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The global surge in energy demand, driven by technological advances and population growth, 
underscores the critical need for effective management of electricity supply and demand. In 
certain developing nations, a significant challenge arises because the energy demand of their 
population exceeds their capacity to generate, as is the case in Iraq. This study focuses on 
energy forecasting in Iraq, using a previously unstudied dataset from 2019 to 2021, sourced 
from the Iraqi Ministry of Electricity. The study employs a diverse set of advanced forecasting 
models, including Linear Regression, XGBoost, Random Forest, Long Short-Term Memory, 
Temporal Convolutional Networks, and Multi-Layer Perceptron, evaluating their performance 
across four distinct forecast horizons (24, 48, 72, and 168 hours ahead). Key findings reveal 
that Linear Regression is a consistent top performer in demand forecasting, while XGBoost 
excels in supply forecasting. Statistical analysis detects differences in models performances for 
both datasets, although no significant differences are found in pairwise comparisons for the 
supply dataset. This study emphasizes the importance of accurate energy forecasting for energy 
security, resource allocation, and policy-making in Iraq. It provides tools for decision-makers 
to address energy challenges, mitigate power shortages, and stimulate economic growth. It 
also encourages innovative forecasting methods, the use of external variables like weather and 
economic data, and region-specific models tailored to Iraq’s energy landscape. The research 
contributes valuable insights into the dynamics of electricity supply and demand in Iraq and 
offers performance evaluations for better energy planning and management, ultimately promoting 
sustainable development and improving the quality of life for the Iraqi population.

1. Introduction

Introducing the context of this research needs to present the global issue of energy demand and the issue in the country of the 
case study. Moreover, describing the commonly used forecasting models is also important before exploring the energy forecasting 
literature, which enables in accurately stating the problem of this research and the approaches for overcoming it. These aspects are 
explored and covered in this section.
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1.1. Global energy demand

The demand for energy has become a fundamental requirement for the development of nations due to the continuous growth of 
technological devices and the significant increase in the global population. Consequently, there has been a significant increase in the 
demand for energy worldwide. The production of large electrical appliances, the proliferation of factories in urban areas, and the 
rising population have all contributed to this trend.

In addition to the continued growth of technological devices and the rising global population, the negative impact of non-
renewable energy sources on the climate has become increasingly apparent. As a result, there is a growing demand for renewable 
energy sources such as hydro, geothermal, wind, and solar. Many countries aim to transition to using only renewable energy by 
2050 [1]. However, the generation of energy from renewable sources is only part of the solution. There is also a need for effective 
utilization of this energy through proper planning and distribution. Grid systems seek to supply energy based on demand to avoid 
storage costs or oversupply of energy in certain regions, while other regions experience a shortage [2]. One of the reasons for the 
energy shortage is that traditional grid systems cannot accurately estimate energy demand. Moreover, fluctuations in energy demand 
cause traditional grid systems to store large amounts of energy at certain times of the year and run out of energy supply at other 
times [3]. To solve this problem, it is crucial to accurately estimate the energy demand at all times. Forecasting energy demand 
would help with accurate planning and the proper distribution of energy to endpoints. Given the significant investment required for 
network reinforcements and expansions, it is appropriate to forecast future load and demand to ensure proper planning. Economic 
conditions, time of day, weather patterns, and other random factors all have an impact on the system load. On the other hand, 
energy demand typically follows general consumption patterns in the economy and is subject to fluctuations based on changes in 
demographics, industry activity, and weather conditions [4].

Smart grid systems come as solutions to these problems [5]. Energy distribution and utilization can be monitored and controlled. 
The advent of modern systems, such as smart meters and other advanced metering frameworks, allows data on the bidirectional flow 
of energy to be obtained [6] [7]. Such data can be analyzed and utilized for future prediction and forecasting.

1.2. Energy demand issue in Iraq

The unstable security situation in Iraq has had a negative impact on electric power generation, which results in a shortage of 
supply. Additionally, the newly introduced technologies, the lack of strategic planning, mismanagement, and infrastructure together 
increase the energy demand in Iraq. Other reasons, such as low gas supply rates, the use of traditional grid systems, the exposure 
of power stations and transmission lines to terrorist attacks, the failure to use the smart meter, and the control of violators on 
distribution lines and traditional grid systems, have also had a great impact on the stability of the power grid in Iraq. Currently, the 
demand for electricity exceeds the supply and capacity to produce electricity in Iraq, as shown in Fig. 1.

Fig. 1. Comparing Demand and Supply.
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Iraq has recently made efforts to upgrade and develop its infrastructure to keep pace with the latest technological devel-
opments in the electricity sector. After 2003, Iraq was opened to the global energy market. The 2014 report from the United 
Nations Development Program (UNDP) shows that 35% of Iraqis demand the provision of electricity and consider it a top pri-
ority [8]. The electricity grid in Iraq has been severely damaged by wars, successive conflicts, and economic sanctions in the 
1990s. To date, there are no studies that address the issue of electrical energy in Iraq in terms of forecasting demand and 
prices.

Many power plants were built in Iraq between the mid-1970s and 1980s, with a few small gas-fired plants operating in 2003. 
Most current power plants are thermal, which use crude oil supported by gas and hydropower plants. The unserved demand is 
currently served by distributed diesel generators, which are privately owned. On 9 January 2021, according to a statement by the 
Iraqi Ministry of Electricity, some estimations indicated that Iraq produces and imports 19 to 21 thousand megawatts of electricity, 
while the actual need exceeds 30 thousand megawatts. Therefore, Iraq needs to increase its production capacity by nearly double 
to secure stable levels of electrical energy, while its population may double by 2050. This means that its energy consumption will 
increase by a higher percentage than the increase in electricity production.

Despite the increase in electricity production during 2021 in Iraq, which amounted to about 20 thousand megawatts, the 
scene of electricity cuts continues, especially during the peak (in summer), when the temperature exceeds fifty degrees Celsius, 
and the size of the shortage in the supply of electric power in Iraq exceeds 10,000 megawatts due to several factors as fol-
lows:

• The increasing targeting of electric power systems and towers by sabotage.
• The decline in gas emissions supplied by Iran to operate the stations.
• The governorates lack commitment to the quotas approved for them in terms of the amount of energy supplied.
• The continuation of the emergence of informal agricultural and squatter areas adds new burdens to the system.
• The rise in temperature and the technical symptoms that accompany it.
• Obsolescence of transmission and distribution networks.

The energy system in Iraq is currently hierarchical, with the Ministry of Electricity exercising control over every aspect of the 
process, including providing electricity and equipment to consumers as well as billing and accounting services. This approach to 
control causes confusion and internal conflicts within the ministry, resulting in substandard service. Furthermore, the ministry 
functions as a policymaker, operator, regulator, and supplier, creating a potential conflict of interest. In addition, the electricity 
sector lacks a formal regulatory framework, and despite the issuance of invoices, there is no interaction with consumers regarding 
electricity services.

1.3. Energy forecasting

Energy forecasting is a crucial factor for any energy utility company. It helps guide their decision about whether there is a 
need for infrastructural development, the energy supply per time, load switching decisions, or the cost of energy, to mention a few. 
Accurate forecasting of energy demand is essential in preparing for the future and ensures that consumers do not experience energy 
shortages. And could use people’s opinions to add to the model and improve performance [9]. Load forecasting can be classified into 
four categories according to the time horizon over which the forecast is made [10]:

• Long-Term Load Forecasting (LTLF): This is a class of load forecasting whose time horizon is measured in months or perhaps years. 
They are mostly used when price or risk management assessments are done.

• Midterm Load Forecasting (MTLF): This is a class of load forecasting where the time horizon is in a couple of days to a few months. 
They are useful when stakeholders want to evaluate the financial implications of their systems. They are used when the energy 
price needs to be fixed or a risk management assessment is necessary.

• Short-Term Load Forecasting (STLF): In this type of load forecasting, the time horizon is between a few minutes and a few days 
as well. This is critical when the utility company needs to have a robust understanding of the energy consumption behavior of 
its end-users.

• Very Short-Term Load Forecasting (VSTLF): This is a type of forecasting whose time zone is in minutes or a few hours. They are 
typically not more than 3 hours.

In recent years, researchers have been using machine learning techniques and deep learning models to predict energy demand 
[11][12]. Deep learning models consist of layers of interconnected units called “perceptions” that are trained on data to make 
accurate predictions [13]. However, traditional artificial neural networks are designed to work with static data, which is not typically 
found in smart grid systems. Instead, smart grid data usually takes the form of “time series” data, which change over time and 
follow a pattern based on past events [14] [15]. To effectively learn from this type of data, a neural network would need to forget 
unimportant information and retain important information for future use. This is where recurrent neural networks (RNNs) come in; 
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Memory (LSTM) model, uses input gates, forget gates, and output gates to selectively store and retrieve information, making it well 
suited for processing time series data.

1.4. Problem statement and contribution

Predicting power supply and demand in an unstable country like Iraq is a challenging task for two main reasons. First, it’s 
difficult to collect time-series data from traditional power grid systems. Second, the inconsistent operation of power plants and the 
varying amounts of imported power from neighboring nations throughout the year have a significant impact on the completeness and 
accuracy of the data collected. These factors make it even more challenging for Iraqi officials to design plans to improve the current 
power grid and make decisions about how to handle the growing population and increasing demand for power due to advances in 
technology.

The existing literature on the Iraqi power grid network indicates a severe lack of comprehensive studies or datasets related to 
time-series-based supply and demand. Furthermore, most studies that exist rely on traditional approaches for analyzing supply and 
demand, which are insufficient considering the rapid growth in population and technology. Therefore, this work addresses a critical 
issue in Iraq by focusing on forecasting electricity supply and demand. The novelty of the paper lies in its empirical analysis of 
various machine learning and deep learning models for predicting electricity supply and demand. It also distinguishes itself from 
the existing literature by addressing the limitations of previous works and offering insights into the unique challenges faced in Iraq’s 
energy sector. Therefore, this study aims to make the following contributions:

• Collecting a time-series-based dataset for the years 2019 to 2021, encompassing a range of electricity demand and supply values. 
The dataset is novel and was officially collected with the support of the Operation and Control Office, Ministry of Electricity, 
Baghdad, Iraq. The minimum electricity demand value is 6336 MW/day, and the maximum value is 29059 MW/day. The 
minimum supply value is 5399 MW/day, and the maximum value is 18233 MW/day.

• Using the collected dataset, the supply and demand of electricity in 15 provinces in Iraq were predicted. The structural time-
series modeling approach was applied to annual data for the period between 2019 and 2021, using estimated equations and value 
assumptions. To make the predictions, the study used a range of machine learning and deep learning models, including Linear 
Regression (LR), XGBoost (XGB), Random Forest (RF), Long Short-Term Memory (LSTM), Temporal Convolutional Networks 
(TCN), and Multilayer Perceptron (MLP) Models. The study also used various metrics for benchmarking and statistical analysis 
for verifying the differences between the involved models.

The remainder of this article is organized as follows: the next section outlines the research methodology, including details of the 
data collection process, the models used, the settings of the experiments in terms of the parameters of the models, and the metrics 
involved in the process of performance evaluation. Section 3 presents and discusses the results obtained and assess the differences 
of models’ performance using statistical testing approaches. Finally, Section 5 concludes the article and presents future directions as 
well as the limitations of this research.

2. Literature review

This section explores the related energy forecasting literature and presents the state-of-the-art.

2.1. Threat to validity

Before delving into the literature, it was essential to acknowledge potential threats to the validity of the literature search. The 
search for related literature was conducted using specific search strings and databases to ensure comprehensive coverage. However, 
it was important to recognize that despite the efforts spent in this work, some relevant sources may not have been included in this 
work. The search strings employed included variations of terms such as “Energy Forecasting”, “Electricity Demand Prediction”, “Machine 
Learning”, “Deep Learning”, and “Iraq Energy Sector”. These strings were designed to capture a wide range of relevant articles and 
studies. The publishers explored in this research encompassed many academic publishers, including but not limited to Elseveir, IEEE, 
MDPI, and Springer. While the aim was to be as exhaustive as possible, the vast and dynamic nature of the energy forecasting literature 
may still lead to some omissions. To mitigate potential biases and ensure the relevance of the selected works, the focus was on the 
peer-reviewed articles published in high reputable journals and conferences [16].

Additionally, the state-of-the-art publications were considered, prioritizing those from the last decade to ensure the applicabil-
ity of the findings to contemporary energy forecasting challenges. Despite these measures, it was important to recognize that the 
landscape of energy forecasting is continually evolving. New methods, data sources, and insights emerge regularly. Therefore, this 
work represents a snapshot of the literature available up to the authors’ knowledge cutoff date in September 2022. While making 
diligent efforts to provide a comprehensive review of relevant literature, the limitations inherent in any literature search may have 
influenced the selection of sources. Readers are encouraged to consider this context when interpreting the findings and conclusions 
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Table 1

Summary of the threat to validate of this research.

Strings and Keywords Publishers Databases

Energy Forecasting”, Elsevier, Web of Science,

“Power Forecasting”, IEEE, Scopus,

“Electricity Forecasting”, MDPI, PubMed,

“Electricity Prediction”, Springer, IEEE Xplore,

“Electricity Supply Forecasting”, Wiley& Sons, ScienceDirect,

“Electricity Supply Prediction”, IntechOpen, DOAJ,

“Electricity Demand Prediction”, Intellect, and JSTOR

“Electricity Demand Forecasting”, Citeseer,

“Machine Learning”, UDA,

“Deep Learning”, PeerJ,

“Iraq Energy Sector”, MCB UP

“Power Demand”, and Hindawi

and “Power Supply”

2.2. Related work

Over the last few decades, researchers have relied on the use of statistical methods to forecast energy demand, energy balance, 
or energy supply. A commonly used method is the autoregressive integrated moving average (ARIMA), which has been successful 
in predicting energy demand in stable load situations. However, this method is not always effective in real-world scenarios, where 
extreme peak loads can occur intermittently [17].

Moreover, with the advent of neural networks, better solutions are now available to researchers. Neural networks can learn hidden 
patterns from data, which is a significant improvement over purely statistical methods. In fact, neural networks operate similarly 
to how humans learn: by making a prediction, receiving feedback, and then adjusting their prediction accordingly. A deep neural 
network that accounts for sequential data is useful for applications that involve time.

The literature includes a large number of studies on predicting electricity supply and demand. Researchers have employed a 
variety of methods, ranging from statistically based approaches to machine learning and deep learning methods. The choice of a 
particular method depends on the specific characteristics of the dataset, such as whether it is a time series, has seasonality, or is 
stationary. Consequently, researchers typically test their dataset before selecting an appropriate algorithm. For example, Dittmer et 
al. [18] forecast the demand for electricity in a rural region in Germany. They first examined their data for seasonality and trends 
and subsequently used ARIMA and other statistical models to forecast 48 hours ahead. The results showed that the models they 
employed were suitable for performing the forecasting task and allowed predictions to be made up to 14 days in advance. In another 
study, Kim et al. [19] developed a hybrid deep learning model using LSTM and CNN for the prediction of power demand. The study 
used a real-world dataset, and the results indicated that the hybrid model was more accurate in predicting power demand compared 
to using each model individually.

[20] investigated the issue of forecasting short-term electricity demand in Uruguay over the period 2010 to 2019. They employed 
a variety of models, including linear regression, ridge, KNN, random forest, gradient boosting, MLP, and ExtraTrees, and used 
benchmarking metrics such as MAE, MAPE, and RMSE. The results indicated that the models mentioned above were suitable for 
forecasting the hourly power demand. Similarly, Velasquez et al. [21] analyzed the time series of per demand in Brazil for the 
period 2014 to 2019, using various forecasting approaches. They found that incorporating regression and seasonality with mixing 
time-series approaches can help reduce forecasting errors.

Other researchers aim to test different approaches and determine the most appropriate method for their dataset. Pallonetto et 
al. [22] recently compared deep neural networks and the Support Vector Machine (SVM) approach. Their results indicated that 
LSTM provided more accurate forecasting when the load data used in training was sufficient, while SVM performed better when the 
load was insufficient. The two approaches were applied to one-hour-ahead and one-day-ahead load forecasting. Similarly, Banga et 
al. [23] compared the power demand forecasting performance of ten models: ARIMA, Prophet, LR, SVM, XGBoost, RF, KNN, RNN, 
LSTM, and GRU. They evaluated the performance of these models using metrics such as RMSE, MAE, MAPE, and R2. Their findings 
suggested that at the hourly and daily levels, the Prophet model provided more accurate forecasting compared to the other models.

Additionally, several studies have investigated the energy demand and supply of different countries through prediction processes. 
For example, Raza et al. [24] focused on Pakistan and aimed to create a balance between power demand and supply for economic 
purposes. They used the Long-Range Energy Alternatives Planning System (LEAP) to perform forecasts, and the results suggested that 
Pakistan can generate more power to meet future needs. Similarly, Jaramillo et al. [25] studied the case of Ecuador and used the 
SARIMA modeling approach for the monthly forecast of the power demand, which proved to be efficient. These studies demonstrate 
the importance of forecasting in the achievement of sustainable energy systems worldwide.
5
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Table 2

A summary of the literature.

Study Model Dataset Limitations Advantages

[17] ARIMA
the station’s monthly discharge
period from water year
1960-1961water year 2006-2007

Not appropriate for real-world
data

Stable in predicting energy
demand load situation

[18] ARIMA Real world data of 48 h horizon
No accurate when predicting
more than 14 days in advance

performing the forecasting
task and enabled predictions
to be made up to 14 days in
advance.

[19] Hybrid (LSTM-CNN)
USA District Public consumption
for 2016

Not appropriate for long terms
prediction

Appropriate for real-world
datasets

[20]

Linear Regression,
Ridge, KNN,
Random Forest,
Gradient Boosting,
MLP, and ExtraTrees

The studied dataset contains
residential energy consumption
measurements collected
between January 2017 and
December 2018

Not appropriate for uncertainty
in electricity demand

These models are appropriated
for hourly prediction

[22] SVM

hourly load data from 2013 to
2018, with a total of 52,584
data.And daily load from 2013
to 2018, with 2191 data.

Difficult to deal with anomalies
in data

These models are appropriated
for hourly and daily prediction

[23]

ARIMA, Prophet,
LR, SVM, XGBoost,
RF, KNN, RNN,
LSTM, and GRU

Electricity consumption dataset
of house from 11 Jan, 2016, to
27 May 2016
(around 4.5 Months duration)
per 10-minute observation

Difficult to deal with many
features

Prophet outperformed the other
models in terms of hourly and
daily prediction

[24] LEAP

electricity consumption data and
growth rate of electricity
consumption for the period
2008 to 2018.

Accuracy needs to be improved
Able to predict the power
demand for the period between
2018-2030

[25] SARIMA
Ecuadorian annual maximum
demand from 1990 to 2019

Accuracy needs to be improved
Stable in predicting energy
demand load situation

3. Research methodology

This section describes about the data collection process as well as the forecasting models involved in this research. Also, the setup 
of the experiments in terms of optimizing the models’ parameters and the evaluation metrics are also explained.

3.1. Dataset collection

The data used in this work was officially collected from the Department of Operations and Control of the Ministry of Electricity in 
Baghdad, Iraq, for the period 2019 to 2021. The data consisted of hourly time-series data on the supply and demand of 15 provinces 
in Iraq. The collection process was strictly regulated due to governmental procedures in Iraq, which took approximately 4 months to 
complete. Then it was preprocessed and cleaned to address missing values and outliers. In total, the dataset consisted of 26,352 rows 
and 15 columns, each corresponding to a different province.

3.2. Time series forecasting models

One of the main considerations in the analysis of time series data is the examination of their inherent seasonality [26]. Upon 
conducting a rigorous Dickey-Fuller analysis on the dataset (see Figs. 2 and 3), it was evident that both demand and production 
exhibited non-stationary behaviors. Consequently, in light of this assessment, the decision was made to employ forecasting models 
that are robust to the absence of stationarity in the series. This judicious choice not only enhances the robustness of the analysis, but 
also confers adaptability by bypassing the strict stipulation that the data must conform to stationarity, a conventional prerequisite in 
many established statistical models.

In this study, an extensive analysis was conducted using six distinct prediction models. Three of them are deep learning-based 
models: TCN (Temporal Convolutional Network), MLP (Multi-layer Perceptron), and LSTM (Long Short-Term Memory). The remain-
ing three correspond to machine learning models, namely linear regression, XGBoost, and random forest. In the following, a brief 
6

description of each model is provided:
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Fig. 2. Dickey-Fuller Test for Demand.

Fig. 3. Dickey-Fuller Test for Supply.

3.2.1. Deep learning models

• Long Short-Term Memory Network. The Long Short-Term Memory (LSTM) algorithm is a deep learning method used for 
prediction purposes that can handle individual data points or a sequence of data points. It has proven to be an effective algorithm 
that provides accurate predictions based on recent information in the data. LSTM is capable of retaining information for a long 
period of time to predict, process, and classify time-series datasets. It primarily utilizes four neural networks and memory blocks 
(cells), which store information and control the information flow using three gates produced by a sigmoid function. The Input 
Gate is used to include useful information; the Forget Gate is used to discard data that are no longer useful; and Output Gate is 
7

used to extract relevant information from a cell state [27].
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• Temporal Convolutional Network. The Temporal Convolutional Network (TCN) places more emphasis on temporal series. 
The TCN is a time-series processing algorithm developed by Bai et al. in 2018 to address the challenge of extracting long-term 
time-series information. It combines causal convolution, dilated convolution, and residual blocks. The TCN requires low memory 
for training due to its shared convolutional filters and can process long input sequences through parallel convolutions, making 
it a more stable training scheme [28] [29].

• Multi-layer Perceptron. The Multilayer Perceptron (MLP) is one of the most popular neural networks used to train deep learning 
models. In this network, the input is presented to the network with the desired output, and the weights are adjusted so that 
the network attempts to produce the desired output. The MLP consists of three layers: the input layer, which contains the input 
neurons that feed information to the hidden layer; the hidden layer, which performs calculations based on the input data and 
forwards the output to the output layer; and the output layer, which represents the model results. The number of hidden layers 
determines the depth of the network, and it is the reason why an MLP network with more hidden layers is considered a deep 
learning model [30].

3.2.2. Machine learning models

• Linear Regression. Regression analysis is a statistical approach that allows us to determine the strength of the relationship 
between one or more variables. It can therefore help us predict unknown values based on these relationships. Simple linear 
regression involves using one independent variable to model a linear relationship with a dependent variable. Multiple linear 
regression, on the other hand, involves using multiple independent variables to predict the dependent variable [31]. Although 
Linear Regression is not inherently suited for modeling non-linear time series data, in this context, some justifications can be 
found for using it as a prediction model. Linear regression models are simple and easy to interpret and can be a good starting 
point for modeling time-series data, providing a baseline for understanding the data’s structure. After evaluating the performance 
of the model, linear regression is considered an appropriate choice for the data under study, as shown by the experimental results 
in Section 4.

• XGBoost. XGBoost is a popular gradient boosting algorithm used for machine learning tasks. It was developed by Tianqi Chen 
[32] as an improvement on the GBM algorithm, using a more regularized model to prevent overfitting. XGBoost is known for 
its efficiency, flexibility, and portability and has been shown to outperform other algorithms in tasks such as classification, 
regression, and ranking. The algorithm combines multiple weak learners to create a strong learner, with each weak learner 
trained on a subset of the data. The algorithm works by training decision trees and combining their predictions to make a final 
prediction [33].

• Random Forest. Random forest models are a popular type of nonparametric machine learning model used for both classification 
and regression tasks. They belong to the ensemble method category, specifically bagging methods. Ensemble methods use a group 
of weak learners to create a stronger and more accurate model. Random forests are a collection of many decision trees that are 
known to be prone to overfitting. By combining multiple trees, random forest models are able to mitigate this issue and provide 
a more flexible and powerful model with lower variance. This allows larger and more predictive trees to grow, resulting in better 
performance in both training and unseen data. Additionally, random forest models retain the simplicity and interpretability of 
decision trees [34].

3.3. Experimental setup

The sliding or rolling window approach is used in time series forecasting to handle the sequential and temporal nature of the 
data. It involves training the forecasting model on a fixed-length window of past observations and then using the model to make 
predictions for a specific forecast horizon. The window slides forward in time and is repeated at regular intervals. In this context, 
the concept of forecast horizon refers to the time in the future for which predictions are to be made. Therefore, it determines how 
far ahead the prediction of future values is intended based on historical data. On the other hand, the past history horizon, also 
known as the historical data window, refers to the length of the time series data that are used to make predictions in the forecast 
horizon.

Both values are essential because they influence the complexity and accuracy of the forecasting model. Furthermore, in the case 
of past history, it is important to strike a balance between using enough historical data to capture relevant patterns and trends and 
not including too much data that may introduce noise or outdated information.

The purpose of the study is to analyze the behavior of six different prediction models when forecasting the demand and supply 
of energy in Iraq for four different horizons ahead: 24, 48, 72, and 168 hours. To do that, the experiments in this study were carried 
out in two phases, as can be seen in Fig. 4: the first phase was designed to optimize the hyperparameters of each model, while in the 
second phase, the optimized values were used to train the models on different scenarios, according to the past history and forecast 
horizons, on both datasets.

The datasets have been split into two parts: training and validation, with a proportion of 80% and 20%, respectively. The first 
subdivision was used to train the models, while the second one was used to evaluate and compare their performance in both phases. 
This approach allows us to assess the model’s performance on data entirely independent of those used for training, minimizing the 
risk of overfitting. The use of a test set not seen during the training process ensures that the model not only fits the training data 
8

but can also effectively generalize to new observations. This validation approach provides a solid foundation to have confidence in



Heliyon 10 (2024) e25821M. Aldarraji, B. Vega-Márquez, B. Pontes et al.

Fig. 4. Hyperparameter optimization process.

Table 3

Training parameters used for deep learning mod-
els.

Parameters Values

Batch size 32, 64
No. of epochs 200
Max steps per epoch 10000
Optimizer Adam
Learning rate 0.001, 0.01
Normalization minmax, zscore

the models’ ability to make accurate predictions in real-world scenarios, as its performance has been comprehensively evaluated on 
previously unseen data.

The first phase of the experimentation consists of establishing the best parameter combination for each model by performing an 
experiment with the entire parameter grid and setting the prediction horizon to 24 hours and the past history to 72 hours. Tables 3
and 4 show the parametrization used in the first phase, including the parameter names together with all the values tested for the 
three deep learning models. Similarly, Table 5 shows the parametrization for the three machine learning models. In both cases, the 
parameters that are not specified have been left with their default values.

Various configurations for batch size, number of epochs, maximum steps per epoch, optimizer, and learning rate are discussed 
in the context of deep learning models. For the batch size, the commonly used values (32 and 64) were selected, along with the 
number of epochs (200), maximum steps per epoch (10000), and learning rates (0.001 and 0.01). The Adam optimizer was chosen 
due to its suitability for a broad range of machine learning problems, as reported in the literature [35]. Furthermore, for data 
preprocessing, two widely used normalization techniques were employed: mean normalization and min-max scaling, also known as 
z-score normalization, as shown in Table 3. These normalization methods have been used in both deep learning and machine learning 
9

models. Moreover, Using different normalization methods in the study serves several purposes: 1) it enhances the robustness of the 
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Table 4

The parameters used for LSTM, TCN, and MLP deep learning models.

Deep Learning Models Parameters Values

Recurrent Layers 1, 2, 4

Units 32, 64, 128

Return sequence True, False

Recurrent dropout 0, 0.2

LSTM Dense dropout 0, 0.2

Hidden Layers (2) [8, 16],[16, 8],[32, 64],[64, 32]

Hidden Layers (3) [8, 16, 32],[32, 16, 8],

[32, 64, 128],[128, 64, 32]

Hidden Layers (5) [8, 16, 32, 16, 8],[32, 64, 128, 64, 32]

Number of stacks 1, 3

Number of filters 32, 64

Dilations [1, 2, 4, 8], [1, 2, 4, 8, 16]

Kernel size 3, 6

TCN Return sequence True, False

Recurrent dropout 0, 0.2

Dense dropout 0, 0.2

Hidden Layers (2) [8, 16],[16, 8],[32, 64],[64, 32]

Hidden Layers (3) [8, 16, 32],[32, 16, 8]

[32, 64, 128],[128, 64, 32]

Hidden Layers (5) [8, 16, 32, 16, 8],[32, 64, 128, 64, 32]

Hidden Layers (1) 8 and 32 neurons

MLP Hidden Layers (2) [8, 16], [16, 8], [32, 64], [64, 32]

Hidden Layers (3) [8, 16, 32], [32, 16, 8],

[128, 64, 32], [32, 64, 128]

Hidden Layers (5) [8, 16, 32, 16, 8], [32, 64, 128, 64, 32]

Table 5

The parameters used for Random Forest, Linear Regression, and XGBoost ma-
chine learning models.

Machine Learning Models Parameters Values

Number of estimators 100, 300,600

Random Forest Max depth 2, 4, 6, 8, 10

Min samples split 2, 4, 6, 8

Min samples leaf 1, 3, 5, 7

Fit intercept [true, false]

Linear Regression Normalize [true, false]

Positive [true, false]

Booster gbtree

Number of estimators [100, 300, 600]

XGBoost Min child weight [1, 5, 10]

Subsample [0.5, 0.6, 0.8, 1.0]

Colsample bytree [0.5, 0.6, 0.8, 1.0]

Max depth [3, 4, 5, 6]

results by accounting for variations in data characteristics, 2) enables comparisons to identify the most effective normalization 
technique, and 3) assesses the generalization of forecasting models to different data representations and aids in data exploration by 
revealing specific data patterns.

Table 6 contains the description of each model for demand and supply for the best parameters found. The best parameter 
combination was then used in the second phase of the experimentation, where experiments have been conducted for each of the 
10

remaining forecast and past history horizons.
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Table 6

The best parametrization for each model and dataset.

MODELS DEMAND MODEL DESCRIPTION SUPPLY MODEL DESCRIPTION

LSTM

Recurrent Layers = 1

Units = 128

Return sequence = False

Recurrent dropout = 0

Dense dropout = 0.2

Dense layers = [32, 64, 128]

Recurrent Layers = 1

Units = 64

Return sequence = False

Recurrent dropout = 0

Dense dropout = 0.2

Dense layers = [32, 64, 128, 64, 32]

TCN

Number of stacks = 3

Number of filters = 64

Dilations = [1, 2, 4, 8]

Kernel size = 3

Return sequences = False

TCN dropout = 0.2

Dense dropout = 0.2

Dense layers = [64, 32]

Number of stacks = 3

Number of filters = 64

Dilations = [1, 2, 4, 8]

Kernel size = 6

Return sequences = True

TCN dropout = 0

Dense dropout = 0

Dense layers = [32, 64]

MLP Hidden layers = [32] Hidden layers = [32, 64]

Fit intercept = False Fit intercept = False

LR Normalize = True Normalize = True

Positive = False Positive = False

Number of estimators = 300 Number of estimators = 300

Max depth = 10 Max depth = 10

RF Min samples split = 4 Min samples split = 2

Min samples leaf = 1 Min samples leaf = 3

Booster = gbtree Booster = gbtree

Number of estimators = 300 Number of estimators = 300

XGB Min child weight = 10 Min child weight = 10

Subsample = 0.8 Subsample = 0.8

Colsample bytree = 0.8 Colsample bytree = 0.5

Max depth = 6 Max depth = 6

3.4. Evaluation metrics

The purpose of this study is to evaluate and compare the performance of previous models under different scenarios. To achieve 
this, five widely recognized metrics from the forecasting literature [36,37] were selected: mean absolute error (MAE), mean squared 
error (MSE), root mean squared error (RMSE), mean absolute percentage error (MAPE) and weighted average percentage error 
(WAPE). The chosen metrics were used as a basis for evaluating and comparing the effectiveness of the algorithms in each scenario. 
The respective formulas for these metrics are defined in Equations (1), (2), (3), (4) and (5), respectively.

• Mean Absolute Error (MAE). MAE reflects the average of the absolute differences between the actual and predicted observations 
in the test sample. It is calculated as follows:

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑗=1

|𝑦𝑖 − 𝑦̂𝑗 |, (1)

where 𝑖 and 𝑗 are indexes, 𝑛 is the number of observations, 𝑦𝑗 and 𝑦̂𝑗 are the actual and the predicted values, respectively.
• Mean Squared Error (MSE). It measures the average of squared differences between actual and predicted observations. Using 

the same symbols as in MAE, the formulation is as follows:

𝑀𝑆𝐸 = 1
𝑛

𝑛∑
𝑗=1

(𝑦𝑖 − 𝑦̂𝑗 )2 (2)

• Root Mean Squared Error (RMSE). It measures the square root of the average of squared differences between the actual and 
11

predicted observation and, using the previous symbols, RMSE can be formulated as follows:
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𝑅𝑀𝑆𝐸 =

√√√√1
𝑛

𝑛∑
𝑗=1

(𝑦𝑖 − 𝑦̂𝑗 )2 (3)

• Mean Absolute Percentage Error (MAPE). This metric evaluates the accuracy of the prediction of the forecasting model. It is 
formulated using the following equation:

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛∑
𝑗=1

|𝑦𝑖 − 𝑦̂𝑗 |
max(𝜖, |𝑦𝑖|) (4)

• Weighted Average Percentage Error (WAPE). This metric evaluates the accuracy of the prediction of the forecasting model, 
taking into account the weights of the observations. It is formulated using the following equation:

𝑊𝐴𝑃𝐸 = 1
𝑛

𝑛∑
𝑗=1

|𝑦𝑖 − 𝑦̂𝑗 | ×𝑤𝑗

max(𝜖, |𝑦𝑖|) , (5)

where 𝑤𝑗 represents the weight assigned to each observation.

4. Results and discussions

This section discusses the results achieved through the use of the chosen forecasting models and the collected dataset. The 
objective was to evaluate and compare the performance of the different models for demand and supply datasets in various scenarios. 
Specifically, the objective is to select the best prediction model for each forecast horizon (24 h, 48 h, 72 h, and 168 h). For this 
purpose, the models were tested with seven different past history periods. Reproducibility of experiments can be performed with the 
code from the public repository located at [38].

Consistent with previous studies, five widely recognized metrics from the forecasting literature were selected to evaluate the 
models; all of them have been explained in the previous section. All implementations were carried out using the Python programming 
language.

Before the experiments were carried out, it was necessary to test the trends and seasonality of the data. Fig. 5 depicts the trend 
of demand and seasonality of the data. According to Fig. 5, it could be observed that the data has trended at specific time series and 
seasonality features. The demand trend showed the general direction in which demand for power is moving over time. Clearly, some 
periods showed an increase or decrease in demand based on the period of time. However, seasonality in the figure refers to patterns 
in demand that repeat over time, such as higher demand for certain times during a season. The residuals represent the differences 
between the actual demand for power and the predicted demand. They represent the variability in demand that cannot be explained 
by trends or seasonality. The same behavior is observed in the supply data, as shown in Fig. 6. Visualizing the demand and supply 
shows the fluctuation of power in Iraq.
12

Fig. 5. Demand trend and seasonality analysis.
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Fig. 6. Supply trend and seasonality analysis.

As announced in Section 3 methodology is divided into two parts. The first step was designed to determine which hyperparameters 
are best for each model with a specific past history of 72 hours and a forecast horizon of 24 hours. Once these parameters and thus 
the best model have been identified, the model is trained on different scenarios in which the prediction horizon and past history 
vary.

To make a more extensive comparison and to see the behavior of these data with different prediction models, it has been 
decided to use a total of six models, three of which are considered machine learning and the other three deep learning models. The 
models chosen were as follows: linear regression (LR), random forest (RF), XGBoost (XGB), long-short-term memory network (LSTM), 
temporal convolutional network (TCN), and multi-layer perceptron (MLP). The performance of these models is evaluated using the 
metrics MSE, RMSE, MAE, WAPE, and MAPE.

The proposed methodology aims to establish an experimental framework for the prediction of energy supply and demand in Iraq. 
The following sections will present the results separately for the two-time series analyzed in this study, beginning with the demand 
and then the supply.

4.1. Energy demand forecasting

Table 7 provides results for forecast horizon 24 h and demand dataset. The results are divided into two main categories: more 
classical machine learning algorithms and deep learning models. Models were benchmarked and compared with respect to past 
history and five performance metrics. The two best-performing models are linear regression for machine learning models and TCN 
for deep learning. The first obtains MAE value of 450 and MAPE of 0.025% for linear regression, while the second gets MAE value 
of 493 and MAPE of 0.026%. Regarding the models with the worst results, it can be seen that the worst in the first category was 
obtained with random forest with MAE value of 870 and MAPE of 0.040%. In the second category, MLP was the worst, with a MAE 
value of 521 and MAPE of 0.028%.

Table 8 provides results for forecast horizon 48 and demand dataset. The two best-performing models are linear regression for 
machine learning and LSTM for deep learning. The first obtains MAE value of 643 and MAPE of 0.035% while the second gets MAE 
value of 678 and MAPE of 0.036%. As for the models with the worst results, it can be seen that the worst in the first category was 
obtained by random forest with MAE value of 1002 and MAPE of 0.048%. In the second category, TCN was the worst, with MAE 
value of 685 and MAPE of 0.037%.

Table 9 provides the results for the forecast horizon 72 h and demand dataset. The two best-performing models are linear 
regression for machine learning models and LSTM for deep learning. The first one obtains MAE value of 784 and MAPE of 0.042%, 
while the second gets MAE value of 815 and MAPE of 0.043%. As for the models with the worst results, it can be seen that the worst 
in the first category was obtained with random forest with MAE value of 1096 and MAPE of 0.053%. In the second category, MLP 
13

was the worst, with MAE value of 849 and MAPE of 0.045%.
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Table 7

Forecasting demand with a forecast horizon of 24 h and different past history scenarios. The optimal outcomes of each model 
have been emphasized in bold.

FORECAST 24 H DEMAND

Model Past History MSE RMSE MAE WAPE MAPE

MACHINE LEARNING

LR

24 1083220 581.6717 502.9881 0.026775 0.027288
48 955023.4 544.9984 463.4439 0.024786 0.025514
72 902146.3 535.9016 454.1736 0.024341 0.025129
96 901062.8 534.4753 452.8799 0.024281 0.025125
120 893241.5 532.5168 450.8758 0.024165 0.025012

144 894859.1 535.2261 453.0205 0.02428 0.025122
168 897856.9 537.4003 455.4497 0.02441 0.025241

RF

24 1777895 1004.792 870.3464 0.040312 0.040828

48 1783794 1008.703 874.9128 0.040556 0.041089
72 1786500 1012.165 879.3987 0.040759 0.041282
96 1787945 1014.781 882.0955 0.040885 0.041402
120 1802335 1020.769 887.2238 0.041098 0.041599
144 1816157 1026.992 892.7668 0.041359 0.04186
168 1824805 1028.919 893.9624 0.041408 0.041909

XGB

24 1405847 797.0603 662.6271 0.030384 0.031097
48 1420858 781.875 655.0541 0.030094 0.030448

72 1381567 783.4709 661.1899 0.030483 0.030734
96 1465919 816.2758 690.202 0.031836 0.032145
120 1627843 872.1356 737.7352 0.033911 0.034171
144 1691088 898.1677 761.9106 0.035062 0.035242
168 1768986 928.5309 794.6021 0.036452 0.036505

DEEP LEARNING

LSTM

24 1144054 638.9068 545.846 0.028696 0.029133
48 984984.4 627.0448 541.006 0.027617 0.028323
72 925205.1 595.9861 507.4458 0.026359 0.027138
96 910309.9 586.0333 501.2808 0.025987 0.026749

120 974763.3 628.0135 530.1516 0.027475 0.028304
144 953322.1 634.6448 545.7355 0.02779 0.028519
168 1030154 689.2143 591.5543 0.02997 0.030618

TCN

24 1152463 651.2944 560.162 0.029504 0.029947
48 1016793 607.09 512.1052 0.026991 0.027858
72 945475.2 583.6522 493.6367 0.026075 0.026877

96 1007753 611.8488 521.1543 0.027649 0.028704
120 1280490 811.7644 702.6569 0.035907 0.03724
144 1015919 649.027 553.7207 0.02878 0.029635
168 1122628 714.8256 604.2888 0.031649 0.032668

MLP

24 1210091 678.1158 589.9583 0.030914 0.031547
48 1027575 621.4995 521.9852 0.027398 0.028208

72 1016364 642.0646 548.8354 0.028629 0.029414
96 1089717 710.9572 596.4573 0.030895 0.03187
120 1011618 625.9169 529.1662 0.027787 0.028696
144 1046958 665.4122 562.4341 0.029188 0.030082
168 1003728 620.1257 522.4953 0.027718 0.028654

Table 10 provides the results for the 168 h forecast horizon and the demand data set. The two best-performing models are linear 
regression for machine learning models and MLP for deep learning. The first obtains the MAE value of 1123 and MAPE of 0.060%, 
while the second gets MAE value of 1162 and MAPE of 0.062%. As for the models with the worst results, it can be seen that the 
worst in the first category was obtained with random forest with MAE value of 1368 and MAPE of 0.068%. In the second category, 
LSTM was the worst, with MAE value of 1187 and MAPE of 0.063%.

Fig. 7 provides an overview of the previous tables, taking into account the MAE metric. This figure groups the results according 
to the forecast horizon, showing a comparison between each of the models used in the experimentation. It is interesting to note at 
first glance how, as the prediction horizons increase, the results get worse for all models. This decrease may be mainly due to the fact 
that higher prediction horizons imply greater difficulty in prediction. On the basis of this figure, it seems that the linear regression 
model outperformed the other models, with the lowest MAE across all four forecast horizons. However, random forest seems to 
almost always obtain the worst results, although if not only the individual results are taken into account, but also the median of the 
distribution, the worst model would be RF. Finally, it is worth noting that there is a certain difference in results between the DL 
and ML models used, the latter being the ones that obtain greater variability between models, which may be due to the fact that DL 
14

models in this case are more suitable for capturing the temporal characteristics of the data set.
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Table 8

Forecasting demand with a forecast horizon of 48 h and different past history scenarios. The optimal outcomes of each 
model have been emphasized in bold.

FORECAST 48 H DEMAND

Model Past History MSE RMSE MAE WAPE MAPE

MACHINE LEARNING

LR

24 1802788 810.2798 685.2839 0.036443 0.037186
48 1630950 773.3018 648.7147 0.034592 0.035509
72 1592371 766.11 643.1999 0.034326 0.035321

96 1594239 766.6057 643.9121 0.034368 0.035413
120 1593819 767.8873 644.3848 0.034365 0.035409
144 1594905 771.1242 647.1179 0.034486 0.035515
168 1594976 773.5811 649.7903 0.034629 0.035647

RF

24 2391115 1167.108 1002.596 0.047561 0.048195

48 2360015 1165.339 1003.585 0.047664 0.04828
72 2347167 1170.524 1009.928 0.047902 0.048457
96 2360748 1177.735 1016.408 0.048168 0.048714
120 2368809 1183.015 1020.23 0.048316 0.048844
144 2385238 1185.532 1022.206 0.048425 0.048967
168 2392329 1189.519 1025.292 0.048561 0.049098

XGB

24 2205185 1020.789 848.3964 0.039442 0.04015
48 2145587 994.6335 833.9088 0.038913 0.03917

72 2172596 1030.319 869.4493 0.040367 0.040629
96 2333627 1078.039 912.2416 0.042222 0.042534
120 2558740 1140.924 962.5131 0.04452 0.044707
144 2740464 1192.588 1011.527 0.046635 0.046754
168 2763566 1211.867 1035.271 0.047752 0.04777

DEEP LEARNING

LSTM

24 1880940 871.5793 738.2946 0.038666 0.03924
48 1628318 805.7887 678.4556 0.035587 0.036495

72 1667014 862.0683 728.2714 0.037642 0.038521
96 1654046 848.2781 719.0411 0.038009 0.039209
120 1733785 902.0217 780.9808 0.039825 0.040674
144 1692101 883.8551 751.2145 0.038614 0.039472
168 1890780 996.885 838.3699 0.043165 0.044227

TCN

24 1889494 856.2178 723.4069 0.038303 0.039126
48 1710081 826.531 697.5408 0.036804 0.037784
72 1682362 817.2671 685.4659 0.036445 0.037561

96 1823857 934.5217 775.2336 0.040206 0.041349
120 1895499 949.2139 823.3499 0.04243 0.043457
144 1799922 878.4809 740.2786 0.039094 0.040355
168 2143434 1110.038 936.7238 0.047366 0.048361

MLP

24 1929685 891.4968 756.4653 0.039866 0.040713
48 1689021 816.0728 680.9173 0.036003 0.036978

72 1725579 858.2358 716.1583 0.037721 0.038835
96 1761828 841.7797 703.5016 0.037501 0.038748
120 1766339 870.6981 735.7779 0.038496 0.039554
144 1807041 909.212 772.0895 0.040092 0.041122
168 1819894 912.3422 760.1011 0.039903 0.041027

Fig. 8 shows the comparison between the predicted and actual values for the last month of the study. The best model among all 
the predictions of the experiments served as the basis for the comparison. In this case, the best result was obtained with a prediction 
horizon of 24 hours with the linear regression model.

The Friedman test has been applied to assess the overall significance of differences among the performances of the six models. 
The Friedman test is a non-parametric test used to compare three or more matched groups (in this case, models) without assuming 
that the data follow a specific distribution, and the objective is to determine whether there are significant differences between the 
groups. In this context, each model provides 28 evaluation values (7 different past values for 4 different forecast windows) from 
Tables 7 - 10. The Friedman test determined a significant difference in the models’ performances, both for MAE and RMSE values, 
with a p-value equal to 6.49𝑒 − 24 and 7.53𝑒 − 24, respectively.

Afterwards, the test used for two-to-two comparisons is the Mann-Whitney U test (also known as the Wilcoxon rank-sum 
test). The p-value is then corrected using the Bonferroni-Dunn method. After analyzing in the comparison tests between the six 
models, significant differences were found in some but not all comparisons. The presence of significant differences in at least 
some comparisons indicates that the models are not equivalent in terms of their performance in the circumstances evaluated. 
15

This allows us to establish the following ranking in the model’s performance: The best-performing model is LR, followed by 
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Table 9

Forecasting demand with a forecast horizon of 72 h and different past history scenarios. The optimal outcomes of each 
model have been emphasized in bold.

FORECAST 72 H DEMAND

Model Past History MSE RMSE MAE WAPE MAPE

MACHINE LEARNING

LR

24 2343361 969.2559 815.0429 0.04338 0.044146
48 2194789 939.0349 787.3046 0.041973 0.042938
72 2163190 934.0767 784.3679 0.041838 0.042889

96 2179585 938.2074 787.8978 0.042021 0.043112
120 2188277 940.9846 789.8374 0.042087 0.043168
144 2183029 942.9451 791.3409 0.042136 0.043194
168 2179172 945.0924 793.0812 0.042228 0.043274

RF

24 2843364 1286.215 1096.141 0.052777 0.05327

48 2784749 1286.537 1099.299 0.052916 0.05339
72 2754846 1286.674 1100.026 0.052894 0.053328
96 2759947 1290.505 1102.892 0.053005 0.053428
120 2782343 1297.687 1109.155 0.053253 0.05366
144 2791838 1300.271 1110.829 0.053346 0.053752
168 2802719 1303.531 1113.451 0.053483 0.053874

XGB

24 2719869 1171.211 974.6917 0.045809 0.046326
48 2649420 1154.008 964.7845 0.045354 0.045535

72 2714473 1192.106 1001.543 0.046989 0.047144
96 2931581 1252.13 1052.446 0.049163 0.049332
120 3278267 1330.852 1123.34 0.052317 0.052419
144 3328298 1359.648 1154.938 0.053922 0.053924
168 3349189 1374.13 1168.922 0.054669 0.054564

DEEP LEARNING

LSTM

24 2384366 1012.584 852.4807 0.044892 0.045506
48 2346997 1086.683 934.6706 0.047782 0.048505
72 2135899 968.358 815.0538 0.042992 0.043995

96 2191907 1000.249 839.9378 0.044161 0.045158
120 2452033 1114.831 961.8425 0.049228 0.049978
144 2525372 1128.269 941.3932 0.049361 0.050675
168 2314688 1050.92 890.9157 0.046523 0.04742

TCN

24 2412693 1007.948 843.7587 0.044764 0.045463

48 2359442 1087.277 939.75 0.048301 0.049127
72 2326596 1065.875 916.8954 0.047433 0.048398
96 2354439 1050.395 891.3047 0.046665 0.047749
120 2388654 1072.106 920.5687 0.047755 0.048674
144 2405361 1082.162 908.5797 0.047351 0.048368
168 2385619 1055.99 901.3585 0.047314 0.048281

MLP

24 2406789 1018.402 852.6924 0.045053 0.045732

48 2530987 1082.555 924.6539 0.048367 0.049807
72 2277146 1029.653 873.125 0.045628 0.046588
96 2340006 1015.634 849.3662 0.044998 0.046293
120 2382516 1052.136 892.1342 0.04671 0.047733
144 2510326 1123.572 956.0905 0.049549 0.050525
168 2306154 1020.625 858.7795 0.045353 0.046381
16

Fig. 7. Distribution of results in terms of MAE grouped by forecast horizon.



Heliyon 10 (2024) e25821M. Aldarraji, B. Vega-Márquez, B. Pontes et al.

Table 10

Forecasting demand with a forecast horizon of 168 h and different past history scenarios. The optimal outcomes of each model 
have been emphasized in bold.

FORECAST 168 H DEMAND

Model Past History MSE RMSE MAE WAPE MAPE

MACHINE LEARNING

LR

24 3800349 1383.785 1136.715 0.060547 0.0614108
48 3729226 1368.163 1123.062 0.059875 0.060936

72 3751450 1372.508 1128.569 0.060209 0.061336
96 3801594 1382.574 1137.932 0.060724 0.061882
120 3806957 1385.469 1139.332 0.060763 0.061900
144 3786811 1384.241 1136.500 0.060546 0.061643
168 3779494 1384.868 1136.100 0.060512 0.061589

RF

24 4132224 1645.646 1368.324 0.067707 0.068097

48 4132224 1645.646 1368.324 0.067707 0.068097
72 4124540 1658.615 1379.626 0.068147 0.068412
96 4148383 1666.749 1387.417 0.068480 0.068708
120 4185005 1676.267 1395.212 0.068866 0.069091
144 4228470 1685.671 1401.884 0.069175 0.069382
168 4228470 1685.671 1401.884 0.069175 0.069382

XGB

24 4238792 1608.761 1316.703 0.063256 0.063539

48 4455385 1664.261 1363.103 0.065114 0.065111
72 4673260 1724.463 1422.586 0.067710 0.067614
96 4894699 1770.473267 1466.999 0.069817 0.069655
120 5111436 1819.981 1507.251 0.072056 0.071793
144 5177563 1846.604 1530.110 0.073505 0.073266
168 5288407 1872.017 1549.172 0.074731 0.074559

DEEP LEARNING

LSTM

24 3844556 1444.743 1192.793 0.062690 0.063439
48 3793894 1443.222 1187.218 0.062465 0.063381

72 3744980 1473.913 1231.977 0.063936 0.064635
96 3834768 1467.208 1215.460 0.063787 0.064650
120 3866136 1437.989 1192.848 0.063318 0.064419
144 4082703 1586.656 1313.151 0.068273 0.069206
168 3809797 1476.846 1216.722 0.064437 0.065349

TCN

24 3832966 1462.073 1203.622 0.063298 0.063888
48 4227610 1670.172 1430.471 0.072372 0.072844
72 3868559 1421.634 1175.009 0.062504 0.063839

96 4098126 1470.115 1217.771 0.064670 0.066255
120 3998622 1456.357 1209.385 0.064342 0.065665
144 4040086 1494.787 1231.038 0.065116 0.066609
168 4233132 1496.094 1254.320 0.066543 0.068311

MLP

24 3984785 1424.518 1184.110 0.062992 0.064197
48 3785355 1412.873 1162.771 0.061658 0.062676

72 3917988 1408.398 1169.994 0.062392 0.063881
96 3961381 1440.025 1189.306 0.063348 0.064654924
120 3982736 1438.945 1195.718 0.063720 0.065118
144 4174662 1573.977 1290.176 0.067576 0.068745
168 3938162 1445.909 1197.005 0.063666 0.064913
17

Fig. 8. Comparison between actual and predicted values for demand in the last month of the data set. The observed results are those obtained with the best model.
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LSTM, TCN, and MLP, which are considered equivalent. The third place is for XGB and last place (worst performing model) for 
RF.

An overfitting analysis has also been carried out using learning curves, for the best model in the ranking. Learning curves provide 
insights into how the classifier’s performance evolves as the training set size increases. By plotting the model’s training and validation 
metrics against the number of training instances, it is possible to identify if overfitting or underfitting is occurring.

In Fig. 9, the learning curves for the best experiment have been represented, corresponding to LR model, for 24 hours forecast 
prediction and 120 hours for past history. X-axis represents the iteration number, where more than 20000 increasing size subsets 
have been used. Y-axis represents the normalized MAE metric values for both train and validation subsets. As it can be derived from 
this figure, the convergence of both curves, as well as the level in which it occurs indicate a situation of a well-generalized model, 
indicating that it generalizes well to unseen data.

Fig. 9. Learning curves for Linear Regression (24 h Forecast and 120 h Past history).

4.2. Energy supply forecasting

Table 11 provides results for forecast horizon 24 and the supply dataset. The two best-performing models are XGBoost for machine 
learning models and LSTM for deep learning. The first obtains MAE value of 509 and MAPE of 0.035% while the second gets MAE 
value of 541 and MAPE of 0.040%. As for the models with the worst results, it can be seen that the worst in the first category was 
obtained with random forest with MAE value of 604 and MAPE of 0.042%. In the second category, TCN was the worst, with MAE 
value of 556 and MAPE of 0.041%.

Table 12 provides results for forecast horizon 48 and the supply dataset. The two best-performing models are XGBoost for machine 
learning models and LSTM for deep learning. The first one obtains MAE value of 588 and MAPE of 0.041% while the second gets 
MAE value of 644 and MAPE of 0.048%. As for the models with the worst results, it can be seen that the worst in the first category 
was obtained with random forest with MAE value of 690 and MAPE of 0.049%. In the second category, MLP was the worst, with 
MAE value of 658 and MAPE of 0.049%.

Table 13 provides results for forecast horizon 72 and the supply dataset. The two best-performing models are XGBoost for machine 
learning models and LSTM for deep learning. The first obtains MAE value of 637 and MAPE of 0.045% while the second gets MAE 
value of 704 and MAPE of 0.053%. As for the models with the worst results, it can be seen that the worst in the first category was 
obtained with random forest with MAE value of 747 and MAPE of 0.053%. In the second category, TCN was the worst, with MAE 
value of 736 and MAPE of 0.054%.

Table 14 provides results for forecast horizon 168 and the supply dataset. The two best-performing models are XGBoost for 
machine learning models and TCN for deep learning. The first obtains MAE value of 875 and MAPE of 0.061% while the second gets 
MAE value of 917 and MAPE of 0.069%. As for the models with the worst results, it can be seen that the worst in the first category 
was obtained with random forest with MAE value of 914 and MAPE of 0.066%. In the second category, LSTM was the worst, with 
MAE value of 923 and MAPE of 0.069%.

From Fig. 10, it can be noted that the behavior of the results compared to the forecast horizons follows the same pattern as the 
results for demand: the longer the forecasting horizon, the worse the results obtained. Overall, the XGBoost model is apparently 
the one that obtains the best results in the four horizons; however, it is also the one that obtains the worst results, so it would 
not be the most appropriate model to be considered. If the behavior of LR is observed, it could be determined that it is indeed 
one of the best since it is the second one, and also that its variability of results is very low. As for the deep learning models, it 
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should be noted that the LSTM model shows the best performance from the TCN and MLP models on four forecast horizons, while 
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Table 11

Forecasting supply with a forecast horizon of 24 h and different past history scenarios. The optimal outcomes of each model 
have been emphasized in bold.

FORECAST 24 H SUPPLY

Model Past History MSE RMSE MAE WAPE MAPE

MACHINE LEARNING

LR

24 943822.6 682.9484 548.6101 0.039596 0.041359
48 854748.4 656.4009 529.6794 0.038292 0.040064
72 831635.4 647.6702 523.407 0.037798 0.03954
96 820456.9 638.5702 516.3807 0.037298 0.039062
120 816745.1 638.2175 515.9971 0.037275 0.039056

144 819814.3 639.7692 517.4634 0.037359 0.03916
168 823071.6 640.5274 518.431 0.037424 0.039225

RF

24 936778.7 720.2302 609.3076 0.041641 0.043396
48 911437.6 714.058 604.6331 0.041255 0.04298

72 909258.2 714.9388 606.2348 0.04132 0.043046
96 912878.9 717.2787 608.4985 0.041448 0.043175
120 906365.4 716.8146 608.2583 0.041437 0.04316
144 926628.9 726.4942 617.9252 0.041998 0.043731
168 947477.4 736.452 627.9886 0.042581 0.044317

XGB

24 920911 680.0305 572.2517 0.03745 0.038856
48 853411.6 623.476 514.1702 0.034285 0.035721
72 848551.3 619.2674 509.2676 0.033901 0.035286

96 889692.3 644.1775 533.3848 0.035185 0.036549
120 930461.8 673.465 561.4321 0.036742 0.038075
144 1126261 762.759 650.1283 0.041758 0.043061
168 1330560 832.6375 718.9174 0.045652 0.046923

DEEP LEARNING

LSTM

24 961336.3 711.7715 585.0637 0.041599 0.043224
48 869003.5 681.9467 558.2548 0.039909 0.041645
72 845333 668.4855 547.3058 0.039181 0.040903
96 889901.9 721.1263 606.2318 0.042553 0.044121
120 845149.4 663.6271 541.9016 0.038831 0.040648

144 849592.6 670.0827 550.0086 0.039417 0.041312
168 859016.4 678.8035 557.0241 0.039803 0.041664

TCN

24 976933.6 715.4326 578.8704 0.041497 0.043098
48 890542.8 690.6279 563.1333 0.040469 0.042169
72 868605.1 680.0923 556.3324 0.03991 0.041587

96 992228.4 800.5181 671.4391 0.047006 0.048472
120 894916.8 694.1565 568.8765 0.040908 0.042804
144 962084.5 722.8193 597.1552 0.042994 0.045177
168 882630.6 700.7717 572.8522 0.04101 0.042772

MLP

24 999371.6 709.0023 571.7159 0.0412 0.043071
48 916344.3 715.2784 586.7975 0.041743 0.043344
72 881194.1 686.6265 559.9553 0.040167 0.041863
96 1019028 816.0222 696.2365 0.048315 0.049684
120 860946.4 678.2794 552.659 0.039685 0.041476

144 876239.9 680.7979 552.2707 0.03978 0.041671
168 991120.9 800.4314 682.1794 0.047459 0.048965

the performance of MLP is generally weaker than the other models. Finally, and as was the case for demand, when examining the 
median of each of the models, the worst of them is again RF, so it is definitely not a model to be taken into account in this type of 
data.

Fig. 11 shows the comparison between predicted and actual values for the last month of the study. The best model among all the 
experiments’ predictions served as the basis for the comparison. In this case, the best result was obtained with a prediction horizon 
of 24 hours with the XGBoost model.

As in the case of the demand dataset, the Friedman test has been applied to assess the overall significance of differences among 
the performance of the six models, using both MAE and RMSE values in Tables 11 - 14. The Friedman test determined a significant 
difference in the models’ performances, both for MAE and RMSE values, with a p-value equal to 4.76𝑒 −10 and 1.21𝑒 −8, respectively. 
Nevertheless, when performing a two-by-two comparison analysis, no significant differences were found in any case. Therefore, it is 
not possible to establish any ranking for the models in this dataset. This may be due to a correction for multiple comparisons: When 
applying the Bonferroni correction for two-to-two comparisons, the significance threshold becomes more stringent. This means that 
differences must be more pronounced to reach significance in individual comparisons. In addition, variability in data can influence 
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the ability to detect significant differences. If the data are highly variable, it is more difficult to detect differences with confidence.
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Table 12

Forecasting supply with a forecast horizon of 48 h and different past history scenarios. The optimal outcomes of each model 
have been emphasized in bold.

FORECAST 48 H SUPPLY

Model Past History MSE RMSE MAE WAPE MAPE

MACHINE LEARNING

LR

24 1244022 819.7863 653.5809 0.046983 0.049411
48 1145044 794.0604 635.2987 0.045684 0.048108
72 1115437 781.5335 625.5649 0.044939 0.047342
96 1104333 775.0649 620.2901 0.044556 0.046991

120 1105343 776.5651 621.3151 0.04462 0.047089
144 1110431 778.8851 623.2781 0.044738 0.047224
168 1117514 782.0579 626.3575 0.044982 0.047461

RF

24 1181664 837.5823 693.6875 0.047613 0.049963
48 1153721 832.6733 691.3552 0.047338 0.049669
72 1145203 830.2626 690.2974 0.047243 0.049563

96 1141658 830.7579 691.4028 0.047296 0.049604
120 1162454 843.7208 704.774 0.048065 0.050373
144 1185969 853.3672 713.952 0.048603 0.050931
168 1197823 858.2774 718.537 0.048904 0.051243

XGB

24 1113984 763.8137 623.4591 0.041514 0.043404
48 1096336 728.0057 588.7542 0.039579 0.041497
72 1087248 732.5203 593.9985 0.039607 0.041431

96 1119461 750.7307 611.9357 0.040554 0.042316
120 1277231 828.8156 682.5908 0.044447 0.046136
144 1581587 933.7476 785.7593 0.050297 0.051947
168 1710972 977.5866 831.7676 0.053021 0.054621

DEEP LEARNING

LSTM

24 1239675 832.9388 670.3175 0.047879 0.050213
48 1147729 815.9227 663.9738 0.047168 0.049428
72 1114197 798.9838 644.5757 0.045971 0.048328

96 1116197 812.0108 663.9557 0.046809 0.049095
120 1111901 804.6887 654.5242 0.046503 0.048903
144 1119775 802.4375 647.2431 0.046248 0.048832
168 1172338 849.6089 698.6963 0.049284 0.051699

TCN

24 1351519 867.2089 694.9586 0.049885 0.052619
48 1199993 820.1698 656.6393 0.047286 0.04985
72 1199555 846.6304 682.5513 0.048615 0.050991
96 1143465 815.1444 661.3401 0.047118 0.049416
120 1157356 808.7868 650.0604 0.046682 0.04928

144 1223935 878.3085 721.7542 0.050853 0.053133
168 1216965 834.9221 671.432 0.04827 0.051077

MLP

24 1284083 852.4871 684.5681 0.04891 0.051253
48 1183657 820.8609 658.5483 0.047181 0.049554

72 1200489 836.1209 673.3013 0.048158 0.050697
96 1177896 819.4739 658.1074 0.047239 0.049872
120 1152818 835.4841 687.072 0.048575 0.050837
144 1164851 826.4666 669.9477 0.047813 0.050314
168 1165627 836.4939 687.7874 0.048701 0.050978

In this sense, higher variability can be observed for both measures than in the case of the demand dataset, which may justify this 
result.

As well as in the previous section, an overfitting analysis has also been carried out to check overfitting for the best performing
model. In this case, as it has not been possible to obtain a ranking on the models, XGB has been selected based on the best results 
reported in Tables 11 to 14.

The learning curves in Fig. 12 correspond to the XGB model, for 24 hours forecast prediction and 72 hours of past history. X-axis 
represents the iteration number, where more than 20000 increasing size subsets have been used. Y-axis represents the normalized 
MAE metric values for both train and validation subsets. Similar to what occurred in the LR model for demand, it is possible to 
appreciate that the convergence of both curves, as well as the level in which it occurs indicate a situation of a well-generalized 
model, indicating that it generalizes well to unseen data.

In both demand and supply forecasting results, the TCN models stand out as the most complex and time-intensive deep learning 
models due to their specific architecture and extended training times. The LSTM models exhibit moderate complexity with shorter 
training durations, while the MLP models are the simplest with the briefest training periods. In the machine learning models, Random 
Forest and XGBoost are more complex than Linear Regression due to their ensemble nature. XGBoost, in particular, requires the most 
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extensive training time, while Linear Regression remains the simplest and least time-intensive model [39].
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Table 13

Forecasting supply with a forecast horizon of 72 h and different past history scenarios. The optimal outcomes of each model 
have been emphasized in bold.

FORECAST 72 H SUPPLY

Model Past History MSE RMSE MAE WAPE MAPE

MACHINE LEARNING

LR

24 1459621 917.8376 728.2289 0.052129 0.055003
48 1349595 889.7269 707.3645 0.050631 0.053513
72 1318611 877.6987 697.0462 0.049844 0.052717
96 1311857 874.2694 693.4075 0.049578 0.052495

120 1314467 876.2826 694.6138 0.04965 0.052601
144 1322183 879.8804 697.8358 0.049887 0.052848
168 1330983 884.3657 702.0588 0.050221 0.053182

RF

24 1352087 920.0064 757.0996 0.051925 0.054655
48 1315155 911.452 750.8071 0.051425 0.054149
72 1292454 905.7166 747.1924 0.051165 0.053857

96 1301596 913.251 755.503 0.051634 0.054319
120 1308330 919.3112 761.9553 0.052007 0.0547
144 1331951 928.689 769.8703 0.052526 0.055255
168 1351993 937.0027 778.0192 0.053071 0.055811

XGB

24 1251767 828.8964 668.8187 0.044822 0.047038
48 1229959 796.9199 637.3623 0.042985 0.0452

72 1238112 809.4034 648.0222 0.043332 0.045434
96 1351185 864.8413 700.6358 0.046205 0.048209
120 1561201 946.273 778.882 0.050585 0.052517
144 1819359 1028.916 863.5504 0.055476 0.057337
168 1924770 1066.952 901.6436 0.057941 0.059786

DEEP LEARNING

LSTM

24 1440086 925.863 741.9356 0.052712 0.055528
48 1349133 920.3989 743.861 0.052567 0.055219
72 1313311 884.6562 704.6068 0.050401 0.053441
96 1307586 886.2141 705.702 0.050347 0.053389

120 1328841 919.308 743.2232 0.052325 0.055121
144 1389613 914.9723 726.4176 0.052202 0.055626
168 1380168 911.5681 723.7208 0.051795 0.055152

TCN

24 1496213 937.1817 744.113 0.053266 0.056215
48 1395739 936.4147 759.4592 0.053741 0.05637
72 1370337 922.4636 744.8928 0.052847 0.055539
96 1338450 911.5703 736.5898 0.05221 0.054901

120 1358225 918.0253 737.0704 0.052376 0.055321
144 1508831 1030.438 862.2694 0.059845 0.062209
168 1551358 991.3788 793.2364 0.056511 0.060043

MLP

24 1503186 944.8389 752.1997 0.053706 0.056611
48 1703893 1056.063 865.3154 0.061152 0.064686
72 1354636 913.4916 737.1891 0.052306 0.055025
96 1390850 912.2988 725.584 0.051913 0.0551
120 1368896 900.2811 714.2753 0.051192 0.054365

144 1491865 966.5842 769.5187 0.054835 0.058233
168 1363234 922.2897 742.4427 0.052692 0.055504
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Fig. 10. Distribution of results in terms of MAE grouped by forecast horizon.
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Table 14

Forecasting supply with a forecast horizon of 168 h and different past history scenarios. The optimal outcomes of each model 
have been emphasized in bold.

FORECAST 168 H SUPPLY

Model Past History MSE RMSE MAE WAPE MAPE

MACHINE LEARNING

LR

24 2111994 1178.135 924.9979 0.065506 0.069584
48 2004668 1156.202 907.3498 0.064259 0.068353
72 1983148 1151.655 901.7935 0.063850 0.067953
96 1983140 1151.924 901.0131 0.063807 0.067949

120 1990370 1155.811 904.9072 0.064097 0.068264
144 2001700 1160.808 910.0048 0.064492 0.068663
168 2014099 1165.357 914.4302 0.064825 0.068973

RF

24 1878323 1140.670 925.6115 0.063599 0.067281
48 1820957 1127.581 914.5916 0.062863 0.066571

72 1822555 1129.542 916.7100 0.063006 0.066728
96 1834655 1135.455 921.1788 0.063313 0.067062
120 1850609 1141.128 926.1666 0.063661 0.067452
144 1887854 1153.377 936.6010 0.064398 0.068240
168 1922642 1164.195 946.4780 0.065113 0.068980

XGB

24 1898801 1107.076 875.2318 0.058658 0.061613

48 2020675 1131.595 894.0466 0.059645 0.062560
72 2172103 1173.007 935.8090 0.061912 0.064725
96 2364242 1225.931 991.7233 0.065135 0.067864
120 2537484 1276.717 1048.054 0.068511 0.071154
144 2694297 1323.663 1097.999 0.071640 0.074248
168 2802252 1359.890 1132.752 0.073961 0.076543

DEEP LEARNING

LSTM

24 2078655 1172.615 923.7048 0.065356 0.069400
48 1978771 1176.086 946.2766 0.066153 0.069894
72 1947589 1163.194 932.0106 0.065374 0.069191

96 1952236 1174.203 944.0125 0.065921 0.069751
120 1970424 1176.957 945.3444 0.066316 0.070216
144 1971948 1171.079 932.0645 0.065363 0.069491
168 1974833 1171.558 932.2214 0.065447 0.069655

TCN

24 2124284 1189.333 939.2398 0.066419 0.070406
48 2351414 1282.785 1023.559 0.072261 0.077167
72 2037952 1184.804 932.4838 0.066044 0.070354
96 2032557 1171.729 917.6052 0.065124 0.069556

120 2093140 1195.882 937.6273 0.066585 0.071220
144 2248696 1254.329 990.2022 0.070215 0.075211
168 2106936 1206.322 948.6727 0.067430 0.072046

MLP

24 2169926 1201.310 942.1428 0.066817 0.071120
48 2117168 1199.680 942.4788 0.066770 0.071246
72 1980106 1164.668 919.4992 0.065004 0.069072

96 2030036 1175.449 924.0086 0.065447 0.069705
120 2000592 1177.180 931.6234 0.065815 0.069955
144 2113420 1215.333 959.9425 0.067916 0.072312
168 2079056 1197.226 941.4677 0.066823 0.071343
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Fig. 11. Comparison between actual and predicted values for supply in the last month of the data set. The observed results are those obtained with the best model.
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Fig. 12. Learning curves for XGB (24 h Forecast and 72 h Past history).

4.3. Discussions

In the realm of energy forecasting, benchmarking the performance of methodologies against state-of-the-art techniques and 
ground truth data is essential to evaluate their effectiveness. In this section, a discussion about the performance of the models is 
illustrated for both the existing state-of-the-art methods and ground truth data.
Comparison with State-of-the-Art: An extensive evaluation is performed on the six forecasting models in comparison to well-
established state-of-the-art methods that are commonly utilized in the field of energy forecasting. These benchmark methods 
encompass a range of approaches, including deep learning and machine learning architectures. Comparison was performed across 
various forecasting horizons, including 24 hours, 48 hours, 72 hours, and 168 hours, to account for short-term and long-term pre-
diction requirements. The metrics used for benchmarking encompass widely recognized error measures such as MAE, MSE, RMSE, 
WAPE, and MAPE. These metrics offer a holistic view of forecasting accuracy, accounting for errors of different magnitudes, and 
providing a balanced assessment of model performance.
Comparison with Ground Truth Data: To further validate the reliability of the forecasting models, a comparison was performed 
on their predictions with ground truth data obtained from authoritative sources. The ground truth data includes actual energy 
consumption and supply measurements observed during the evaluation period. This data has not been used before, therefore, it 
cannot be compared with other previous articles. Using the models involved in this work, the findings confirm that these models 
exhibit a high degree of accuracy in replicating actual energy demand and supply trends, indicating a strong alignment between 
predictions and ground truth data.

Finally, the favorable comparison results against state-of-the-art methods and the alignment with ground truth data validate the 
robustness and efficacy of the proposed forecasting. These findings underscore the potential of this research to significantly enhance 
the precision and reliability of energy forecasting in the context of the Iraqi energy sector.

5. Conclusions

In conclusion, this study has significantly advanced the understanding of energy demand and supply forecasting in the complex 
landscape of a liberalized energy market. The study addressed the critical challenge of real-time balance between energy demand 
and supply in a distributed environment, underscoring the need for continuous model maintenance to ensure reliable forecasts. 4.3 
A novel time-series dataset was collected for the years 2019 to 2021, encompassing a range of Iraqi electricity demand and supply 
values. The study carefully compared different architectural models and how they could be used to predict Iraq’s power supply and 
demand. The study also revealed approaches to improve the accuracy and usefulness of these predictions by optimizing the models’ 
parameters. Using the collected dataset, six prominent models were used in performing the forecasting process, including LSTM, 
TCN, MLP, LR, XGB, and RF. The performance of these models was rigorously assessed using key metrics such as MAE, MSE, RMSE, 
WAPE, and MAPE.

Furthermore, the study findings unveiled crucial insights into the realm of demand and supply forecasting. For demand forecast-
ing, LR emerged as the standout performer across multiple forecast horizons, demonstrating its prowess as a machine learning-based 
model. Also, LSTM showcased its excellence in deep learning-based forecasting for specific horizons, while TCN and MLP displayed 
their strengths in other contexts. In the realm of supply forecasting, XGB and LSTM led the way, representing the pinnacle of machine 
learning and deep learning approaches, respectively. Conversely, RF and MLP lagged behind, revealing their limitations in modeling 
intricate temporal relationships.

Additionally, the results underscored the pivotal role of data preprocessing techniques in shaping forecasting performance. Also, 
the study illuminated the concentration of the highest electricity demand in Baghdad, driven by factors such as population growth and 
23

industrial expansion. While this increase in demand contributed to environmental problems, various regions also saw improvements 
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in energy efficiency. The study holds immense promise in assisting the Iraqi government in tackling energy issues, offering invaluable 
insights for the selection of the most effective forecasting models. Precise energy demand predictions, as the research highlights, are 
indispensable for ensuring a stable and dependable energy supply, thereby bolstering economic development and enhancing the 
well-being of Iraq’s population.

As the study anticipates future demand reaching between 30,000 and 35,000 megawatts per day, the ability to predict and manage 
this demand becomes paramount. Therefore, this research not only addresses Iraq’s pressing energy problems but also establishes 
a robust foundation for future investigations in this domain. These endeavors will undoubtedly contribute to more effective and 
sustainable energy resource management, propelling Iraq’s economic growth and the overall welfare of its people.

As future work, the study aspires to delve into hybrid forecasting models that combine machine learning and deep learning 
models, aiming to further elevate the accuracy and reliability of energy demand and supply predictions in Iraq. The study also 
plans to introduce exogenous variables such as weather data and economic indicators into the models to enhance their predictive 
capabilities. Future research may also look into how different time frames affect model performance and make region-specific 
forecasting models that are tailored to the specific energy needs of Iraq’s provinces. In addition, extending the dataset to include 
data for two more years will also contribute to a more accurate discussion of the limitations. Finally, these endeavors collectively 
hold the potential to shape more effective strategies for managing Iraq’s energy resources, ultimately fostering the nation’s economic 
prosperity and the well-being of its citizens.
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