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a b s t r a c t

Covid-19 has become a deadly pandemic claiming more than three million lives worldwide. SARS-
CoV-2 causes distinct pathomorphological alterations in the respiratory system, thereby acting as a
biomarker to aid its diagnosis. A multimodal framework (Ai-CovScan) for Covid-19 detection using
breathing sounds, chest X-ray (CXR) images, and rapid antigen test (RAnT) is proposed. Transfer Learn-
ing approach using existing deep-learning Convolutional Neural Network (CNN) based on Inception-v3
is combined with Multi-Layered Perceptron (MLP) to develop the CovScanNet model for reducing
false-negatives. This model reports a preliminary accuracy of 80% for the breathing sound analysis,
and 99.66% Covid-19 detection accuracy for the curated CXR image dataset. Based on Ai-CovScan, a
smartphone app is conceptualised as a mass-deployable screening tool, which could alter the course
of this pandemic. This app’s deployment could minimise the number of people accessing the limited
and expensive confirmatory tests, thereby reducing the burden on the severely stressed healthcare
infrastructure.
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. Introduction

Covid-19, declared as a global pandemic on 11th March 2020
y the World Health Organisation (WHO) [1], has severely af-
ected the global population and brought the world to a stand-
till [2–4]. This airborne disease, known to spread from human
o human via droplets and surface contamination, has affected
illions from various age brackets. The Centre for Disease Pre-
ention and Control (CDC) has estimated the fatality rate of the
isease at 1.4% [5], where persons above the age of seventy-five
re affected the most and those below the age of 19 contribute a
ower percentage of the total cases [6]. As of 30th December 2020,
his zoonotic virus has claimed over 1.8 million lives worldwide,
ith the US alone accounting for 341,000 deaths [7]. During
he first wave of Covid-19, there were no licensed vaccines or
herapeutics available. There are several therapeutics in phase III
linical trials and more than 20 vaccines in development against
he SARS-CoV-2 [8,9].

There are several testing methods for Covid-19—
asopharyngeal swab test, Rapid Antigen Test (RAnT), and RT-PCR
reverse transcription-polymerase chain reaction) [10–12]. An
RT-PCR test is a well-established type of NAAT (Nucleic Acid Am-
plification Test), the current Gold standard for detecting Covid-
19 [12]. This test directly detects the viral genome in the collected
nasopharyngeal swab sample through a complex sequence of
biochemical reactions to convert the RNA to DNA via Reverse
Transcription and magnify the complementary DNA strands of
the virus. This test indicates Covid-19 infection by detecting the
specific genetic material of the virus. Though this test has the
highest accuracy and precision, it is scarcely available, expen-
sive, and time-consuming. It also requires expert lab technicians
and expensive infrastructural facilities to safely carry out the
sample testing protocol [11,13]. These limitations restrict its
use as a widely available confirmatory test, thus opening up an
opportunity for other rapid tests to detect Covid-19.

During the pandemic, overwhelming Covid-19 positive cases
have resulted in severe stress on existing healthcare facilities
owing to a higher daily inflow of Covid-19 patients [14]. With
a population of 7.8 billion, the world has witnessed a notice-
able deficiency of Covid-19 testing kits, coupled with restricted
access to healthcare [14]. Developing and underdeveloped na-
tions worldwide are facing a crisis, where the urgent acquisition
of cost-effective diagnostic solutions and novel portable testing
mechanisms is required [13,15].

A few studies have proposed technological tools like smart-
phone applications to provide e-diagnosis to patients [17–19].
60% of the global population use the internet, and 67% possess
smartphones [20], making smartphone applications a handy tech-
nological tool for the Covid-19 pandemic, as they can provide ac-
cessible healthcare and e-diagnosis to large populations from the
comfort of their homes [21]. Many Covid-19 specific diagnostic
applications are already available for smartphone
users [22–28].

Given the recent progress in deep-learning models for medi-
cal diagnosis in the context of the opportunities and challenges
posed by Covid-19 is depicted in Fig. 1. Medical image inspec-
tion was earlier performed manually by trained radiologists and
physicians [16]. With access to organised, labelled, and clean
images from available datasets online, these experts envisioned
the long-term benefits of utilising computational technology and
artificial intelligence for efficient image classification and pre-
liminary medical diagnosis [16,29]. Recent trends in artificial
intelligence and computer-aided diagnosis have led to a prolifer-
ation of studies that recognise Deep-Learning (DL) as a useful tool
in medical image analysis [29]. The Convolutional Neural Network
(CNN), among several deep-learning algorithms, performs quickly
2

and expertly in pattern recognition by eliminating the need for
multiple training parameters for the network and pre-processing
images. CNN is widely used for visual recognition tasks, as con-
volutions are performed using deep-learning architectures [30].
CNN has a self-learning capacity that may result in higher classi-
fication accuracy with techniques such as transfer learning [29].
Transfer learning further enhances image classification accuracy
and efficiency, even while utilising a smaller dataset [31].

In the context of Covid-19, the use of deep-learning algorithms
has led to various preliminary medical diagnostic methods using
image analytics to identify abnormalities in chest X-rays, CT
Scans, Ultrasounds, and cough sound patterns [31–33].

1.1. Chest X-ray

The use of X-rays in image analytics is gaining popularity
and forms the basis of image classification for training neural
networks [32]. Further, X-rays can identify patient attributes and
specifics such as gender, bone-age, and diseases [31]. The last
two decades have seen a growing trend towards medical image
analysis for early detection and diagnosis utilising chest X-ray,
CT Scans, and ultrasound [32]. Deep-learning has been chosen as
the optimal tool for the classification of medical images obtained
from these radiological apparatuses, given their high-resolution
image acquisition [16,31].

1.2. Sound based medical diagnosis

For the sound-based medical diagnosis, a few studies [33,37–
40] have utilised cough sounds for Covid-19 diagnosis. Medical
personnel followmanual methods of breathing sound capture and
diagnosis [32]. In a pandemic scenario, manual testing for medical
diagnosis is neither feasible nor safe given the considerable inflow
of patients who can be the virus’s potential carriers [41]. In
these situations, relying on self-diagnosis and telemedicine with
preliminary symptom assessment is an alternative to manual
testing [41,42]. Breathing analysis utilises respiratory abnormali-
ties like crackles (coarse and fine) and wheezes of patients as the
basis for viral detection over other breathing sound abnormalities,
as most Covid-19 patients exhibit pneumonia and asthma, which
are linked to crackling and wheezing [43]. A brief overview of
sound-based abnormalities utilised for medical diagnosis is listed
in Fig. 2.

1.3. Rapid antigen test

Doctors recommend using the rapid antigen test for pre-
screening purposes [11]; these tests are FDA approved—Food
and Drug Administration is a federal organisation in the United
States, which promotes health services by regulating pharmaceu-
ticals, vaccines, cosmetics, diagnostic tests, food, and biomedical
devices—and provide results in a few minutes, while also pro-
tecting others from potential exposure. Rapid antigen tests use
nasopharyngeal swabs (from the nose and throat) to collect sam-
ple fluid, and immediately detect proteins of SARS-CoV-2 [11]. At
∼6.16 USD, the Rapid antigen test is economical and can cater
to a large population at a given time [44]. The detection method
can specifically identify infectious agents while being conducted
from the comfort of one’s home. The rapid antigen testing kits,
now in abundance, are being sold worldwide through online
platforms [45].

Section 2 discusses the related works and the research high-
lights of this study. The methodology adopted in this paper is
discussed in Section 3. Section 4 discusses the methodological
framework for a deep-learning-based CovScanNet model. It also
elucidates a multimodal decision-making framework named as
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Fig. 1. A depiction of opportunities and deficits in medical diagnosis.
Source: Adapted from [16].
Fig. 2. Sound-based medical abnormalities [34–36].
i-CovScan. Section 5 presents the results and validation for
he CovScanNet model on Covid-19 datasets. A smartphone app
is developed to implement Ai-CovScan. Section 6 discusses the
analysis and implementation of the multimodal framework, its
advantages, and limitations. Finally, the conclusion and future
scope are presented in Section 7.

2. Related works

Existing research recognises the critical role of cough sounds
for Covid-19 screening and diagnosis [37]. A study was under-
taken, where ten Covid-19 patients’ audio recordings were as-
sessed using digital signal analysis [38]. It was revealed that
signal analysis proved the reliability of common abnormalities
in breathing sounds such as crackles, vocal resonance and mur-
murs for Covid-19 detection [38,39]. The study aimed to fill the
gap between medical data and scanning for viral presence [39].
Recently, researchers proposed a scalable screening tool with
a three-tiered framework for Covid-19 detection using cough
sounds [40]. This three-classifier approach used a deep-learning-
based multi-class classifier using spectrogram [40]. The cough
detection algorithm differentiates Covid-19 coughs from non-
Covid-19 coughs with a reported accuracy of 97.91% [40]. A.
Belkasem et al. proposed an early diagnosis tool that records
users’ body temperature, coughing and airflow using sensors for
symptom identification [45]. The recorded user data is converted
into health data and fed into an ML module for further processing
and validation. The AI framework identifies and classifies various
respiratory illnesses linked to the Covid-19 with a smartphone
application that also provides e-diagnosis [45]. Another study
3

developed a model that identifies differences among Covid-19
coughs and non-Covid-19 coughs, and uses a deep-learning algo-
rithm on a medical, demographic dataset of 150 patients’ cough
sounds and audio segments. Using digital signal processing (DSP),
cough features were re-boosted from natural cough sounds. The
reported accuracy of the model was 96.83% [33]. A study col-
lected Mel-Frequency Cepstral Coefficients (MFCC) [46], which
used automatic speech recognition (ASR) and deep-learning algo-
rithms [46] to obtain correlation coefficients of individual coughs,
breathing sounds, and voices [46]. It is now well established
from various studies that heavy cough sounds indicate respiratory
illnesses such as Covid-19 that severely affects the lungs.

The primary cause of death due to Covid-19 was identified as
pneumonia, a condition in which inflammation and fluid build-up
in the lungs lead to difficulty in breathing [19,47]. A collec-
tion of CT scans and chest X-rays could categorise Covid-19
patients’ respiratory abnormalities more accurately; and differ-
entiate amongst mild, moderate and severe cases [48]. Recent
trends indicate rapid progress in developing machine learning
algorithms to recognise patterns from medical diagnostic images
using image analytics. Studies have shown that healthy lungs
usually show up dark in an X-ray or CT Scan, while Covid-
19 X-ray images show a white haziness [49]. A few studies
have used CNN and deep-learning to use chest X-ray analysis
to categorise images into four classes—normal, viral-pneumonia,
bacterial-pneumonia, and Covid-19 images [2]. Recently, there
has been considerable literature [50–52] on the theme of using
chest X-ray images for Covid-19 detection. It has been observed
that ‘Deep Convolutional Neural Networks’ are well-recognised
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y researchers for Covid-19 detection [49]. H. Panwar et al. pro-
osed a ‘nCOVnet’ model using a CNN-based approach for positive
r negative detection under 5 s [50]. With a positive detection
ccuracy of 97% and sensitivity of 97.62%, the model was trained
n 142 images of normal X-rays from a Kaggle dataset [53]. The
etwork architecture of COVID-Net, a Deep Convolutional Neural
etwork model [2] by L. Wang, uses lightweight residual projec-
ion expansion [52]. The model recorded a Covid-19 sensitivity of
0% and a Covid-19 positive predictive value (PPV) of 80%. Studies
f Inception-v3 models by A Abbas et al. [51] and AI Khan et al. [2]
hows the importance of deep-learning and transfer learning for
iral detection. The former proposed a CoroNet framework pre-
rained on an ImageNet dataset based on ResNet50, Inception-v3
nd InceptionResNet V2. An accuracy of 89.5% was reported with
ower false negatives and higher recall values. The latter [2] uses
DCNN-based Inception-v3 model to classify chest X-ray images

rom the GitHub repository [2,51]. This model has a classification
ccuracy of more than 98%. Several attempts have been made to
etect Covid-19 using CT Scans [54]. A recent study used AI-based
mage analysis to generate a ‘‘corona score’’ with a 98.2 per cent
ensitivity and 92.2 per cent specificity [55]. The findings have
dentified CT as a valuable tool in detecting and quantifying the
isease [50,51,54]. [56] proposes the diagnosis of Covid-19 from
XR images using an optimised CNN architecture by automatic
uning of hyper-parameters yielding very high classification accu-
acy. Deep LSTM model proposed in [57] presents an alternative
pproach to detecting Covid-19 using MCWS images rather than
aw images to obtain high accuracy for 3 class classification.
federated learning framework using VGG16 & ResNet50 as a

ecentralised data sharing option without compromising data
rivacy to improve data quality is proposed by Feki et al. [58].
Currently, one of the most significant discussions on Covid-

9 detection is the feasibility of using multimodal frameworks.
esearchers have followed a CNN-based multimodal approach
hrough transfer learning to detect Covid-19 by pre-processing
hest X-ray images [59], CT scans, and ultrasound images [51].
long with unwanted noise removal, the images are filtered ac-
ording to type. The study revealed that ultrasound images have
better prediction accuracy (100%) compared to X-ray (86%) and
T scans (84%) [32].
However, there has been little discussion about the proce-

ure of reducing false negatives using transfer learning-based
ultimodal diagnostic methods. CT scans have been used as
method of viral detection in past studies [50,51,54]. How-

ver, chest X-rays are better suited towards preliminary diagnosis
han CT-Scans considering radiation exposure [31]. CXR machin-
ry is smaller, less complicated and low-cost, and has higher
vailability worldwide [31,60]. Using a multimodal framework or
ombining multiple systems can increase any medical diagnostic
ethod’s reliability compared to using a single framework. The
ajority of the studies [33,37–40] have used cough sounds to in-
icate the viral disease and compared its results with other cough
amples [33]. A smartphone app named ResAppDx is proposed
y Moschovis et al. for the detection of respiratory illnesses in
hildren based on sound recordings obtained on the app with
proprietary algorithm named SMARTCOUGH-C 2 [18]. It has

uccessfully been deployed in hospitals as an independent adju-
icator for the disease [18]. Although one study compared cough
ounds with breathing sounds [46], very few studies [46] have
sed breathing sounds as an indicator of Covid-19. A multimodal
pproach—utilising chest X-ray (CXR) images, breathing sound
ata, and antigen testing to detect Covid-19—has not yet been
eveloped and validated.
This study set out to investigate the development of a multi-

odal framework for the rapid diagnosis of Covid-19—using CXR
mages, breathing sound data, and rapid antigen testing (RAnT)—
hat is deployed using a smartphone application. A deep-learning
4

Fig. 3. Methodology for this study.

framework, named CovScanNet, based on Convolutional Neural
Network (CNN) and Multi-Layer Perceptron (MLP) algorithm us-
ing the transfer-learning technique, is proposed for medical im-
age analysis using CXR images and breathing sound spectrograms.
Further, this paper aims to reduce the false negatives in the di-
agnosis of Covid-19, while also reducing the stress on healthcare
infrastructure via e-diagnosis. The primary research highlights of
this paper are presented below.

2.1. Research highlights

1. This paper proposes Ai-CovScan—a multimodal framework, in-
cluding breathing sound analysis, chest X-ray image analysis, and
antigen tests for detecting Covid-19—to reduce the false negatives
and increase reliability.

2. The Ai-CovScan framework works on a deep-learning model
named CovScanNet, which adopts a transfer-learning technique
using CNN, where the output from CNN is fed into an MLP model.

3. A breathing sound analysis using spectrograms is proposed
where the breathing sounds of patients at home or hospitals"- are
recorded, and the percentage of breathing sound abnormalities
are identified.

4. A chest X-ray image analysis is performed using a curated
dataset, which is further validated.

5. The system is implemented using a smartphone application as
a detection tool accessible to a large user base.

3. Materials and methods

The methodology for this study is presented in Fig. 3. Initially,
a comprehensive literature review is conducted to study the
related works. A multimodal framework—Ai-CovScan—is devel-
oped, with the proposal of a transfer-learning-based CovScanNet
model. The CovScanNet is applied to the collected/curated data
for Covid-19. The model is validated, and the results are anal-
ysed for selected evaluation metrics. Finally, a smartphone app
is envisaged to apply the Ai-CovScan framework.
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Table 1
Covid-19 Patient details.
Patient
No.

Age Gender Symptoms Vitals: SpO2,
Pulse (BPM)
average

Diagnosis
Tests

Treatment
Protocol

Date of
collection

Survival

Covid-19 Positive-Patient details
1 27 M Loss of smell and

taste, Headache,
throat pain

96, 80 RT-PCR,
Antigen

Home
quarantine

29-sept-2020 Yes

2 28 M Chest congestion,
asymptomatic

97, 72 RT-PCR Home
quarantine

29-sept-2020 Yes

3 82 F Fever, Headache,
fatigue, difficulty
in breathing

95, 70 Antigen Home
quarantine

27-sept-2020 Yes

4 48 F Fever, Severe
Headache, fatigue,
loss of smell and
taste

96, 73 Antibody Home
quarantine

30-sept-2020 Yes

5 56 M Asymptomatic 96, 75 RT-PCR Home
quarantine

04-oct-2020 Yes
3.1. Ai-CovScan framework

3.1.1. Ai-CovScan: System description
The Ai-CovScan framework is a multimodal approach to find
robust and reliable solution for rapid detection of Covid-19
sing breathing sounds, CXR images, and combining it with the
esults from a disease-specific rapid antigen test. Fig. 4 presents
he system description for the Ai-CovScan framework. Ai-CovScan
ramework has two components: the breathing sound analysis
ramework (Fig. 5) and the chest X-ray image-analysis framework
Fig. 6). These components exhibit the workflow for data collec-
ion, data processing, the development of the transfer learning
odel (CNN+MLP), validation, and implementation through a
martphone app.

3.1.2. Implementation of Ai-CovScan framework
The Ai-CovScan framework is implemented through a smart-

phone app named Ai-CovScan. The backend of this app is coded
sing Java, while the frontend is developed using XML with An-
roid Studio. The prime focus of this app is to provide easy
ccessibility to any individual as an alternate mode of testing for
espiratory diseases, such as the Covid-19, at the comfort of their
iving premises. For realising this vision, the app implements a
hree-tier detection model to be directly used by individual users,
s shown in Fig. 4.
The data collection, curation (or pre-processing), and pro-

essing methodologies for breathing sound and CXR images are
iscussed in the following Sections 3.2 and 3.3. Section 3.4 dis-
usses the application of the rapid antigen test (RAnT) as an
dditional layer to the Ai-CovScan framework.

.2. Breathing sound data collection

Breathing sounds are promising biomarkers that could indi-
ate pathomorphological alterations in the respiratory system
59] arising due to Covid-19. Abnormal breathing sounds are
ften detected in patients with fluid-filled lungs or lung scarring,
ndicating pneumonia due to Covid-19 infection. An individual’s
reathing sounds can be obtained with a digital stethoscope—
eveloped using a standard stethoscope integrated with a Blue-
ooth module—or via a commercial digital stethoscope that can
ransfer data to a smartphone.

.2.1. Data sourcing
Although many datasets [53,61,62] relating to Chest radiology

mages are available online listed under various categories such
s Normal, Pneumonia, Lung cancers, and other health condi-

ions on public databases, access to Covid-19 related datasets for

5

breathing sounds were limited. The breathing abnormality sounds
available for detecting crackle and wheezes related to different
respiratory diseases are obtained from an online source [63].
Audio files are extracted from this source, and each audio file
is converted into a spectrogram video using the FFT analyzer.
This spectrogram video is segmented into spectrogram images
using FFmpeg software [64] to four seconds sample based on
the breathing cycle. The resulting spectrogram images [65] are
then used as a dataset for retraining the transfer learning model,
as shown in Fig. 7. The significant limitations of the FFmpeg
software are: — (a) the framerate and size limitations associated
with different Codecs and containers, (b) Complex and tedious
functions for the execution of the program, and (c) Lack of inte-
grated Graphic User Interface (GUI), which limits debugging and
troubleshooting.

A Preliminary breathing sound data collection of 10 individu-
als has been performed for validation. Of which, five individuals
subsequently tested positive for Covid-19. Breathing sound data is
collected for an interval of 10 to 30 s and is uploaded to an online
database [65]. Table 1 presents the symptom analysis, diagnosis,
vitals, and treatment protocol of the five covid-19 patients.

The breathing sound recording device is a custom-made digital
stethoscope assembly with an inbuilt Bluetooth module devel-
oped in an earlier study on pneumonia [44] to communicate with
the smartphone for recording the breathing sounds. The stetho-
scope placement at the most appropriate part of the body is a
critical factor [66]. The breathing sounds can be obtained from the
following positions on the patient’s body—anterior, posterior, and
tracheal. The tracheal position in the body is the ideal spot with
the patient seated; this is due to the Tracheal fluid orientation
inside the alveoli producing distinct pathomorphological sounds
for analysis [37,67], as shown in Fig. 8.

3.2.2. Data pre-processing: Breathing sound
The breathing sounds contain a mixture of several frequencies

along with noise. Performing Fourier transforms is an essential
step in analysing the acquired breathing sounds, as analysis in
the time domain is not feasible. Fourier transforms performed on
the time-domain breathing sound signals convert them to the fre-
quency domain. FFT spectrum analyser uses Fourier transforma-
tions to mathematically convert the time domain of spectrum to
frequency domain. The input to FFT analyser software is the audio
from the breathing sound module (microphone) connected via
Bluetooth. The output includes a 2D-colour mapping of frequency
in relation to time using digital signal processing.

The Fast Fourier transform (FFT) is performed to analyse the
energy distribution of the individual frames of signals in the
frequency domain, as shown in Fig. 9. Then these frequencies
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Fig. 4. System description of Ai-CovScan framework.

Fig. 5. Breathing sound analysis component of Ai-CovScan framework.

Fig. 6. X-ray image analysis component of Ai-CovScan framework.
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Fig. 7. Dataset preparation for breathing sound analysis.

Fig. 8. The positioning of the breathing sound recording module on the patient’s body.

Fig. 9. Conversion of breathing sound signals to spectrogram images using FFT.

Fig. 10. Multi-class Image Classification Schematics.
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able 2
nalysis of abnormal and normal breathing sound components in the study.
Breathing Sound
Component Analysis

Frequency-
∆y

Duration-
∆x

Range

Abnormal Normal Time Frequency

Crackles 3462.24 Hz 0.059 s 0.1–0.3 s 0–4500 Hz
Wheezes 1428.7 Hz 1.49 s 1.0–2.5 s 0–2500 Hz

Normal
Sound

variable variable 0.0–4.0 s 0–5000 Hz

are plotted to obtain a spectrogram where the differences in
the frequencies are easily recognisable. Detailed settings of the
‘FFT analyzer’ software is presented in Fig. B.1 in Appendix B.
Subsequently, deep-learning algorithms are employed to perform
image processing for recognising patterns of abnormalities using
deep CNN and MLP. Table 2 presents the frequency-∆y, duration-
x, range (time and frequency for the abnormal and normal
omponents of the breathing sound.
Breathing sound spectrograms obtained from [68] are pro-

ided as input to the Transfer learning model based on Deep
onvolutional Neural Network (DCNN) for retraining. As men-
ioned in Section 3.2.1, a dataset of breathing sound patterns
as uploaded on Mendeley data [69], which is used for further
re-processing. Breathing sound spectrograms are converted to
2D-image vector using DCNN, which forms the input to the
LP to identify abnormalities due to Covid-19 (Fig. 10). This
ransfer learning system is trained to recognise crackles (both
oarse and fine) and wheezes in the range capped at a peak
requency of 5 kHz. The spectrogram is then analysed to predict
he presence of breathing abnormalities due to Covid-19. All
pectrogram images are resized to a standard pixel dimension of
99*299, these resized images are used to obtain the 1D image
ectors via transfer learning using Inception-v3.

.3. Chest X-ray image collection

The CXR image dataset used in this study relies on multiple
ources to collate a significant number of images; primarily, 15
atasets were collected from different sources [53,61,62]. Raw
ataset is filtered for image defects, and good quality images
re uploaded to an online database [62]. The composition of a
ombined dataset comprising Chest X-ray images of different
bnormalities is presented in Table 3.
Duplicate X-ray images are removed from the combined

ataset based on pixel-to-pixel image similarity [62]. After em-
edding the images using Inception-v3 architecture, the distances
ased on cosine similarity are computed. These images are then
lustered and checked for defects—such as noise, pixelated, com-
ressed, medical implants, and so on [62]—using an unsupervised
earning algorithm, as shown in Fig. 12. During the curation pro-
ess, the clusters with image defects are removed, and a curated
ataset is derived [62]. This dataset is further split into two
arts—where 80% is used to train the model, and the remaining
0% is used to validate the proposed model.

.3.1. Data curation for CXR
The embedded images contain an array of different image

ector components, and their magnitude is computed. This im-
ge vector is computed for each image, and a cosine value is
alculated between every combination of two different images
sing Eqs. (1), (2), and (3). Let a and b be the magnitudes of the
esultant image vectors obtained for each image. These two image
ectors, a and b, are compared using the cosine formula based
n their dot product. The angle θ is the minimum for two similar
mage files, while angle θ reaches the maximum value for two
8

Fig. 11. A graph representing Cosine similarity distances (θ ) between image
vectors.

different images. A diagrammatic description of cosine similarity
distances between image vectors is shown in Fig. 11.

cos θ =
a⃗ · b⃗⏐⏐a⃗⏐⏐ |b⃗| (1)

⏐⏐a⃗⏐⏐ =

√
a21 + a22 + a23 + · · · + a2n (2)⏐⏐⏐b⃗⏐⏐⏐ =

√
b21 + b22 + b23 + · · · + b2n (3)

where ‘|a|’ and ‘|b| ’ are resultant image vectors of any two dif-
erent images—from the dataset—for which the cosine similarities
re computed. a1,a2, a3, . . . , an are the image vector components

of the reference image while b1,b2, b3, . . . , bn—are the image
vectors of the image to be compared with the reference image.

3.4. Covid-19-specific antigen test

Rapid antigen testing (RAnT) is incorporated as a disease-
specific chemical test to increase the proposed CovScanNet
model’s reliability and accuracy. The RAnT could be available for
home sample collection through the Ai-CovScan app. This test
also has limitations, such as low accuracy, temperature sensitiv-
ity, and high false-negative rate. This test should not be used as
a standalone test but could be highly beneficial with other sup-
plementary testing facilities. Hence, RAnT has been used in the
Ai-CovScan framework as an additional layer to the deep-learning
diagnostic methodologies.

The following section discusses the framework developed for
the CovScanNet model, followed by the development of the Ai-
CovScan framework for decision making.

4. Framework development

4.1. Proposed covscannet model

4.1.1. The CNN component of covscannet
Medical image analysis using deep learning requires a large

amount of training data that is challenging to acquire in the ini-
tial phases [59]. Previous studies have successfully used transfer
learning techniques to retrain existing CNN models with high
prediction accuracy [70–74]. In transfer learning, the training
data and the classification task need not be in the same domain.
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Table 3
Combined dataset and the curated dataset.
Fig. 12. Curation process using unsupervised learning for finding image defects.
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hrough this technique, highly accurate classification can be ob-
ained using a relatively small dataset. A typical CNN architecture
ontains alternate layers of convolution and pooling, as shown in
ig. 13.
In the proposed CovScanNet model, transfer learning is used

or knowledge extraction from Inception-v3 trained on ImageNet
ataset (containing 1.2 million images with 1000 classes) [76–78]
nd is applied to the target task of Covid-19 classification. The
ctivation of the penultimate layer in Inception-v3 architecture is
erformed to obtain image embedding, where images are repre-
ented as vectors. The 8×8×2048 output map from Inception-v3
s flattened to 1×1×2048 image vector, which is then fed to the
ulti-layer perceptron (MLP). This would provide the possibility

or optimising the model’s accuracy without using the conven-
ional fully connected layer. The layer distribution of CovScanNet
s—311 layers of Inception-v3, one ‘flatten’ layer, five layers of
LP—as presented in Table 4. In the Inception-v3 architecture,
onvolution layers are followed by ReLU (rectified linear unit)
ctivations [79], and the max-pooling layers, successively. The
onvolution process is given by Eq. (4).

X)lj = f (
∑
iϵGj

X
l − 1
i

∗ K l
ij + alj) (4)

The output feature map is derived using the above Eq. (4) where
X l−1

i represents local features from previous layers [59]. The
omponents Gj, f(.), alj, and K l

ij implies the input map selection,
ctivation function, training bias, and variable kernels, respec-
ively [59]. The non-linear ReLU function is used to activate the
NN layers for improving the ease-of-training and the perfor-
ance of the model. The ReLU function definition is given in
q. (5). A pooling layer is used to prevent the overfitting problem
n the CNN model. As given in Eq. (6), the pooling layer reduces
he number of computational nodes and further reduces the
omputational effort.

f(x) = max(0, x); (5)

where x is the input activation and f(x) are the output activation
of the node.

X l
= down(X l−1) (6)
j j

9

where down(.) represents the down-sampling, X l−1
i represents

local features from previous layers, and X l
j represents the output

activation of the subsequent layers.

4.1.2. The MLP component of CovScanNet
A Multi-Layer Perceptron (MLP)—a feedforward artificial neu-

ral network (ANN)—is implemented for classifying the categories
from embedded images. The input to the MLP is the embedded
images, and the output layer indicates the classes of the target
labels. The hidden layers are modified to get the required accu-
racy for the MLP. The Scikit-Learn library is used to implement the
MLP. Scikit Learn is an open-source library that includes various
machine learning algorithms such as regression, classification,
and clustering. It is built on SciPy library for data analysis and ma-
chine learning applications in the python programming language.
It also contains the ‘MLPClassifier’ class, which utilises the MLP al-
gorithm. The layers of MLP are—(a) the input layer, b() the hidden
layers, and (c) the Output Layer [59], as shown in Figs. 14, 16, and
18. The activations of the hidden layer are calculated using w1z1+

2z2 + · · · + wmzm; where zi|z1, z2, . . . , zm are the activations of
the neurons in the input layer, and {wi|w1, w2, . . . , wm} are the
ransformation weights applied to neurons in the input layers.
urther, ReLU is applied for the activation of hidden layer neurons
f the MLP, as given in Eq. (5).
A regularisation parameter ‘α’ is used to penalise the higher

agnitude weights, thereby avoiding overfitting. Increasing the
egularisation parameter ‘α’, decreases the accuracy of the model.
he only exception being α = 0.5, which has slightly higher
ccuracy than α = 0.0001 (Refer to Table C.1 in Appendix C).
n this study, α is taken as 0.0001 to avoid overfitting in the
raining data, which might be the case at α = 0.5. Furthermore,
a large value of ‘α’ signifies a complex neural network that could
be avoided by keeping ‘α’ minimal.

The model is iterated for optimisation with a maximum epoch
of 500. Epochs in the range of 400–500 are the early stopping
point [80] for avoiding underfitting, overfitting, and improving
the model’s learning. It is observed from previous studies [81,82]
that beyond this range, the generalisation error increases. The
stochastic optimisation algorithm used in this model is Adaptive
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Table 4
Layer distribution of CovScanNet (See Ref. [75]).
Sl. No. Layer type No. of layers Part of:

1 Input Layer 1
2 Convolution Layer 94
3 Batch Normalisation 94
4 Activation 94
5 Average Pooling 9
6 Max Pooling 4
7 Mixed 13
8 Concatenate 2

9 Flatten 1 (Input:8 X 8 X 2048; Output: 1 X 1 X 2048)

10 MLP Input 1
Multi Layered Perceptron (MLP) (Input: 1 X 1 X 2048; Output: 4)11 Hidden MLP 3

12 Output MLP 1

Total 317
Fig. 13. A typical Convolution Neural Network (CNN) Architecture.
Fig. 14. Multi-Layer Perceptron for CovScanNet Model.
oment Estimation (ADAM) [78]. It reduces the computational
ost and uses less memory to solve complex and large-scale
roblem in an iterative process. Eq. (7) gives the expression for
he ADAM stochastic optimisation algorithm.

n = E{Xn
} (7)

here m = moment and X is the random variable; E stands for the
xpectation of the random variable X to the power of n.
 a

10
The softmax function ensures the maximum probability in the
output layer classes, as given in Eq. (8).

softmax(y)i =
exp(yi)∑k
l=1 exp(yl)

(8)

where yi is the ith element for the input component to the softmax
nd K is the number of classification categories.
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Fig. 15. CNN model for breathing sound spectrogram based on Inception-v3.
Fig. 16. Multi-Layer Perceptron for the breathing sound component of CovScanNet.
Fig. 17. Modified CNN framework for CXR CovScanNet.
.1.3. Hyper-parameter Tuning (HT.)
The hyper-parameters for the MLP model are the number of

eurons, hidden layers, and iterations. These hyper-parameters
re tuned to improve the accuracy in the prediction of Covid-
9. The hidden layer [h1, h2, h3] and its structure are shown
n Fig. 14. The time complexity T (n) of backpropagation (of the
LP) depends on the number of training samples (n), number of

eatures (m), number of iterations (i), number of neurons(h) in
he hidden layer (k), and number of output neurons (o). The big
denotes the time complexity function (Eq. (9)).

(n) = O(n · m · hk
· o · i) (9)

he tuning related to number of hidden layers started with a
ower number of layers to minimise the time complexity and
omputational costs. The set of neurons and hidden layers are
11
chosen from the power set of A = {0, 10, 100, 200} limited to three
hidden layers. A few combinations are selected from the power
set for modelling. These selected combinations are represented
by S(A) = {[100, 0, 0], [200, 0, 0], [100, 10, 0], [100, 100, 0], [200,
10, 0], [200, 200, 0], [200,200,200]}.

The modification is such that the initial model was trained
with a single hidden layer of [100, 0, 0] and then with [200, 0,
0]. Following which, the switching to double-layer [100, 10, 0],
[100, 100, 0], [200, 10, 0] and, [200, 200, 0] is performed. After
that, switching to three hidden layers with [200,200,200] neurons
is done. This process is undertaken to avoid false negatives by
identifying the optimal combination of hidden layers that gives
the minimum number of false negatives, which increases the
recall for Covid-19. This is crucial as any false-negative result
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Fig. 18. An MLP with input, output, and hidden layers for CXR CovScanNet Model.

Fig. 19. Ai-CovScan—decision-making framework.

12
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Fig. 20. An observed sample of spectrogram images for different types of breathing sounds.
Fig. 21. Components of breathing sound for Covid-19 confirmed cases.
ould pose serious health concerns to the patients and their
rimary contacts.

.2. CovScanNet for breathing sound

The model is trained on a dataset of spectrogram images for
reathing sound, generated using the framework mentioned in
13
Fig. 7. The input to the MLP is the image vector obtained from the
CNNmodel based on Inception-v3, as shown in Fig. 15. The output
layer of this MLP contains the classes of Normal, Fine Crackles,
Coarse Crackles, and Wheezes, as shown in Fig. 16. Subsequently,
validation is performed using breathing sound spectrograms ac-
quired from Covid-19 patients and non-Covid-19 individuals. The
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Fig. 22. Components of breathing sound for Non-Covid-19 cases.
Fig. 23. Accuracy in % of normal vs abnormal study for Covid-19 (Histogram plot).
P

F

valuation metrics concerning total abnormalities, percentage ab-
ormality, percentage normal, and minimum difference are given
y Eqs. (10), (11), (12), and (13), respectively. The Minimum dif-
erence (Eq. (13)) is the difference between percentage abnormal-
ty in Covid-19 patients and percentage normality in non-Covid-
9 patients. The Minimum difference indicates the efficiency of
he model in predicting the results accurately.

otal Abnormalities = x + y + z (10)

ercentage Abnormalities (PA) =
x + y + z

w + x + y + z
(11)

ercentage Normal (PN) =
w

w + x + y + z
(12)

inimum difference = |PA(COVID) − PN(Non−COVID)| (13)

here w is the total number of normal breathing sound, x is the total
umber of Coarse Crackles, y is the total number of Fine Crackles, and
is the total number of Wheezes.

.3. CovScanNet for CXR

The model is trained on 80 per cent of the curated CXR
mages using the framework mentioned in Fig. 12. The input
o the MLP is the image vector obtained from the CNN model
ased on Inception-v3, as shown in Fig. 17. The output layer of
his MLP contains the classes of Covid-19, Normal, Pneumonia
acterial, and Pneumonia Viral, as shown in Fig. 18. The validation
14
is performed using 20 per cent of the total curated dataset.

Accuracy =
true positives + true negatives

total
(14)

Recall =
true positives

true positives + false negatives

=
(true covid + ve)

(true covid + ve) + (false covid − ve)
(15)

recision =
true positives

true positives + false positive

=
(true covid + ve)

(true covid + ve) + (false covid + ve)
(16)

1 score =
2∗recall∗precision
recall + precision

(17)

Accuracy of a machine learning (ML) algorithm or model is
used to measure the correct classification of data points out
of total data points. It measures the correctness of the pre-
dicted data by the machine learning algorithm. Accuracy is not
the only indicator to ensure the robustness of the ML algo-
rithm. Recall—also known as sensitivity—gives the true-positive
rate [83]. It is based on relevant instances out of the total in-
stances retrieved. Precision—also known as positive predictive
value—correctly classifies true positives amongst all actual pos-
itives. Recall compliments the type II error rate, while precision
is related to the type I error rate [84]. F1 score is used to balance
recall and precision and measure the model’s accuracy on a given
dataset. Recall and precision and F1 score indicate the robustness
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Fig. 24. Components of breathing sound for Covid-19 and non-Covid-19 patient.

Fig. 25. Chest X-ray for (a) Covid-19, (b) Normal, (c) Pneumonia Bacterial, and (d) Pneumonia Viral.
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Table 5
Comparison matrix for models with different hidden layer composition.
Fig. 26. Recall and precision of different layer combinations for Covid-19.
Fig. 27. ROC curve plotted for the transfer learning model with [200, 10, 0] hidden layer.
Fig. 28. Confusion matrix for selected hidden layer composition [200, 10, 0] for CXR.
f the machine learning model, which complements accuracy in

eporting their performance. The evaluation metrics concerning

otal accuracy, recall, precision, and F1 score are given by Eqs.

14), (15), (16), and (17), respectively.
16
4.4. Ai-CovScan framework for decision making

The Ai-CovScan framework—comprising the CovScanNet
model—is devised to provide an effective decision-making tool
for undergoing RT-PCR testing in low resource settings, based on
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Fig. 29. Confusion matrix for Covid-19-specific accuracy of—(a) Breathing Sound, and (b) CXR images.
Fig. 30. Ai-CovScan app screens.
he results from the analysis of CXR, breathing sound, and Rapid
ntigen test (RAnT) of the patient. The self-reported health data
s procured from a susceptible person through a questionnaire
n a mobile application. Based on the user’s response, they are
irected to undergo a Rapid antigen test (RAnT), chest X-ray
CXR), and provide breathing sound data. The CXR is analysed
sing the proposed CovScanNet model to classify the X-ray image
nto Covid-19, Normal, Pneumonia-bacterial, and Pneumonia-
iral categories. The proposed CovScanNet model is also used
o analyse the spectrogram images of the recorded breathing
ound data. The decision-making algorithm for RT-PCR is based
n RAnT, CXR analysis, and breathing sound analysis, as shown
n Fig. 19. The user can take help from medical experts via online
onsultation—an additional feature of the developed framework—
or all other cases. Alternatively, the user can choose to go for an
T-PCR test for confirmation.
17
5. Results

5.1. Breathing sound analysis

After converting the breathing sounds into spectrograms, dis-
tinguishable patterns across different abnormalities are observed.
Abnormalities like fine crackles, coarse crackles, and wheezes
are visually recognised (shown in Fig. 20) while inspection by
a focused group comprising medical professionals, subject ex-
perts, biomedical researchers, and the authors. Subsequently, the
CovScanNet model is trained to classify breathing abnormalities,
as discussed above. Following this, the model is tested on the
Covid-19 database, and the results are presented below.

The predicted composition of the spectrogram—percentage
abnormalities versus normal percentage—are calculated. These
results are plotted in Fig. 21 for Covid-19 patients, and Fig. 22 for
non-Covid-19 individuals across the selected hyper-parameters.
Fig. 23 provides the selection criteria for selecting the hidden
layer composition and the corresponding number of neurons.
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It can be inferred from Fig. 23 that the hidden layer composi-
tion [100, 0, 0] is performing the best in classifying abnormalities
in Covid-19 patients. This [100, 0, 0] layer also performs better
in identifying normal individual’s breathing sound, and the mini-
mum difference between percentage abnormality and percentage
normality for the total dataset. Hence, the [100, 0, 0] is selected
for pattern recognition of Covid-19.

The selected hyper-parameter [100, 0, 0] is employed to iden-
tify the composition of abnormalities (like fine crackles, coarse
crackles, and wheezes) and normal breathing sound in each in-
dividual, both Covid-19 and non-Covid-19. The results are pre-
sented in Fig. 24. It can be observed that all the Covid-19 patients
are showing significant breathing abnormalities, especially crack-
les. As an exception, one patient infected by Covid-19 is showing
negligible breathing abnormalities. This observation may be ex-
plained because the patient is asymptomatic and mildly infected.
The accuracy for the detection of Covid-19 is 80% for the dataset
considered for validation. Furthermore, normal patients returned
zero or minimal abnormalities except non-Covid-19 individual
number 2 (NC-2). After consultation with medical experts, it
is assumed that NC-2 had a pre-existing disorder. Nonetheless,
more data and further testing is required to provide concrete
results.

Though the model returns impressive results, it needs to be
further tested on a more extensive and more diverse dataset, im-
proving the classification accuracy. Also, the dataset of five covid
patients is not robust enough to make highly accurate predic-
tions; hence it should be treated as a preliminary methodological
contribution. In future studies, as the number of data samples
increases, the accuracy and performance of this model would
increase too. The background noise while recording the breathing
sound and the microphone’s sensitivity is the other limitations of
this model. The model could potentially identify other respiratory
diseases when trained with disease-specific datasets. A database
of sound signatures for many respiratory diseases could also be
created to identify diseases rapidly and conveniently in the early
stages of a pandemic.

5.2. Chest X-ray image analysis

The curated data is segmented into four classes—(a) Covid-19,
(b) Normal, (c) Pneumonia Bacterial, and (d) Pneumonia Viral, as
shown in Fig. 25. Subsequently, the dataset is split into train and
test data with a ratio of 80:20. The CovScanNet model is trained
using the trained data, which classifies the test data with signifi-
cant accuracy. The accuracy, recall, precision, and F1 score [59]
is reported in Table 5. The area under the Receiver Operating
Characteristic (ROC) is computed for selected layer compositions
with different hyper-parameters.

Moreover, precision and recall specific to Covid-19 are pre-
sented in Fig. 26; and the [200, 10, 0] layer composition returns
the best results. It can be observed that the precision of this layer
composition is 97.67%, while the recall is 99.21%. The ROC curve
for the selected layer is presented in Fig. 27.

5.2.1. Confusion matrices
A confusion matrix is a tabular representation to summarise

the training model’s success in accurately identifying the spe-
cific labels for the actual results. The labels identified in this
training model are COVID-19, Normal, Pneumonia-Bacterial, and
Pneumonia-viral. The rows represent actual figures, while the
columns represent the predicted results of the neural network.
The model is tested for a different number of hidden layers
combinations incorporated in the training model to identify the
suitable one with the best predictive outcome. The hidden layers
are chosen FOR CXR, and the resulting outcomes are summarised
in the confusion matrix as shown in Fig. 28.
18
Fig. 31. An overview of the system catering to the end-user.

The confusion matrix highlights that the predicted false neg-
atives are minimal, i.e., only two out of 254 Covid-19-positive
cases are inaccurately reported for CXR. Also, the model has
comparatively lesser accuracy in distinguishing between viral and
bacterial pneumonia. The Covid-19-specific accuracy (comparing
Covid-19 against the normal) is reported as 80% for breathing
sound, and 99.66% for CXR, as calculated from confusion matrices
(using Eq. (14)) shown in Figs. 29(a) and 29(b), respectively.
The collected dataset is small and hence would need further
testing and validation for a larger population. The noise due to
CXR-image-capture while scanning it to the Ai-CovScan app can
distort the results. Hence, a detailed manual to train the user for
scanning images is required to increase the CovScanNet model’s
resilience.

5.3. Covid-19 specific antigen test

The methods adopted for Covid-19 diagnosis in the CovScan-
Net model are the breathing sound and the patient’s CXR, which
are indirect diagnostics methods. The limited dataset available
for training and testing breathing sound- and CXR-images is
constrained in its specificity and sensitivity. Rapid antigen test is
a direct indicator of the disease vector’s presence and could be the
critical factor in identifying Covid-19. When the proposed model
is augmented with improvement in the quantity and quality
of datasets, ideally, there would not be a requirement for the
antigen test to confirm the disease. In such a scenario, a two-
tier testing model with breathing sounds and CXR could provide
comparable results to the three-tier testing model proposed in
this study.

5.4. Smartphone app development

The smartphone app serves as the window to the Ai-CovScan
framework to function in a real-world scenario. It incorporates
the following significant functionalities—(a) get a questionnaire
response from the user regarding the symptoms exhibited and
their recent travel history; (b) accept user’s breathing sound via
USB or Bluetooth connectivity between the module or digital
stethoscope and the smartphone app; (c) accept user’s CXR image
via direct upload from a file or smartphone camera; (d) accept
rapid antigen test results of the user. The app feeds the user’s
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Table 6
Hardware specifications for the smartphone for testing Ai-CovScan app.
Phone specification CPU GPU RAM OS Reference

Low Octa-core 1.4 GHz Cortex-A53 Adreno 505 2 GB Android 6.0 [85]
Medium Octa-core (4×2.35 GHz Kryo and 4×1.9 GHz Kryo) Adreno 540 4 GB Android 8.0 [86]
High Octa-core (1×2.96 GHz Kryo 485 and 3×2.42 GHz Kryo

485 and 4×1.78 GHz Kryo 485)
Adreno 640 8 GB Android 10.0 [87]
Fig. A.1. Confusion matrix for selected hidden layer composition [200, 200, 200].
Fig. A.2. Confusion matrix for selected hidden layer composition [200, 200, 0].
Fig. A.3. Confusion matrix for selected hidden layer composition [200, 0, 0].
Fig. A.4. Confusion matrix for selected hidden layer composition [100, 100, 0].
19
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Fig. A.5. Confusion matrix for selected hidden layer composition [100, 10, 0].
Fig. A.6. Confusion matrix for selected hidden layer composition [100, 0, 0].
inputs into the CovScanNet model to predict the results for fur-
ther evaluation, such as undertaking a confirmatory RT-PCR test
or seeking expert medical advice. There are added features in
the e-diagnosis facility where users can seek professional medical
advice on their test results for Breathing sound, CXR, Antigen
or a combination of these test results. An option to book for
an Antigen test, CXR imaging, antibody test, or an RT-PCR test
could also be provided with the active participation of other
stakeholders involved in pandemic response. The app screens are
presented in Fig. 30.

The app is tested for three smartphone devices with low,
medium, and high specifications, as given in Table 6. The app
works satisfactorily, even for the low-end specifications of the
tested smartphones.

6. Discussion

6.1. Ai-covscan framework

Ai-CovScan has been developed as a self-screening tool for
Covid-19, based on the analysis of breathing sound and CXR
image (Fig. 31). If the model predicts any abnormalities in the
analysis, then the user is advised to undertake an antigen test
as the next course of action. This framework advises users to
follow self-isolation and social distancing protocols, where users
can test themselves at home with a smartphone app. Preliminary
detection methods such as antigen tests and antibody tests are
limited in their accuracy and prediction, requiring a confirmatory
test for Covid-19. The confirmatory tests are, however, expensive
and limited. CovScanNet, a novel approach based on CNN and
MLP, is developed to identify the presence of Covid-19 that uses
medical image analysis—chest X-ray or breathing sound, or both—
with a disease-specific antigen test. Inception-v3 combined with
MLP is retrained for recognising Covid-19 and pneumonia from a

patient’s CXR images and breathing abnormalities.

20
6.2. CovScanNet model

Breathing sound patterns may provide unique signatures indi-
cating damage caused to the respiratory system due to Covid-19.
CovScanNet is a preliminary model trained on the limited data
relating to Covid-19 breathing abnormalities. Hence this model
needs further improvements to enhance the prediction accu-
racy. Testing the Covid-19-positive patients for their breathing
sound abnormalities yielded significantly promising outcomes.
Pulmonary-related abnormalities such as pneumonia are com-
monly observed in Covid-19 infected individuals who may later
develop severe complications. Therefore, the detection of pneu-
monia in the lungs can function as a tool for diagnosis. The
CovScanNet model is trained on a curated dataset of several CXR
images, and abnormalities in the breathing sound spectrogram
images to identify Covid-19 with high accuracy and precision.
In the Ai-CovScan framework, the RAnT test results are com-
bined with the patients’ breathing sounds and CXR image analysis
providing a higher prediction accuracy. This framework, when
implemented through a smartphone app, reduces the demand
for RT-PCR testing. The potential limitations while accepting the
user’s breathing sound through the app are:—(a) sensitivity of
the microphone, (b) noise filtration rate, (c) specification and
computing capability of the smartphone, d) use of a lossless
recording format, and (e) amplification of the breathing sound.

6.3. Smartphone app

Ai-CovScan app provides a means for testing and self-
monitoring to reach a large section of the population at the
comfort of their living spaces. When lockdowns and restrictions
are in place to contain the pandemic, the free movement of
people becomes restricted, and access to healthcare facilities
are severely undermined. There is also a ‘safety’ factor that one
must consider when they venture out to public spaces. This
factor restricts individuals from accessing necessary diagnostic
facilities for fear of contracting the disease. In the initial stages
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T
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Fig. B.1. Snapshot of FFT Analyzer for converting the breathing sound into spectrogram.
Source: http://www.ymec.com/hp/signal2/index.htm.
able C.1
odel performance in relation to variation in Regularisation parameter α.
α AUC CA F1-score Precision Recall Specificity

0.0001 0.986 0.911 0.912 0.914 0.911 0.970
0.0005 0.986 0.911 0.912 0.914 0.911 0.971
0.001 0.986 0.906 0.907 0.910 0.906 0.969
0.005 0.986 0.909 0.909 0.910 0.909 0.969
0.05 0.983 0.900 0.902 0.907 0.900 0.969
0.1 0.985 0.907 0.908 0.909 0.907 0.968
0.5 0.986 0.914 0.914 0.916 0.914 0.971
1 0.985 0.907 0.908 0.911 0.907 0.970
5 0.973 0.881 0.882 0.884 0.881 0.959
50 0.929 0.772 0.704 0.690 0.772 0.892
500 0.500 0.356 0.187 0.126 0.356 0.644

of a pandemic, the test facilities and methods are evolving, and

skilled medical professionals involved in diagnostics are minimal.

The limited healthcare workforce may be inadequately trained to

follow standard testing protocols for proper sample collection and

processing, resulting in several errors. The developed smartphone

app can predict the likelihood of infection, further enhancing the

usability and implementation of the Ai-CovScan framework.
21
7. Conclusion

Covid-19 is a major health concern for vulnerable popula-
tions worldwide, especially concerning the elderly and individu-
als with other underlying health conditions. A pandemic response
demands swift actions involving accurate identification of in-
fected individuals and their isolation to prevent further disease
spread. As the number of people involved in a pandemic sce-
nario outpaces the existing healthcare infrastructure’s capacity,
denial of health services becomes seldom. Testing infrastructure
is limited in its capacity to include a large proportion of the
susceptible population in the pandemic’s initial phases, leading
to further disease spread. The proposed multimodal diagnostic
framework allows the user to test for Covid-19 using CXR images
and breathing sounds. Chest X-ray images can be readily scanned
using a smartphone. Covid-19, if predicted, can help the pa-
tient in decision-making for further confirmatory tests. Breathing
sounds can be recorded using the sound recorder module to com-
municate with the smartphone. The breathing sound detection
framework is trained to recognise crackles present in the spec-
trogram, where wheezing sounds are also identified and filtered.
The model provided a tentative accuracy of 80% for breathing
sound data analysis and a 99.66% Covid-19 detection accuracy
for the curated CXR image dataset. Detection of Covid-19 using

http://www.ymec.com/hp/signal2/index.htm
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Fig. D.1. Information Architecture for the Ai-CovScan App.
-ray images and breathing sounds is a cost-effective and time-
aving method for pre-screening. The framework is reliable for
atients and their caretakers for frequent testing. This framework
urther aims at reducing our need for confirmatory tests that
re not easily accessible, sometimes inaccurate, and expensive
o deploy, hence saving critical resources during Covid-19—a
lobal pandemic. The proposed framework is not a substitute for
tandard clinical-grade testing tools but merely a self-screening
ool deployed in a smartphone app. Future work could improve
he dataset for training and validating the model using advanced
rtificial intelligence algorithms.
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