics. For example, for each of the
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three clades from top to bottom (Figure 1B), the mapping percentages of the reference genome were
about 98%, 99%, and 97%, respectively (Table 1), and the variant heterozygosity rates were about 75%,
92%, and 72%, respectively (Table 2). This consistency between the phylogeny and variants statistics
clearly indicated that the inferred phylogenetic tree captured the overall genetic features across the
12 Pt genomes.

In the present study, the numbers of SNP and InDel variants detected across the Pt isolates were
451,414–606,306 and 71,807–80,629, respectively (Table 2). The total numbers of SNPs identified in this
study are higher yet still comparable to the previously reported total numbers of SNPs ranging from
329,300 to 446,048 in a different panel of 20 Pt isolates [23]. Consistent with the improved mapping rate,
the higher numbers of SNP detected are most likely due to the better quality of the Pt104 assembly and
the closer relatedness of the isolates studied to the reference isolate. Out of the total variants identified,
72.4–93.2% were in heterozygous state (Table 2), which is consistent with our previous report for a panel
of 20 Pt isolates with heterozygosity rate of 72–87% [23]. As aforementioned, among the 12 Pt isolates
used here, the percentages of heterozygosity were similar within each clade of the phylogenetic tree
and varied between clades. Thus, the higher end of 93.2% heterozygosity as compared to our previous
study may reflect some intrinsic differences in the Pt genomes between various clades. By including
both homozygous and heterozygous polymorphisms, the functional impact of the genomic variants
was annotated (Table 3) and the subsequent analysis then focused on the SP genes harboring differential
variants with functional impact (Supplementary File S4). Differential variants derived from pairwise
comparisons based on contrasting virulence profiles led to the identification of 27, 38, and 40 candidates
for AvrLr1, AvrLr15, and AvrLr24, respectively (Figure 5).

Figure 5. Venn diagrams for candidate avirulence genes identified by SNP/InDel and CNV.
(A–C) demonstrate the intersection of candidates derived from SNP/InDel multiple pairwise
comparisons for AvrLr1 (27), AvrLr15 (38), and AvrLr24 (40), respectively. (D–F) demonstrate the final
candidates combined from SNP/InDel comparison and CNV detection for AvrLr1 (40), AvrLr15 (64),
and AvrLr24 (69), respectively.
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For Avr gene identification, there is no one-size-fits-all protocol as the exact mechanism underlying
virulence acquisition is unknown and an Avr gene could be altered by any one or more of several
diverse mechanisms such as amino acid mutation caused by SNPs and DNA segment deletion arising
from CNVs. In pathogens of animals and plants, it has been shown that CNVs can be important
contributors to pathogenic and phenotypic diversity such as virulence [29,59,60]. For example, CNVs at
the Avr1a and Avr3a loci were detected among different strains of the oomycete Phytophthora sojae that
were related to altered virulence and evasion of host immunity [61]. Given the significance of CNV in
fungal pathogenicity, the present study integrated CNV analysis to complement our small genomic
variants (SNPs and InDels) analysis for candidate avirulence gene mining.

The total CNVs detected across the Pt isolates ranged from 307 to 2235, and the median size of
CNV was about 1800–2100 bp. Like SNP/InDel variation, the CNV statistics (Table 4) were distinct
between the three clades in the phylogenetic tree. For example, for each clade from top to bottom
(Figure 1A), the total CNV counts were about 2200, 300, and 1700, respectively and the percentages of
bases of the reference genome were 7.5%, 1.7%, and 6.6%, respectively (Table 4). When SNP/InDel
and CNV variations were inspected together (Tables 2 and 4), the extend of CNV variation seemed
to be correlated to the degree of SNP/InDel variation, both of which consistently showed distinct
patterns between the clades of the phylogeny (Figure 1B). In contrast, a previous study on the genomic
variation of wine yeast strains showed that although genetic diversity in the form of SNPs was
low, CNV diversity was substantial and impacted on important biological functions associated with
adaptation to the fermentation environment [30]. While this yeast study demonstrated that even when
the SNP level is low, the CNV could be abundant, our study revealed substantial variation at both
levels. Taken together, our and previous research have highlighted CNV as a substantial contributor to
the genomic diversity, which warrants detailed examination independent of SNPs/InDels.

Out of the total CNVs identified, 44.8–50.2% CNVs spanned gene-encoding regions and 2.6–4.9%
CNVs covered SP-encoding genes (Table 4). In total, 385–2039 genes were overlapped with CNVs per
isolate. Although the total numbers and sizes of CNVs differed across the isolates, the percentage
of CNVs overlapping either genes or SP genes was similar across the isolates (Table 4). For the
identification of candidates for each Avr gene, within a comparison group CNVs were detected as
differential when the copy number differed between avirulent and virulent isolates. For AvrLr1, AvrLr15,
and AvrLr24, 14, 29, and 31 SP genes were identified as candidates, respectively (Supplementary File S6).
Out of these CNV-derived candidates, only a couple overlapped with the SNP/InDel-derived candidates,
which again implied that CNV could independently contribute to the genomic variations and thus
should be integrated as an indispensable component for Avr gene mining. When the results from
these two approaches were combined, the final number of candidates for AvrLr1, AvrLr15, and AvrLr24
expanded to 40, 64, and 69, respectively (Table 5).

Effectors can be localized in the apoplast, cytoplasm, and nucleus. The locations of candidate
effectors can be predicted using LOCALIZER, which can predict the locations of chloroplasts,
mitochondria, and nuclei, and ApoplastP, which can differentiate between apoplast and non-apoplast
locations. For the 40, 64, and 69 candidate effectors for AvrLr1, AvrLr15, and AvrLr24, the locations of
17, 33, and 34 were predicted, respectively. It was also noted that for each Avr gene only one or two
candidate effectors had predicted locations by both LOCALIZER and ApoplastP, conflicting with each
other. These conflicting predictions were tagged as “Uncertain” (Supplementary File S7).

Based on the InterPro annotation, we further inspected the biological functions of the candidate
avirulence genes Supplementary File S9). For example, the candidate GN104ID162_017346 for AvrLr24
was annotated with a Znf_TFIIS domain. TFIIS is a kind of eukaryotic transcription elongation factor
that helps in synthesizing long RNAs [62]. GN104ID162_017346 was predicted as a nuclear effector by
LOCALIZER, which was consistent with this functional annotation. GN104ID162_017346, identified
by SNP/InDel, harbored three mutations: one SNP at position 920,126 and two frameshift insertions at
positions 920,297 and 920,299 (Supplementary File S4). The two insertions only existed in the virulent
isolate S547 in the four pairs (S467 vs. S547, S474 vs. S547, S521 vs. S547, and S576 vs. S547), which may
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account for the virulence of isolate S547. For the candidate avirulence genes identified in this study,
all the annotation information generated (location, functional annotation, and effector probability) will
facilitate biological validation studies in the future (Supplementary Files S8 and S9).

A limitation of this study that should be noted is that the isolate Pt104 on which the reference
genome is based is virulent on Lr1, and the prediction of candidates for AvrLr1 assumes that AvrLr1
is only partially deleted in Pt104. In future studies, an isolate containing AvrLr1 will be sequenced
using long-read sequencing technologies to build a new reference genome assembly to validate the
candidates for AvrLr1.

Given the complexity of fungal genomes and the limited knowledge of the genetic mechanisms
underlying the development of virulence in fungal pathogens, more and more integrated approaches
have been developed for effector detection. One such integrated approach is to combine genome-wide
association analysis with variant comparisons, such as our study on AvrLr20 mining [23], a previous
study on AvrPm3 in powdery mildew [63], and a recent study using 30 Pst isolates derived from
ethyl methanesulfonate mutagenesis [21]. Although these association analyses still focus on genomic
variations at the level of SNPs and InDels, our study is the first to integrate the major type of structure
variation, CNV, into comparative analysis at the genome-wide scale in a rust pathogen. This CNV
approach yielded candidates showing low levels of overlap with those derived from SNP/InDel,
which again demonstrated that CNV was a relatively independent layer of genomic variation that
could contribute to rust pathogenicity as discussed previously. In summary, integrative approaches
that combine multiple layers of data analysis may more accurately explore candidate avirulence genes
in the obligate biotrophic fungus.
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