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Viruses rapidly co-evolve with their hosts. The 9 million sequenced SARS-CoV-2
genomes by March 2022 provide a detailed account of viral evolution, showing that all
amino acids have been mutated many times. However, only a few became prominent in
the viral population. Here, we investigated the emergence of the same mutations in
unrelated parallel lineages and the extent of such convergent evolution on the molecular
level in the spike (S) protein. We found that during the first phase of the pandemic (until mid
2021, before mass vaccination) 31 mutations evolved independently ≥3-times within
separated lineages. These included all the key mutations in SARS-CoV-2 variants of
concern (VOC) at that time, indicating their fundamental adaptive advantage. The omicron
added many more mutations not frequently seen before, which can be attributed to the
synergistic nature of these mutations, which is more difficult to evolve. The great majority
(24/31) of S-protein mutations under convergent evolution tightly cluster in three functional
domains; N-terminal domain, receptor-binding domain, and Furin cleavage site.
Furthermore, among the S-protein receptor-binding motif mutations, ACE2 affinity-
improving substitutions are favoured. Next, we determined the mutation space in the S
protein that has been covered by SARS-CoV-2. We found that all amino acids that are
reachable by single nucleotide changes have been probed multiple times in early 2021.
The substitutions requiring two nucleotide changes have recently (late 2021) gained
momentum and their numbers are increasing rapidly. These provide a large mutation
landscape for SARS-CoV-2 future evolution, on which research should focus now.
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RESULTS AND DISCUSSION

Early Stages of SARS-CoV-2 Evolution
In the initial stages of the SARS-CoV-2 pandemic, virus evolution was shaped by selection imposed
by a naïve host and the environment, resulting in new variants with adaptive advantage rapidly
taking over previous strains. At this stage, global attention was focused on a number of major
variants of concern: alpha (B.1.1.7), initially prominent in the United Kingdom, beta (B.1.351),
discovered in South Africa, gamma (P.1) which has spread rapidly in the State of Amazonas and
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delta (B.1.617.2) spreading from India. With the widespread
introduction of vaccines during the first half of 2021, SARS-CoV-2
evolution shifted towards immune evading variants, most notable
omicron BA1 discovered in South Africa and most recently
omicron BA2. Independent acquisitions of S-protein substitutions
L452R, E484K/Q, N501Y, and Q677H in these and other lineages
were analyzed in great detail (Cherian et al., 2021; Hodcroft et al.,
2021; Lemmermann et al., 2021; Martin et al., 2021; Zhou et al.,
2021). The intra-host SARS-CoV-2 genomic diversity (Ramazzotti
et al., 2021) and the viral evolution in immunocompromised
patients (Choi et al., 2020; Clark et al., 2021; Tarhini et al., 2021;
Truong et al., 2021) also received a lot of attention. Yet studies
focused on convergent (syn. parallel) evolution highlighting new
potential mutations of interest and their combination are scarce.
Convergent evolution is evidence that natural selection plays a
pivotal role in the emergence of remarkable patterns of
independently evolving mutations that are arising independently
within themembers of different lineages (Martin et al., 2021). Here,
weanalyzed the convergent evolutionof SARS-CoV-2 spike protein
(S-protein) amino acid (AA) changes which have emerged
independently since early 2020 in three or more prominent
lineages. In addition, an exhaustive analysis of all possible S-
protein receptor-binding motif substitutions, which are reachable
by single- and double-nucleotide mutations, was conducted with
respect to their globalpresenceandbinding effect.Ourfindingsmap
the peculiarities of the SARS-CoV-2 mutational landscape and
reinforce the need of carefulmonitoring of SARS-CoV-2 evolution.

Mutations With Putative Fitness Advantage
Accumulate Independently in Multiple
SARS-CoV-2 Lineages
In the GISAID database (Shu and McCauley, 2017), only five
percent of the S-protein amino acids (AAs) show mutations in
more than 100,000 genomic sequences (out of 9 mil. genomic
sequences in GISAID; March 15, 2022). By theory, the fitness
advantage of a mutation translates into the increased
representation of the viral lineage carrying it; the extreme
example being a selective sweep/lineage replacement. This
happened with the D614G mutation, which quickly became
dominant during the early stages of the pandemic and which
positive impact on the virus fitness is well recognized (Volz et al.,
2021). However, most of the conspicuous mutations which keep
rising in prevalence have emerged by convergent evolution and
many of them are present in dominant delta and subsequently
omicron lineages. The fact that the same mutations emerge
independently in different viral lineages is a standalone, strong
indicator that these changes confer an adaptive advantage
towards the virus infectivity and easier spread in the
population. Similarly, a fixation of multiple different amino
acids with chemical similarities implicates the ongoing
optimization at the given site. Figure 1 shows the distribution
of convergent S-protein AA mutations which emerged at least
three times independently during the period of a dramatic SARS-
CoV-2 evolution between autumn 2020 and spring 2021. This
comparison identified a total of 31 S-protein sites under
convergent evolution. As expected, the most concerning SARS-
CoV-2 lineages carry the heaviest burden of convergent S-
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protein mutations (Figure 1). Since this analysis (purposefully)
neglects mutations in other viral genes and their putative effects,
it demonstrates that the S-protein mutations per se are strong
determinants of the success of viral lineages hosting them,
although rapid convergent evolution can be seen in other
genes as well (De Maio et al., 2021; Majumdar and Niyogi, 2021).

Convergently Evolved Mutations Cluster in
Specific Locations in the Spike Protein
Mapping the convergently evolved mutations, at the time of the
highest SARS-CoV-2 strains variability (between autumn 2020 and
spring 2021), on the S-protein structure shows that the AAs under
the strongest parallelism concentrate in three hotspots: N-terminal
domain (NTD), receptor-binding domain (RBD) and the Furin
cleavage site (Figure 2A). Such conspicuous nonrandom
distribution pattern reflects their putative functional connection.
All the most concerning variants carry one or (typically) more
mutations in each of these three domains. The NTD domain
accumulates the highest number of convergent mutations.
Strikingly, all these AA residues, despite being located apart from
each other in the S-protein primary structure, form perfectly co-
localized patches, literally delineating the site of evolutionary
pressure for optimization. We speculate that this adaption goes
beyond a simple immune evasion or antigenic minimalization
(Venkatakrishnan et al., 2021), which is unlikely to explain this
level of convergence in NTD evolution. Instead, we suppose that
NTDmutations might modulate some functional properties of this
domain, which unfortunately remains experimentally
understudied. The described NTD functions include controlling
S-protein conformation (Li et al., 2021), interaction with host
surface sialosides (Awasthi et al., 2020) and, most recently,
binding to alternative entry receptors (Zhu et al., 2021). The
second hot spot – the RBD domain shows a strong accumulation
of mutations at the binding interface with the ACE2 receptor (see
below for a dedicated paragraph). The function of the Furin
cleavage site is well established (Xia et al., 2020; Johnson et al.,
2021) as well as the relevance of the convergent Q677H mutation
(Hodcroft et al., 2021). The impact of additional mutations in this
region remains to be analyzed, but their positive fitness effect due to
faster S-protein processing can be expected. As with the NTD, the
Furin cleavage site AAs under convergent evolution are in direct
contact with each other. The only convergentmutations not within
these three domains are above residue 700, and their parallelization
score is low (Figure 2A, inset d). It should be noted that these
convergentmutations evolved on the background of amostly naïve
host. Conversely, the search for previously unseen convergent
evolution in delta and omicron variants diversity since mid-2021
gained only three new significant mutations. A222V appeared at
least three times among delta lineages, T95I emergedmultiple times
indelta and ispresent inomicron, andfinallyR346Kwasdetected in
omicron lineages.

Combinations of Convergent Mutations
Suggest Epistatic Relations
The spatial clustering of AAs under convergent evolution creates
room for synergic effects between mutations, as was observed for
the couple E484K/N501Y and proposed for Q498R/N501Y
May 2022 | Volume 12 | Article 748948
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FIGURE 1 | Convergent evolution of SARS-CoV-2 S-protein AA residues among different lineages (autumn 2020 – spring 2021). All S-protein AA mutations present in
SARS-CoV-2 VOC lineages (alpha, beta, gamma, delta) were collected. The phylogenetic pattern of mutations at each of these AA positions was assessed visually in the
representative global subsample of SARS-CoV-2 genomes (https://nextstrain.org/ncov/global) (Hadfield et al., 2018). NextStrain was scanned repeatedly between March to
June 2021;lineages were confirmed to show a recent localized rise to high frequency (indicative of selective advantage). All additional S-protein AA mutations present in
these lineages were subjected to the same procedure as above. After several iterations, a final set of S-protein positions that experienced ≥3 independent mutations was
established. Information about the distribution and within-lineage frequency of S-protein mutations, and the spatiotemporal characterization of SARS-CoV-2 lineages was
retrieved from (Tsueng et al., 2022) (15 June 2021). The AA parallelism score was established for all convergently mutated AAs, by summing their independent emergence
events. The lineage parallelism score was calculated by summing the parallelism scores of S-protein AAs mutated in individual lineages. *AA substitutions for G142;
Mutations inherited from the same progenitor are considered a single evolutionary origin in parallelism score calculations.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org May 2022 | Volume 12 | Article 7489483
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(Zahradnıḱ et al., 2021) that later emerged in omicron lineages. In
addition, potential inter-domain relations in mutational
appearance can be tentatively inferred. For example, as a whole,
NTD convergent mutations predominate in lineages with mutated
RBD. Furthermore, some NTD convergent mutations (e.g. T95I,
DY144, D215G) accumulate in lineages with high parallelism
scores and are never present alone (Figure 1). This indicates
that the S-protein adaptive mutations emerge in a sequential
manner. The precise order of mutation appearance is difficult to
analyze since the lineages of concern with a high mutational load
typically appear “out of nowhere” without a documented
intermediate state. For the SARS-CoV-2 research, this means
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
that, ideally, S-protein mutations should be experimentally
evaluated in (both intra- and inter-domain) combinations.

Exploring Double Nucleotide Changes by
SARS-CoV-2 RBD
The RBD domain is the focus of our understanding of SARS-
CoV-2 cell entry and neutralizing antibody evasion (Starr et al.,
2020; Dejnirattisai et al., 2022), and its evolution thus deserves
special attention. We generated an in silico library of all RBD AA
mutations which can be achieved with a single nucleotide change
(SNC) and two-nucleotide changes (TNC) of the original
codons, and analyzed their global occurrence. Rapid
A

B

FIGURE 2 | Localization of convergent mutations in SARS-CoV-2 S-protein structure, breakdown and progression of RBD AA mutations. (A) The S-protein parts
missing in the crystal structure (PDB ID: 6zge) were modelled by the Modeller suite implemented in UCSF Chimera 1.13.1 (Webb and Sali, 2016). Residues under
convergent evolution are depicted in spheres representation and colored according to their parallelism scores (Figure 1). Inset d) shows the region covering a portion of
heptad repeat, central helix, and b-hairpin domains. Green residues in inset c) highlight the Furin cleavage site. (B) The mutational sequence space of RBD binding
interface residues 472 – 505, and its coverage by mutations present in the GISAID database. All possible SNC (single-nucleotide change) AA substitutions are depicted.
For TNC (two-nucleotide change) substitutions, only the subset of AA substitutions that were sampled in GISAID are depicted (in background color scale according to the
legend), together with substitutions with a positive binding impact (frame). The AA position is invariant to its later occurrence to highlight differences. Deep-mutational
scanning DLog10(KD, App) values were extracted from https://jbloomlab.github.io/SARS-CoV-2-RBD_DMS/ (Starr et al., 2020). ACE2 lane depicts residue distances in Å
from the ACE2 receptor.
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progression can be seen as all of the possible SNC-dependent
changes had been detected in early 2021 among the >1.2 million
genomic sequences in GISAID. As the likelihood of two
successive nucleotide changes of a single codon is much lower,
AA mutations resulting from TNC appear among sampled
genomes at much lower frequencies, yet their repertoire and
numbers are growing over time and soon are likely to reach
complete exhaustion (Figure 2B). The first TNC detected among
VOC/VOI variants is omicron´s S371L mutation, with others
predicted to follow. Some of the changes conferred by TNC are
predicted to display a much tighter binding to ACE2 (Figure 2B)
and thus represent a potential epidemiological risk. We can
assume that the occurrence of epistatic mutations is also
expanding, as seen for Q498R in the omicron. Taken together,
the potential sequence space to be sampled in the future by the
RBD to achieve an evolutionary advantage remains large and we
will see a rise of previously unseen mutations.

Both Receptor Binding and Immune
Evasion Are Shaping the RBD Evolution
Most of the AA changes predicted to have a positive effect on ACE2
receptorbinding [Log10(KD,app)>0.03] (Starr et al., 2020) arepresent
at significant frequencies among GISAD genomes (Figure 2B),
reinforcing improved receptor binding as an importing contributor
to the adaptive fitness gain. Mutations into positively charged
residues are favored by electro-complementarity between RBD and
ACE2 (Zahradnıḱ et al., 2021). Among the convergent RBD
mutations, this concerns N439K, N440K, L452R, T478R/K and
E484K (Figure 1). Expectedly, the selection of most mutations that
negatively affect receptor binding is disfavored in RBD evolution
(Figure2B).Ourpredictionsof SARS-CoV-2 evolutionoften involve
immunocompromised patients, treated or non-treated with
convalescent plasma or neutralizing antibodies (Tarhini et al., 2021;
Truong et al., 2021), yet it is not clear how these two phenomena
(global vs. within-patient virus evolution/diversification)mirror each
other. While several RBD mutations have been selected during
prolonged infection within the same immunocompromised patient
(Choi et al., 2020; Clark et al., 2021), others were not e.g. the
combination of E484K/N501Y, which increases the binding affinity
to ACE2 receptor (Zahradnıḱ et al., 2021). In contrast, the NTD
deletionD141-143has evolved inmultiple patients (Clark et al., 2021;
Kemp et al., 2021) and, like DY144 (Chen et al., 2021), was clearly
selected in response to the host environment. Some RBDmutations
may increase viralfitnessby immuneevasionmechanismsother than
reduced antibody neutralization, e.g. reduced MHC presentation
[L452R(Motozonoetal., 2021)]. It is thusevident that everymutation
contributes to the viral fitness by different parameters and
mechanisms, which need to be evaluated systematically.

Global Selective Sweep Since Early 2021
The global evolutionary dynamics of SARS-CoV-2 has changed
fundamentally since early 2021. The early common pattern
(competition of multiple independent lineages on the
background of the naïve population) gave way to the global
selective sweep of delta VOC. Concomitantly, the rapid
vaccination rate in combination with post-infection immunity
made the virus face a significantly more immunized population.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
The second half of 2021 was characterized by the delta
diversification into numerous competing sublineages. Finally,
in November, omicron emerged from an unknown, presumably
“near” wildtype SARS-CoV-2 (B.1.1) and has been globally
spreading at an unprecedented rate. Omicron carries total 13
mutations in S-protein which were convergent in the pre-
omicron era (HV69-70D, T95I, G142D, Y144D, N440K, S477N,
T478K, E484A, N501Y, H655Y, P681H, D796Y, D950N), double
of the maximum convergent mutations observed in any other
VOCs so far. In this sense, omicron is an excellent example how
these residues were built up again to form omicron, as no other
variant had over seven of them (Figure 1) . In addition, the
breakdown of RBD mutations prior of the omicron era showed
omicron residues to be among the most prominent ones. The
only exception is the mutation Q498R due to the already
mentioned cooperativity to N501Y. Our work thus shows that
SARS-CoV-2 early evolution was towards human adaptation
which, despite remaining closed and unrepeatable, presaged
future developments.

The extent and progression of convergence in S-protein
evolution tentatively hints at the possibility that it might
approach a final state of optimization to the novel, human host
(Burioni and Topol, 2021). However, with the large mutation
space available by rarer TNC and epistatic mutations, this is far
from certain. Still, with the predictability and repeatability of S-
protein evolution taken into consideration in vaccine design
(even in omicron), the protection for the global population from
the landscape of viral variants of current and near-future
significance can be maximized. Clearly, mass vaccination and/
or previous infections are altering the selective pressure and thus
reshaping viral evolution. This phenomenon is already playing a
role at position 484, where lysine is the optimal residue, but
omicron variants is characteristic with E484A. It should be noted
that omicron emerged in South Africa regions previously affected
by E484K-bearing variants (gamma and beta). Also in omicron,
the highly increased binding affinity of the Q498R/N501Y
double-mutant was used to insert a slew of other mutations,
that while reducing binding affinity promoted immune evasion
(Dejnirattisai et al., 2022). In summary, taking S-protein
convergent evolution into consideration could have provided
us with the much-needed time to design and test broad-range
VOC-effective vaccines in advance of the real developments. The
need for global monitoring of SARS-CoV-2 evolution will, for
some time, certainly remain a top priority.
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