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Abstract
Inflammation is considered an important mechanism in the development of diabetes mellitus (DM) and persists for a long 
time before the occurrence of diabetic nephropathy (DN). Many studies have demonstrated that a decrease in the endothelial 
glycocalyx (EG) is negatively correlated with proteinuria. To elucidate whether EG damage induced by inflammasomes in 
DM patients leads to the occurrence of microalbuminuria (MA) and accelerates the progression of DN, this study screened 
300 diagnosed DM patients. Finally, 70 type 2 diabetes patients were invited to participate in this study and were divided 
into two groups: the T2DM group (patients with normal MA and without diabetic retinopathy, n = 35) and the T2DN group 
(patients with increased MA and diabetic retinopathy, n = 35). Circulating heparin sulphate (HS, EG biomarkers) and inter-
leukin-1 beta (IL-1β, inflammasome biomarkers) of the patients were measured by ELISA. Laboratory data were measured 
using routine laboratory methods. Patients in the T2DN group had increased serum HS, increased IL-1β, increased CRP, 
decreased haemoglobin, and increased neutrophils compared to patients in the T2DM group (all P < 0.05). Increased HS and 
decreased haemoglobin were independently associated with T2DN patients. ROC curves showed that the AUC of HS for 
the prediction of T2DN was 0.67 (P < 0.05). The combination of HS and haemoglobin yielded a significant increasement in 
the AUC (0.75, P < 0.001) with optimal sensitivity (71.2%) and specificity (79%). Furthermore, serum IL-1β was positively 
correlated with HS and was an independent associated factor of HS in the T2DN group. The relationship between HS and 
IL-1β was not significant in the T2DM group. Our findings surgessed the inflammasome may be associated with and promote 
damage to the EG during the disease course of DN that manifests as increased MA.
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Introduction

The global diabetes mellitus (DM) prevalence in 2019 was 
estimated to be 9.3% (463 million people) and is expected 
to increase to 10.2% (578 million) by 2030 and 10.9% (700 
million) by 2045 [1]. Approximately 30% to 40% of patients 
with DM develop diabetic nephropathy (DN) [2]. DN is 
the single most common cause of end-stage renal disease 
(ESRD) in many parts of the world [3].

Because actual loss of renal function is a late indicator 
of DN, albuminuria has been proposed as a sensitive sur-
rogate marker for ongoing renal injury in DN [4]. Much 
evidence indicates that endothelial glycocalyx (EG) dam-
age results in disordered microvascular permeability, which 
in the kidney manifests as albuminuria [5–8]. The EG is a 
negatively charged gel that coats the endothelium and creates 
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a molecular sieve that prevents large molecules from pass-
ing through and likely protects endothelial cells [9]. The EG 
consists of glycoproteins, proteoglycans, glycosaminoglycans 
and associated plasma proteins, and hyaluronic acid and hep-
arin sulphate (HS) are its major constituents [10]. The EG is 
very fragile and easily deteriorates [11], therefore, one pos-
sibility to investigate the state of the glycocalyx is to measure 
retention or shedding of its constituent parts, such as HS, 
syndecan-1 or hyaluronan [12–14]. There is a negative asso-
ciation between the EG and proteinuria [15]. Maintaining 
the structural integrity of EG may prevent proteinuria [16].

There is increasing evidence for the role of the inflam-
matory response both in developing DM and its associated 
complications, including DN [17]. Various molecules related 
to the inflammatory pathways in DN include transcription 
factors, proinflammatory cytokines, chemokines, adhesion 
molecules, Toll-like receptors, adipokines and nuclear recep-
tors, which are candidates for new molecular targets for the 
treatment of DN [18]. Activation of the Nod-like receptor 

family pyrin domain containing 3 (NLRP3) inflammasome 
is directly related to an excessive inflammatory response 
and, therefore, is directly linked to the pathophysiology of 
chronic inflammatory disorders, such as DM, and its associ-
ated complications [19]. The assembly of the NLRP3 inflam-
masome complex creates a potent inflammatory multiprotein 
that can upregulate inflammatory cytokines, such as inter-
leukin 1 beta (IL-1β) and interleukin 18 (IL-18). [19] EG 
damage can be triggered by exposure to pathogens, micro-
bial toxins, or endogenous danger signals [20]. Whether 
the NLRP3 inflammasome damages the EG in DM and DN 
patients is not well investigated.

Based on these mechanisms, we hypothesized that the 
NLRP3 inflammasome in type 2 diabetes (T2D) patients would 
be associated with pathological degradation of the EG and 
excretion of EG fragments into the circulatory system. Damage 
to the EG would therefore be associated with the development 
of microalbuminuria (MA) and DN. We performed a prospec-
tive study of T2D patients to test this hypothesis. HS was used 

Fig. 1  Flow chart of the prospec-
tive, observational cohort. UACR, 
urinary albumin-to-creatinine 
ratio
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as a marker of EG degradation, and IL-1β was used as a marker 
of the NLRP3 inflammasome in this study.

Materials and methods

Study design and population

This cross-sectional, observational study screened 300 diag-
nosed diabetic patients (age > 18 years old) from the Depart-
ments of Nephrology and Endocrinology of Suzhou Munici-
pal Hospital from May to December 2020. The exclusion 
criteria are described in the flow chart (Fig. 1). Finally, 70 
T2D patients were invited to participate in this study. Addi-
tionally, we obtained data from 16 healthy controls from the 
Physical Examination Center of Suzhou Municipal Hospital. 
Normal MA was defined as a urinary albumin-to-creatinine 
ratio (UARC) less than 30 mg/g. [21] Seventy T2D patients 
were divided into a T2DM group (n = 35) and a T2DN group 
(n = 35). The T2DM group was defined as patients with nor-
mal MA (UARC < 30 mg/g) without diabetic retinopathy, 
and the T2DN group was defined as patients with increased 
MA (UARC 30 to 300 mg/g) and diabetic retinopathy. Blood 

samples were collected in dry tubes, centrifuged to obtain 
the serum and stored at -80 °C for a maximum of 6 months 
before the final measurement.

Demographic characteristics and laboratory data 
collection

Demographic information, including age and sex, was 
recorded for each patient. Serum albumin, fasting blood 
glucose (FBG), urea nitrogen, creatinine, uric acid, carbon 
dioxide, triglyceride, total cholesterol, high-density lipopro-
tein (HDL), low-density lipoprotein (LDL), c-reactive pro-
tein (CRP), glycosylated haemoglobin (HbAlc), haemoglo-
bin (HGB), platelet, leukocyte, neutrophil, and neutrophilic 
granulocyte percentage (N%) were measured using routine 
laboratory methods.

Measurement of serum IL‑1β and HS in diabetic 
patients

Serum IL-1β levels were assessed by enzyme-linked immu-
nosorbent assay (ELISA) kits for human IL-1β (Catalogue 
No: KE00021, Proteintech, China). Serum HS levels were 

Table 1  Characteristics of 
subjects and comparison of 
demographic and laboratory 
data of diabetic patients 
between the T2DN group and 
the T2DM group by univariate 
analyses

HS heparin sulphate, UARC  urinary albumin-to-creatinine ratio, FGB fasting blood glucose, HDL high-
density lipoprotein, LDL low-density lipoprotein, CRP c-reaction protein, HbAlc glycosylated haemoglobin, 
HGB haemoglobin, N% neutrophilic granulocyte percentage
a  P < 0.05 vs. Healthy controls
b  P < 0.05 vs. T2DM

Healthy controls (n = 16) T2DM patients (n = 35) T2DN patients (n = 35)

Age (years old) 61 ± 9 62 ± 12 65 ± 13
Gender (female) 52% 57% 42%
HS (ng/ml) 1.54 ± 0.60 1.41 ± 0.92 2.17 ± 1.44 a,b

IL-1β (pg/ml) 16.06 ± 6.70 21.35 ± 11.26 a 27.85 ± 14.62 a,b

UARC (mg/g) 4.2(0.08,8.7) 8.1(5.1,11.1) a 58.5(35.9,125.6) a,b

Albumin (g/L) 45.40 ± 2.09 42.92 ± 3.16 41.52 ± 5.57
FGB (mmol/L) 5.32 ± 0.35 8.63 ± 3.36 8.48 ± 3.26
Urea nitrogen (mmol/L) 5.48 ± 1.49 5.33 ± 1.22 6.30 ± 2.52 a,b

Creatinine (umol/L) 69.71 ± 14.12 58.69 ± 12.32 69.71 ± 34.32
Uric acid (umol/L) 360.71 ± 90.16 322.57 ± 85.92 324.93 ± 90.18
Carbon dioxide (mmol/L) 26.47 ± 1.14 26.25 ± 3.06 26.19 ± 2.92
Triglyceride (mmol/L) 1.35(0.92,2.54) 1.43(1.10,2.08) 1.30(0.93,1.95)
Total cholesterol (mmol/L) 4.99(4.50,5.71) 4.34(3.58,4.99) 4.32(3.66,5.07)
HDL (mmol/L) 1.27 ± 0.19 1.10 ± 0.28 1.09 ± 0.28
LDL (mmol/L) 3.20 ± 0.77 2.46 ± 1.01 2.66 ± 0.78
CRP (mg/L) 1.07(0.43,2.83) 0.81(0.45,3.15) 2.03(0.90,6.53) a,b

HbAlc (%) 5.6 ± 0.3 9.2 ± 2.5 9.8 ± 2.9
HGB (g/L) 148 ± 7 141 ± 15 128 ± 19 a,b

Platelet (× 109/L) 215 ± 38 204 ± 51 224 ± 70
Leukocyte (× 109/L) 6.1 ± 1.2 5.9 ± 1.3 6.4 ± 2.1
Neutrophil (× 109/L) 3.5 ± 1.0 3.4 ± 1.0 4.1 ± 1.9 a,b

N% 57 ± 9 56 ± 9 63 ± 10 a,b
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assessed by ELISA kits for human HS (Catalogue No: 
F01027, Westang Biotech, China). Levels of serum IL-1β 
and HS were measured according to the manufacturers’ 
instructions. Details of the measurements are provided in 
the Supplementary Methods.

Statistical analyses

Continuous variables are shown as the mean ± standard 
error or as the median with interquartile range. Cat-
egorical variables are expressed as percentages. Uni-
variate analyses were performed to compare differences 
between the T2DM and T2DN groups. Student’s t-test 
was used to compare normally distributed data, while the 
Mann–Whitney U-test was used for nonnormally distrib-
uted data. Categorical data were compared using the Chi-
squared test. Comparisons of the three groups (T2DN, 
T2DN and healthy control groups) were performed using 
one-way ANOVA. Bivariate correlation analyses were 
performed to assess the correlation of variables. Logistic 

regression analyses were performed to evaluate variables 
independently associated with T2DN. ROC curves were 
generated to calculate the area under the curve (AUC) 
and compare the prognostic value of every independently 
associated factor or united factor to T2DN. Furthermore, 
in the T2DN group, 35 patients were divided into two 
groups according median of serum HS, multivariate lin-
ear regression analyses were performed to identify inde-
pendent factors associated with HS. All analyses were 
two-tailed, and P < 0.05 was considered statistically sig-
nificant. SPSS 18.0 (SPSS, Inc., Chicago, IL, USA) was 
used for all statistical analyses.

Results

Comparison of demographic and laboratory 
characteristics of patients between the T2DM 
and T2DN groups

The average ages of T2DN and T2DM patients were 65 
and 62 years, respectively. There were no significant differ-
ences in age or sex between the T2DN and T2DM groups 
(Table 1, all P > 0.05). T2DN patients had increased serum 
HS, increased urea nitrogen, increased CRP, decreased 
HGB, increased neutrophils and increased N% compared 
to T2DM patients (all P < 0.05, Table 1). There were no 
additional parameters with significant differences between 
the two groups (all P > 0.05).

Comparison of serum IL‑1β and HS among the T2DM 
group, T2DN group and controls

In this study, the median IL-1β levels steadily increased 
across the following groups: healthy controls: 16.06 pg/
ml; T2DM group: 21.35  pg/ml; and T2DN group: 
27.85 pg/ml (ANOVA P < 0.05) (Fig. 2). Serum HS lev-
els were significantly higher in the T2DN group (median 
2.17 ng/ml) than in the T2DM group (median 1.41 ng/
ml, P < 0.05) or healthy controls (median 1.54 ng/ml, 
P < 0.05) (Fig. 3). However, there was no significant dif-
ference in HS levels between the T2DM group and con-
trols (P > 0.05).

Logistic regression analyses for identifying factors 
independently associated with T2DN patients

Variables that were different between the T2DM group and 
the T2DN group in the univariate analyses, such as HS, urea 
nitrogen, CRP, HGB, neutrophils and N%, were entered into 
a logistic regression analysis. The dichotomous dependent 
variable in the logistic regression analyses was the presence 
or absence of T2DN. The results showed that HS (B = 0.582) 

Fig. 2  Comparison of serum IL-1β among the T2DM group, the T2DN 
group and the controls

Fig. 3  Comparison of serum HS among the T2DM group, the T2DN 
group and the controls
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and HGB (B = 1.051) were factors independently associated 
with T2DN patients (all P < 0.05, Table 2).

Prediction of T2DN by HS and HGB

To evaluate the discriminative performance of independently 
associated factors for the prediction of T2DN, ROC curves 
were constructed (Fig. 4). The AUCs of HS and HGB for 
the prediction of T2DN were 0.672 (P = 0.015) and 0.713 
(P = 0.002), respectively. Both factors achieved statistical 
significance for T2DN. Furthermore, a combined model 
of HS and HGB yielded a significant increase in the AUC 
(0.750, P < 0.001).

Correlation of serum HS and IL‑1β with other 
variables in the T2DM group and T2DN group

In T2DM patients, serum HS was significantly positively 
associated with albumin (P < 0.05, Table 3). There was no 
significant association between serum IL-1β and HS or other 
variables in T2DM patients (all P > 0.05). In T2DN patients, 
serum HS was significantly positively associated with IL-1β, 
FGB, and HbA1c (P < 0.05, Fig. 5). Serum IL-1β was sig-
nificantly positively associated with HS, urea nitrogen, and 
HbA1c (all P < 0.05, Table 3) in T2DN patients.

Multivariate linear regression analyses 
for identifying independently associated factors 
for HS in T2DN patients

Variables that were significantly correlated with HS in 
T2DN patients (IL-1β, FBG and HbA1c) were entered into 
multivariate linear regression analyses. The results showed 
that IL-1β (β = 0.053, P < 0.001) and FBG (β = 0.168, 
P = 0.008) were factors independently associated with HS 
in T2DN patients (Table 4).

Discussion

To the best of our knowledge, this study is the first to show 
two results. (1) Serum HS levels were significantly and 
independently correlated with T2DN in all T2D patients; 
HS (serum HS > 2.32 ng/ml) combined with haemoglobin 
(HGB < 136 g/L) predicted T2DN with optimal sensitiv-
ity (71.2%) and specificity (79%). (2) In T2DN patients, 
increased serum IL-1β may be an independent factor asso-
ciated with HS.

Obesity and type 2 diabetes (T2D) represent low-grade 
chronic inflammatory states. [22, 23] Low-grade inflam-
mation is closely involved in the pathogenesis of T2D and 
its associated complications. [24] Neutrophils are a major 
component of the host innate defence against infection 
and contribute to autoimmune pathogenesis and chronic 
inflammation. [25] Serum hepcidin levels are increased in 
chronic inflammation, causing anaemia and inflammation. 
[26] C-reactive protein (CRP) is a sensitive biomarker of 
chronic low-grade inflammation. [27] Together, increased 
neutrophils, reduced haemoglobin and increased CRP are 
biomarkers of chronic inflammation. In our study, neu-
trophils and CRP of T2D patients with nephropathy were 
higher than those without nephropathy, while haemoglobin 
in T2D patients with nephropathy was lower than that in 
those without nephropathy. These results suggest that the 
chronic inflammatory state of DN is more severe than that 
of diabetes without nephropathy, and this low-grade per-
sistent inflammation may promote DN development and 
progression.

Generalized EG damage occurs in diabetes [28] and is 
associated with microalbuminuria (MA). [29] When EG is 
damaged, its degradation is accompanied by shedding of 
one or more glycocalyx components into the blood. [30] EG 
deterioration can be detected using the plasma levels of two 
well-established biomarkers, syndecan-1 and HS. [31] In 
our study, serum HS levels were higher in the T2DN group 
than in the T2DM group and healthy controls, but there were 
no significant differences between T2DM patients and con-
trols. These results indicate that the EG in T2DN patients 
is more severely damaged than that of T2DM patients and 
healthy controls. There was a significant difference between 
serum HS levels in T2DN and T2DM patients, and HS may 
be an independently associated factor of T2DN patients in 
our study. However, Yokoyama et al. measured HS in the 
urine and serum of diabetic patients by two different HS-
specific ELISAs (10E4 and 3G10) and did not find signifi-
cant differences in the serum. [32] In contrast to Yokoyama, 
we used a similar to but not the same as 3G10 ELISA kit, 
which detected a degraded serum heparin sulfate fragment 
in the circulation. Furthermore, Yokoyama divided patients 
by different urinary albumin excretion rate (AER), in their 

Table 2  Logistic regression analyses for identifying factors indepen-
dently associated with T2DN patients

HS heparin sulphate, FGB fasting blood glucose, CRP c-reaction pro-
tein, HGB haemoglobin, N% neutrophilic granulocyte percentage, CI 
confidence interval
* P < 0.05

Variable Exp (B value) P value EXP (B value) 95% CI

Lower limit Upper limit

HS 0.582 0.047* 0.342 0.992
CRP 0.977 0.561 0.904 1.056
HGB 1.051 0.029* 1.005 1.099
IL-1β 0.973 0.326 0.922 1.027
FGB 0.997 0.981 0.793 1.254
N% 0.942 0.096 0.878 1.011

701Glycoconjugate Journal (2021) 38:697–707



1 3

study, diabetic patients were divided into normoalbuminu-
ria (AER < 12 mg/g. Cr), incipient nephropathy (AER 12 to 
220 mg/g. Cr), and clinical nephropathy (AER > 200 mg/g. 
Cr). In our study, patients were divided into a T2DM group 
(UARC < 30 mg/g without diabetic retinopathy) and a T2DN 
group (UARC 30 to 300 mg/g and diabetic retinopathy). 
As such, the different methods and grouping criteria may 
produce different results. Deckert et al. observed that the de 
novo synthesis of heparan sulfate was reduced in fibroblasts 
isolated from diabetes patients with albuminuria but not in 
those from patients without albuminuria, or healthy control 
subjects, and formulated a hypothesis that the loss of EG is 
a prerequisite for developing diabetic nephropathy. [33] This 
may be the potential mechanism of the research of Yokoy-
ama. The pathogenesis of diabetic nephropathy is very com-
plicated and not yet clear. Our results were not completely 
contradictory to those of Yokoyama. In the future, large sam-
ples and prospective clinical research or basic experimental 
research are needed for further clarification.

In our study, haemoglobin was another independently 
associated factor in T2DN patients. The ROC curves 

showed that the AUC of HS for the prediction of T2DN 
was 0.67 with good specificity (88.6%) but poor sensitiv-
ity (45.4%). When HS was combined with haemoglobin, 
the AUC increased to 0.75 with optimal sensitivity (71%) 
and specificity (79%). A 5-year prospective observational 
study conducted at a diabetes clinic in Australia showed that 
declining haemoglobin levels were more common in those 
with higher levels of albuminuria, [34] and this finding was 
in agreement with our results.

Albuminuria as an outcome of kidney damage is not a 
specific biomarker for the prediction of DN prior to the onset 
of this devastating complication. [35] There is an urgent 
need to determine an easy and accurate way to detect DN 
prior to its beginning or during the infancy stage so that its 
progression can be slowed or arrested. Our study revealed 
that serum HS and/or haemoglobin could be novel biomark-
ers of T2DN and could help identify potential DN patients 
among T2D patients early with both diagnostic and prognos-
tic implications. Defining new predictive biomarkers to use 
alongside UARC during the initial stages of DN would pro-
vide a window of opportunity for therapeutic interventions 

Fig. 4  Receiver operating 
characteristic (ROC) curves 
for T2DN with each potential 
predictor. Blue line: HS con-
centration; orange line: HGB 
concentration; green line: HS 
concentration + HGB concentra-
tion. Abbreviations: HS, heparin 
sulphate; HGB, haemoglobin; 
AUC, area under the ROC curve
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to prevent or delay the onset of the disease, and to improve 
outcomes.

It is possible that the NLRP3 inflammasome is home-
ostatic and maintains metabolic balance under normal 
physiology. However, NLRP3 may be activated by chronic 
inflammation in diabetes, becoming pathologic and promot-
ing disease. [36] Activation of the NLRP3 inflammasome 

leads to caspase 1-dependent release of the proinflammatory 
cytokine IL-1β. [37] Elevated circulating IL-1β may impair 
islet cell function and induce dysregulation of blood glu-
cose levels, resulting in the progression of T2D and even the 
development of T2DN, [38, 39] and may play an important 
role in initiating and sustaining inflammation-induced organ 
dysfunction in T2D. [40]

Table 3  Bivariate correlation 
analyses for the correlation of 
serum HS and serum IL-1β 
with other variables in T2DM 
patients and T2DN patients

HS heparin sulphate, FGB fasting blood glucose HDL high-density lipoprotein, LDL low-density lipopro-
tein, CRP c-reaction protein, HbAlc glycosylated haemoglobin, HGB haemoglobin, N% neutrophilic granu-
locyte percentage
*P < 0.05

T2DM T2DN

heparan sulfate IL-1β heparan sulfate IL-1β

r P value r P value r P value r P value

Age -0.14 0.43 -0.31 0.07 0.11 0.53 0.27 0.12
HS / / 0.19 0.29 / / 0.60 0.00*
IL-1β 0.19 0.29 / / 0.60 0.00* / /
eGFR 0.00 0.99 0.11 0.52 0.11 0.52 -0.15 0.40
Albumin 0.37 0.03* 0.26 0.14 -0.11 0.53 -0.19 0.28
FBG 0.06 0.75 0.33 0.06 0.42 0.01* 0.13 0.48
Urea nitrogen -0.05 0.80 -0.20 0.24 0.04 0.81 0.29 0.09
Creatinine -0.07 0.69 -0.05 0.80 -0.05 0.79 0.15 0.39
Uric acid -0.08 0.64 -0.03 0.87 -0.17 0.33 0.03 0.89
Carbon dioxide -0.09 0.62 0.06 0.74 0.04 0.83 -0.12 0.51
Triglyceride 0.22 0.21 -0.06 0.74 0.00 1.00 -0.09 0.61
Total cholesterol 0.17 0.34 -0.02 0.91 -0.01 0.94 -0.19 0.28
HDL 0.09 0.60 -0.03 0.88 0.02 0.94 -0.16 0.38
LDL -0.26 0.13 -0.02 0.93 -0.11 0.54 -0.15 0.41
CRP -0.03 0.85 0.16 0.38 0.05 0.79 0.00 0.99
HbAlc -0.06 0.75 0.23 0.18 0.43 0.02* 0.31 0.09
HGB 0.08 0.63 0.18 0.30 -0.21 0.24 -0.25 0.16
Platelet 0.04 0.83 -0.05 0.78 0.09 0.61 -0.35 0.05
Leukocyte -0.21 0.23 0.09 0.62 -0.05 0.77 -0.02 0.91
Neutrophil -0.19 0.28 -0.01 0.95 -0.06 0.74 -0.05 0.77
N% -0.06 0.74 -0.10 0.58 -0.06 0.76 -0.10 0.57

Fig. 5  Correlation of serum HS with IL-1β, FBG and HbA1c in T2DN patients. Serum HS was significantly positively correlated with serum 
IL-1β, FBG and HbA1c in T2DN patients
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In this study, serum IL-1β levels in all T2D patients 
were significantly higher than those of healthy controls, 
and serum IL-1β was higher in the T2DN group than in 
the T2DM group. These results indicate that persistently 
increased inflammatory factor IL-1β may be involved in 
the development and progression of T2D and even T2DN. 
Serum IL-1β was significantly different between T2DN 
patients and healthy controls, but there was no significant 
difference between T2DM patients and healthy controls. 
These results suggest that the increased serum IL-1β occurs 
earlier than the increased serum HS, which indicates that 
abnormal inflammasomes appear earlier than damage to the 
EG during the course of diabetes and may potentially induce 
damage to the EG. Serum IL-1β and fasting blood glucose 
(FBG) were independently associated with HS in our T2DN 
group. As HS may represent a promising biomarker of 
T2DN, increased serum IL-1β and FBG may predict and 
promote the progression of DN. These results again indicate 
that inflammasomes may be associated with and promote 
EG damage in DN patients, which induces MA in T2D and 
DN disease courses. Preventing the increase in IL-1β and 
FBG in patients during the early stage of T2D may be poten-
tial therapeutic targets to prevent or delay DN. Advances in 
basic science and clinical investigations of the mechanism 
of inflammasomes, the EG and MA in T2D are worth pursu-
ing. Ongoing trials will determine whether the reduction in 
the NLRP3 inflammasome and/or IL-1β will translate into 
long-term success in forestalling damage to the EG in T2D 
and the progression of DN. The anti-inflammatory activities 
of the NLRP3/IL-1β pathway suggest that it is a promising 
prospect for DN treatment and provides new ideas for DN 
treatment.

This study has several limitations. First, it was performed 
at a single centre, and the sample size was relatively small. 
Second, the cross-sectional study design precluded the 
determination of cause and effect. Third, the degree of EG 
degradation was assessed by measuring serum HS, and this 
method may not accurately represent current EG integrity 
or the extent of loss. Fourth, we did not recognize HS by 

antibodies, which are crucially dependent on specific modi-
fication/sulfation motifs in HS. Changes in ELISA signals 
could be either related to a change in the serum concentra-
tion of HS or related to structural changes in HS. Fifth, DN 
patients with macroalbuminuria and renal insufficiency were 
not included in this study. Finally, the HS and IL-1β ELISA 
kits used in this study are available for research use only 
and are not intended for diagnostic or therapeutic use; these 
measurement methods are not standardized. These limita-
tions highlight the need for adequately powered RCTs and 
basic studies to further confirm the findings presented here.

Conclusions

HS is isolated from porcine intestinal mucosa as a by-prod-
uct during heparin production. [41] HS is a type of glycosa-
minoglycan that is attached to the core proteins of proteo-
glycans, which is a ubiquitous component of the cell surface 
and in extracellular matrix. [42] In this study, we found that 
serum HS may be a novel biomarker in the prediction of 
ongoing/progressive T2DN. Serum IL-1β was associated 
with HS in T2DN patients, suggesting that inflammasomes 
may be associated with damage to the endothelial glycocalyx 
in the T2DN disease course, which is manifested by micro-
albuminuria. IL-1β maybe a potential therapeutic target of 
T2DN.
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