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Abstract

Background

To improve the outcome of patients suffering from gastric cancer, a better understanding of

underlying genetic and epigenetic events in this malignancy is required. Although CpG

island methylator phenotype (CIMP) and microsatellite instability (MSI) have been shown to

play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on

survival outcomes in patients with gastric cancer remains unknown.

Methods

This study included a patient cohort with pathologically confirmed gastric cancer who had

surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses

were determined by analyzing promoter CpG island methylation status of 28 genes/loci,

and genomic instability at 10 microsatellite markers, respectively. A Cox’s proportional haz-

ards model was performed for multivariate analysis including age, stage, tumor differentia-

tion, KRASmutation status, and combined CIMP/MLH1methylation status in relation to

overall survival (OS).

Results

By multivariate analysis, longer OS was significantly correlated with lower pathologic stage

(P = 0.0088), better tumor differentiation (P = 0.0267) and CIMP-high andMLH1 3'methyl-

ated status (P = 0.0312). Stratification of CIMP status with regards toMLH1methylation sta-

tus further enabled prediction of gastric cancer prognosis.
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Conclusions

CIMP and/orMLH1methylation status may have a potential to be prognostic biomarkers for

patients with gastric cancer.

Introduction
Gastric cancer is the second leading cause of cancer-related deaths, with about 700,000 con-
firmed mortalities annually worldwide, although the incidence has gradually decreased [1–3].
Gastric cancer is generally diagnosed at an advanced stage, which is the primary cause of its
poor prognosis [4]. To improve the outcome of gastric cancer, identification of genetic or epi-
genetic events in the progression of gastric cancer is required. The most important epigenetic
event in the progression of cancer is methylation of promoter CpG regions of key tumor sup-
pressor genes. CpG islands are almost 1-kb long sequences of DNA with high guanine—cyto-
sine content in promoter regions of the genes [5]. In contrast to normal cells, CpG islands
within tumor suppressor genes in cancer cells are often hypermethylated, leading to a CpG
island methylator phenotype (CIMP) [6,7]. Epigenetic silencing of tumor-related genes due to
CpG island methylation has recently been reported in gastric cancer. Aberrant CpG island
methylation of>100 growth-regulatory genes in gastric cancer has thus far been reported [8–
24], however, the clinical significance of CIMP in gastric cancer remains unexplored and
poorly understood.

In contrast, mismatch repair (MMR) deficiency in gastric cancer is also an important
genetic event. Genomic instability within the number of microsatellite repeats (or microsatel-
lites) is termed microsatellite instability (MSI). MSI is a feature caused by a defective DNA
MMR system. Functional inactivation of MMR genes, such asMLH1 orMSH2, by promoter
methylation is responsible for the MSI-high (MSI-H) phenotype in gastric cancer. In a previous
study, gastric cancer with MSI-H showed a higher frequency of antral location, intestinal sub-
type, lower incidence of lymph node metastasis, and improved survival, compared to microsat-
ellite stable (MSS) or MSI-L gastric cancers [17,25–30]. However, the clinical significance of
MMR deficiency in gastric cancer remains unknown.

In view of this gap in knowledge, in this study, we explored the significance of CIMP and
MMR deficiency in gastric cancer and determined their contribution as prognostic markers in
patients with gastric cancer.

Materials and Methods

Tissue specimens
This study included a cohort of patients with pathologically confirmed gastric cancer who had
undergone surgical resection at Okayama University Hospital (Okayama, Japan) from 1998–
2004. A total of 68 gastric cancer tissues and their matched normal gastric mucosa were ana-
lyzed. All normal gastric mucosa tissues were obtained from sites adjacent to, but at least 5 cm
away from, the original tumor. All patients provided written informed consent and the study
was approved by the ethical committee of the Okayama University Hospital. All patients pro-
vided written informed consent for usage of their data for future analyses. All gastric cancers
and normal gastric mucosa were fresh-frozen tissue specimens, from which DNA was extracted
using a QIAamp DNAMini Kit (QIAGEN).
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MSI analysis
MSI analysis was performed by examination of 2 mononucleotide repeats (BAT25 and
BAT26), 12 dinucleotide repeats (D17S250, D18S35, D18S58, D18S69, D2S123, D4S1559,
D4S2381, D4S470, D5S107, D5S346, and D8S87, TP53), and one tetranucleotide repeats,
MYCL, as described previously [31]. Tumors showing allelic shifts in�5 of 15 markers were
classified as MSI-H (hereon referred to as “MSI”), and the rest were classified as microsatellite
stable (MSS).

Sodium bisulfite modification and CIMP analyses
Because frequent hypermethylation of several genes is one of the characteristic features of
tumors with CIMP, we investigated the methylation status of 28 promoter CpG island-related
loci (APC, CACNA1G, CHFR, COX2, DAPK, DCC,HPP1,MGMT-Mp region,MGMT-Eh
region,MINT1,MINT2,MINT31,MLH1 5',MLH1 3', p14, p16, RASSF1A, RASSF2A-region1,
RASSF2A-region2, RASSF3, RASSF5, RASSF6, RUNX3, SFRP2-region1, SFRP2-region2,
UNC5C, 3OST2, FOXL2), and the corresponding primer sequences are listed in S1 Table.
Genomic DNA was bisulfite-modified to convert all unmethylated cytosine residues to uracils.
In brief, 0.5–2.0 μg of DNA were denatured in NaOH, treated with sodium bisulfite, and puri-
fied using the Wizard DNA Clean-up System (Promega). The methylation status of each
CIMP-related locus was evaluated by combined bisulfite restriction analysis (COBRA). Poly-
merase chain reaction (PCR) for COBRA was performed on a bisulfite-modified template
DNA in a 25-μL PCR mixture containing 12.5 μL of HotStarTaq Master Mix kit (Qiagen),
0.5 μmol/L of each PCR primer, and approximately 25 ng of bisulfite-modified DNA. PCR
products were digested by addition of restriction enzyme at 37°C for 12 h. The digested DNA
was separated on 3% agarose gels in 1× Tris—acetate—EDTA buffer and stained with ethid-
ium bromide. Human normal colonic DNA treated with SssI methylase (New England Bio-
labs) was used as a positive control for methylated alleles, and DNA from normal lymphocytes
was used as a control for unmethylated alleles. Water was used as a negative PCR control to
monitor PCR contamination. CIMP-high was defined as not less than 10 of the methylation of
these loci.

KRASmutation analyses
Direct sequencing was performed to identify KRAS exon 2 (codon 12/13) mutations. PCR for
KRAS gene was performed in a 25-μL PCR mixture containing 12.5 μL of HotStarTaq Master
Mix kit with primers. The QIAquick PCR Purification kit was used to purify PCR products,
and they were directly sequenced on an ABI 310 DNA sequencer [32].

Statistical analyses
JMP software (ver 10.0, SAS Institute Inc.) was used to perform statistical analysis. Student’s t-
test was used to compare continuous variables, and Fisher’s exact test was used to analyze cate-
gorical variables. Overall survival (OS) was measured from the operation date to the date of
death. The Kaplan—Meier method and log-rank statistics for differences between various
prognostic factors were used to estimate OS distributions. Cox proportional hazard models
were used to calculate the hazard ratio (HR) with corresponding 95% confidence interval (CI).
Univariate or multivariate logistic regression analysis was performed to determine the differ-
ences in HR between each group. All reported P values are two-sided, and P< 0.05 was consid-
ered to indicate statistical significance.
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Results

Study population
In this study, we investigated 68 patients with gastric cancer. In the promoter CpGs of the
MLH1 gene, spread of CpG methylation within its 3' region was determined to be a critical for
MLH1 expression [33]. A description of the patient cohort and various clinicopathological fea-
tures based on sex, age, stage, tumor differentiation, MSI status, KRASmutation, andMLH1 3'
methylation is shown in Table 1. These statuses were compared between the CIMP-high and
CIMP-low groups. Of these parameters, MSI status andMLH1 3'methylation status showed
remarkable differences between the 2 groups (Table 1).

Methylation status
28 CpG loci including APC, CACNA1G, CHFR, COX2, DAPK, DCC, HPP1,MGMT-Mp
region,MGMT-Eh region,MINT1,MINT2,MINT31,MLH1 5',MLH1 3', p14, p16, RASSF1A,
RASSF2A-region1, RASSF2A-region2, RASSF3, RASSF5, RASSF6, RUNX3, SFRP2-region1,
SFRP2-region2, UNC5C, 3OST2 and FOXL2 were analyzed for determining the CIMP status of
each gastric cancer. Methylation spectrum of these loci is shown in tile map (Fig 1a). In these
loci, CACNA1G, CHFR, DCC,HPP1,MINT1,MINT2,MINT31,MLH1 5',MLH1 3', p16,
RASSF2A-region1, RASSF2A-region2, RUNX3, SFRP2-region2, UNC5C, 3OST2, and FOXL2
were significantly methylated in the CIMP-high group (Table 2).

Survival outcomes in patients based uponMLH1 3'methylation and
CIMP status in gastric cancers
The overlapping relationship between CIMP andMLH1 3'methylation status was analyzed. 10
patients were in the CIMP-high/MLH1 3'methylated, 1 patient was in the CIMP-low/MLH1 3'
methylated, 20 patients were in the CIMP high/MLH1 3' non-methylated and 37 patients were
in the CIMP-low/MLH1 3' non-methylated groups (Fig 1b). Kaplan–Meier survival curves
were generated according to theMLH1 3'methylation status. The 5-year OS rates were deter-
mined for theMLH1 3'methylated and non-methylated groups. The 5-year OS rates were sig-
nificantly higher in theMLH1 3'methylated group compared to the non-methylated group
(log-rank P = 0.0257; Fig 1c).

Likewise, the 5-year OS rates were analyzed for the CIMP-high and CIMP-low groups, and
the rate was slightly higher in the CIMP-high group than in the CIMP-low group but the differ-
ence was not significant (log-rank P = 0.0688; Fig 1d).

Contribution of mismatch repair deficiency and CIMP status to survival
rate
The 5-year survival rates were analyzed and compared among these groups; CIMP-high/
MLH1 3'methylated, CIMP-low/MLH1 3'methylated, CIMP high/MLH1 3' non-methylated
and CIMP-low/MLH1 3' non-methylated groups. We noted that the overall survival rates were
higher in the combined CIMP-high/MLH1 3'methylated group, compared to the other groups
where the differences were not statistically significant (log-rank P = 0.0706; Fig 1e).

Relationship betweenMLH1methylation and MSI
The overlapping relationship betweenMLH1 5'methylation and 3'methylation status was ana-
lyzed. 10 patients were classified asMLH1 5'methylated/3'methylated, 8 patients asMLH1 5'
methylated/3' non-methylated, 1 patient asMLH1 5' non-methylated/3'methylated, and 49
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patients as 5' non-methylated/3' non-methylated (Fig 2a). In theMLH1 3'methylated group,
more than 80% patients showed MSI. In contrast, in theMLH1 3' non-methylated group,
almost all cases showed MSS (Fig 2b). Kaplan–Meier survival curves were generated according
toMLH1 5'methylation status. The 5-year survival rates were analyzed for theMLH1 5'meth-
ylated and non-methylated groups, and the rate was slightly higher in theMLH1 5'methylated
group than in the non-methylated group but the differences were not significant (log-rank
P = 0.1009; Fig 2c). Kaplan–Meier survival curves were generated according to MSI status. The
5-year survival rates were analyzed for the MSI and MSS groups, and the rate was slightly
higher in the MSI group than in the MSS group but the differences were not significant (log-
rank P = 0.1316; Fig 2d).

Multivariate analysis for survival outcome predictors
A Cox proportional hazards model, including age, stage, differentiation, KRASmutation status,
and CIMP/MLH1 3'methylation status in relation to OS was used to perform multivariate
analysis (Table 3). Only stage (P = 0.0088), differentiation (P = 0.0267), and CIMP/MLH1
methylation status (P = 0.0312) were statistically significant predictors of OS. Hazard ratio was
significantly lower in the CIMP-high/MLH1 3'methylated group.

Table 1. Clinicopathological features of the patients according to CIMP status.

Characteristics Total CIMP-high (%) CIMP-low (%) P

No. of patients 68 30 (44.1) 38 (55.9)

Sex 1.0000

Male 46 20 (43.5) 26 (56.5)

Female 22 10 (45.4) 12 (54.6)

Age at surgery 0.1975

<70 45 17 (37.8) 28 (62.2)

�70 23 13 (56.5) 10 (43.5)

Stage 0.6311

I/II 32 13 (40.6) 19 (59.4)

III/IV 36 17 (47.2) 19 (52.8)

Tumor Differentiation 0.8073

Well/moderate 32 15 (46.9) 17 (53.1)

Poor 36 15 (41.7) 21 (58.3)

MSI status 0.0178*

MSS 58 22 (37.9) 36 (62.1)

MSI 10 8 (80.0) 2 (20.0)

KRAS 1.0000

Wild-type 65 29 (44.6) 36 (55.4)

Mutated 3 1 (33.3) 2 (66.7)

MLH1 30 Methylation 0.0008***

U 57 20 (35.1) 37 (64.9)

M 11 10 (90.9) 1 (9.1)

* P < 0.05,

*** P < 0.001

doi:10.1371/journal.pone.0130409.t001
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Fig 1. Relationship between CIMP andMLH1methylation. a) Tile map showingmethylation pattern. Twenty eight loci (APC, CACNA1G, CHFR, COX2,
DAPK, DCC, HPP1,MGMT-Mp region,MGMT-Eh region,MINT1,MINT2,MINT31,MLH15',MLH1 3', p14, p16, RASSF1A, RASSF2A-region1, RASSF2A-
region2, RASSF3, RASSF5, RASSF6, RUNX3, SFRP2-region1, SFRP2-region2, UNC5C, 3OST2, FOXL2) were analyzed to determine CIMP status. Thirty
patients with not less than ten methylated loci were identified as the CIMP-high group. b) Venn diagram showing the overlap ofMLH1 3' methylation and
CIMP status. The overlapping relationship betweenMLH1 3'methylation and CIMP status was analyzed. 10 patients were in the combined in the CIMP-
high/MLH1 3'methylated (A), 1 patients were in the CIMP-low/MLH1 3'methylated (B), 20 patients were in the CIMP high/MLH1 3' non-methylated (C), and
37 patients were in the CIMP-low/MLH1 3' non-methylated groups (D). c) Kaplan–Meier estimate of OS in patients withMLH1 3' methylated or non-
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Discussion
DNAmethylation in cancer cells has become a topic of intense investigation. Inactivation of
tumor suppressor genes by CpG methylation of promoter regions accelerates carcinogenesis
because of aberrant cell cycle regulation and proliferation [15]. Some candidate aberrantly

methylated gastric cancers. Kaplan–Meier survival curves were generated according toMLH1 3'methylation status. The 5-year survival rates were
analyzed for theMLH1 3'methylated and non-methylated groups. The survival rate was significantly higher in theMLH1 3'methylated group than in the non-
methylated group (log-rank P = 0.0257). d) Kaplan–Meier estimate of OS in patients with CIMP-high or CIMP-low gastric cancers. Kaplan–Meier
survival curves were generated according to CIMP status. The 5-year survival rate was analyzed for the CIMP-high group and CIMP-low group. The survival
rate was slightly higher in the CIMP-high group than in the CIMP-low group, but the difference was not significant (log-rank P = 0.0688). e) Contribution of
CIMP andmismatch repair deficiency status to survival rate. Kaplan–Meier survival curves were generated according to CIMP andMLH1methylation
status. The patients were classified on the basis of combined CIMP status andMLH1methylation status into the CIMP-high/MLH1 3'methylated (A), CIMP-
low/MLH1 3'methylated (B), CIMP high/MLH1 3' non-methylated (C), and CIMP-low/MLH1 3' non-methylated groups (D). Overall survival rates were higher
in the combined CIMP-high/MLH1 3'methylated group, compared to the other groups where the differences were not statistically significant (log-rank
P = 0.0706).

doi:10.1371/journal.pone.0130409.g001

Table 2. Methylation features according to CIMP status.

CIMP-high CIMP-low

Gene Positive (%) Negative (%) Positive (%) Negative (%) Total P

APC 28 (93.3) 2 (6.7) 36 (94.7) 2 (5.3) 68 1.0000

CACNA1G 10 (33.3) 20 (66.7) 3 (7.9) 35 (92.1) 68 0.0122*

CHFR 22 (73.3) 8 (26.7) 1 (2.6) 37 (97.4) 68 <0.0001***

COX2 3 (10.0) 27 (90.0) 0 (0.0) 38 (100.0) 68 0.0810

DAPK 7 (23.3) 23 (76.7) 15 (39.5) 23 (60.5) 68 0.1969

DCC 29 (96.7) 1 (3.3) 11 (29.0) 27 (71.0) 68 <0.0001***

HPP1 17 (56.7) 13 (43.3) 4 (10.5) 34 (89.5) 68 <0.0001***

MGMT-Mp region 1 (3.3) 29 (96.7) 0 (0.0) 38 (100.0) 68 0.4412

MGMT-Eh region 5 (16.7) 25 (83.3) 1 (2.6) 37 (97.4) 68 0.0801

MINT1 25 (83.3) 5 (16.7) 7 (18.4) 31 (81.6) 68 <0.0001***

MINT2 21 (70.0) 9 (30.0) 4 (10.5) 34 (89.5) 68 <0.0001***

MINT31 8 (26.7) 22 (73.3) 0 (0.0) 38 (100.0) 68 0.0008***

MLH1 50 14 (46.7) 16 (53.3) 4 (10.5) 34 (89.5) 68 0.0018**

MLH1 30 10 (33.3) 20 (66.7) 1 (2.6) 37 (97.4) 68 0.0008***

p14 6 (20.0) 24 (80.0) 8 (21.1) 30 (78.9) 68 1.0000

p16 10 (33.3) 20 (66.7) 0 (0.0) 38 (100.0) 68 0.0001***

RASSF1A 2 (6.67) 28 (93.3) 2 (5.3) 36 (94.7) 68 1.0000

RASSF2A-region1 12 (40.0) 18 (60.0) 0 (0.0) 38 (100.0) 68 <0.0001***

RASSF2A-region2 26 (86.7) 4 (13.3) 11 (29.0) 27 (71.0) 68 <0.0001***

RASSF3 0 (0.0) 30 (100.0) 0 (0.0) 38 (100.0) 68 1.0000

RASSF5 2 (6.7) 28 (93.3) 0 (0.0) 38 (100.0) 68 0.191

RASSF6 10 (33.3) 20 (66.7) 15 (39.5) 23 (60.5) 68 0.6234

RUNX3 24 (80.0) 6 (20.0) 8 (21.1) 30 (78.9) 68 <0.0001***

SFRP2-region1 30 (100.0) 0 (0.0) 33 (86.8) 5 (13.2) 68 0.0618

SFRP2-region2 30 (100.0) 0 (0.0) 19 (50.0) 19 (50.0) 68 <0.0001***

UNC5C 21 (70.0) 9 (30.0) 8 (21.1) 30 (78.9) 68 <0.0001***

3OST2 30 (100.0) 0 (0.0) 22 (57.9) 16 (42.1) 68 <0.0001***

FOXL2 22 (73.3) 8 (26.7) 2 (5.3) 36 (94.7) 68 <0.0001***

* P < 0.05,

** P < 0.01,

*** P < 0.001

doi:10.1371/journal.pone.0130409.t002

Mismatch Repair Deficiency and CIMP in Gastric Cancer

PLOS ONE | DOI:10.1371/journal.pone.0130409 June 29, 2015 7 / 16



methylated genes in gastric cancer have been reported. RASSF1A, p14ARF, andMGMT [34–
38]; CHRNA3, DOK1, and GNMT [39]; p16, hMLH1,MINT1,MINT2,MINT12,MINT25, and
MINT31 [40]; APC, CDH1,MHL1, CDKN2A, CDKN2B, and RUNX3 [17]; CDH1 [41]; DKK3
[42]; PTEN [43];MGMT[44]; TFPI2 [22]; CACNA2D3 [45]; PCDH10 [46]; SOX2 [47];MAL
[48]; and COX2 [49] were previously reported to be hypermethylated in gastric cancer. Methyl-
ation of p16 promoter CpG islands is a marker for malignant potential of dysplasia in the stom-
ach [50]. Methylation ofMGMT is associated with advanced stage and poor prognosis [44].
Aberrant DNAmethylation in these genes may promote development of gastric cancer. How-
ever, precise gene targets of hypermethylation for carcinogenesis remain unknown [51,52].

Fig 2. The relationship betweenMLH1methylation andMSI. a) Venn diagram showing the overlap of MLH1 5' methylation and 3' methylation
status. The overlapping relationship betweenMLH1 5'—and 3'methylation status was analyzed. 10 patients were in theMLH1 5'methylated/3'methylated
(A), 8 patients were in theMLH1 5'methylated/3' non-methylated (B), 1 patient was in theMLH1 5' non-methylated/3'methylated (C), and 49 patients were in
the 5' non-methylated/3' non-methylated groups (D). b) The relationship betweenMLH1methylation and MSI. In theMLH1 3'methylated group, >80%
cases showed MSI. In contrast, in theMLH1 3' non-methylated group, almost all cases showed MSS. c) Kaplan–Meier estimate of OS in patients with
MLH1 5' methylated or non-methylated gastric cancer. Kaplan–Meier survival curves were generated according toMLH15'methylation status. The
5-year survival rate was analyzed for theMLH1 5' group and non-methylated groups. The survival rate was slightly higher in theMLH1 5'methylated group
than in the non-methylated group but the difference was not significant (log-rank P = 0.1009). d) Kaplan–Meier estimate of OS in patients with MSI or MSS
gastric cancer. Kaplan–Meier survival curves were generated according to MSI status. The 5-year survival rate was analyzed for the MSI group and MSS
group. The survival rate was slightly higher in the MSI group than in the non-methylated group but the difference was not significant (log-rank P = 0.1316).

doi:10.1371/journal.pone.0130409.g002
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Concurrent CpG methylation in multiple genes has been defined as CIMP in colorectal can-
cer (CRC) and gastric cancer [15,40,53–57], and has been shown to correlate with hypermethy-
lation of tumor suppressor genes. However, the evidence for CIMP in gastric cancer is not as
convincing as is the case for CRC [58,59]. In gastric cancer, CIMP-high has been described in
41% [40] and 31% [54] tumors. Patients with CIMP-high gastric cancer have significantly
shorter survival than those with CIMP-low gastric cancer [54,60]. Another report showed that
CIMP was associated with better survival in gastric cancer [54]. The recent meta-analysis has
focused on the strong relation of CIMP with H. pylori, EBV, and MSI, but CIMP could not
show a prognostic potential for gastric cancer [61].

In contrast, instability at the microsatellites repeats within various growth-regulatory genes
is defined as MSI. A standard panel, such as the NCI panel, is recommended, including mono-
nucleotide (BAT26 and BAT25) and dinucleotide (D2S123, D5S346, and D17S250) repeats
[62]. Three levels of MSI can be identified: high-level MSI (MSI-H), low-level MSI (MSI-L),
and MSS. The MSI-H phenotype in gastric cancer was reported to account for 5%–50%MSI
positive neoplasms [17]. MSI is a feature caused by a defective DNAMMR system. Functional
inactivation of MMR genes, such asMLH1 orMSH2, by mutational inactivation and promoter
methylation is responsible for the MSI-H phenotype in gastric cancer. In particular, similar to
CRC, methylation ofMLH1 is associated with the MSI-H phenotype [15,40,63,64] because
MLH1methylation precedes the loss of protein expression. Leite M et al. reported thatMLH1
promoter hypermethylation was observed in 78.7% (70/89) of the analyzed MSI cases [65].
Methylation of the 3' region of theMLH1 promoter, which is close to its transcriptional start
site (TSS), is required for gene silencing. The 5' end of the promoter is also prone to methyla-
tion, but this is not functionally important unless the methylation extends to the critical 3'

Table 3. Multivariate analysis of outcome predictors.

Univariate Multivariate

Characteristic Total HR (95% CI) P HR (95% CI) P

Age 0.4476 0.4437

<70 45 1.00 (Referent) 1.00 (Referent)

�70 23 1.30 (0.65–2.48) 1.37 (0.60–3.03)

Stage 0.0003*** 0.0088**

Stage I and II 32 1.00 (Referent) 1.00 (Referent)

Stage III and IV 36 3.50 (1.75–7.49) 2.94 (1.31–7.09)

Differentiation 0.0032** 0.0267*

Well/Moderate 32 1.00 (Referent) 1.00 (Referent)

Poorly 36 2.76 (1.39–5.83) 2.22 (1.09–4.80)

KRAS Mutation 0.1690 0.5984

Absent 65 1.00 (Referent) 1.00 (Referent)

Present 3 0.31 (0.02–1.47) 0.59 (0.03–3.29)

CIMP/MLH1 Methylation 0.0311* 0.0312*

CIMP−/MLH1-U 37 1.00 (Referent) 1.00 (Referent)

CIMP+/MLH1-U 20 0.85 (0.40–1.70) 0.6535 0.67 (0.29–1.47) 0.3286

CIMP+/MLH1-M 10 0.19 (0.03–0.63) 0.0042** 0.18 (0.03–0.64) 0.0048**

CIMP−/MLH1-M 1 1.89 (0.10–9.24) 0.5722 2.11 (0.10–15.61) 0.5497

* P < 0.05,

** P < 0.01,

*** P < 0.001

doi:10.1371/journal.pone.0130409.t003
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region [66,67]. MSI status is responsible for the mutation of genes regulating cell-cycle and
apoptotic signaling, including TGFβRII, IGFIIR, TCF4, RIZ, BAX, CASPASE5, FAS, BCL10,
and APAF1 [17,25] and genes maintaining genomic integrity, includingMSH6,MSH3,MED1,
RAD50, BLM, ATR, andMRE11 [17,68]. Gastric cancers with MSI-H show a higher frequency
of antral location, intestinal subtype, lower incidence of lymph node metastasis, and improved
survival relative to those of gastric cancer with MSS or MSI-L [17,25–30].

As described above, CIMP and MMR-deficiency status are key features of gastric cancer
and may reflect survival differences in patients suffering from this malignancy. Significant cor-
relation between CIMP and MSI has been reported in GC [61]. However, data regarding the
synergistic effects of these parameters are scarce, and multivariate analysis of these genetic and
epigenetic parameters is required. In our study, CACNA1G, CHFR, DCC, HPP1,MINT1,
MINT2,MINT31,MLH1 5',MLH1 3', p16, RASSF2A-region1, RASSF2A-region2, RUNX3,
SFRP2-region2, UNC5C, 3OST2, and FOXL2 were significantly methylated in the CIMP-high
group. In particular, we reported promoter methylation of FOXL2 in gastric cancer. FOXL2 is a
gene encoding a forkhead transcription factor and is essential for ovarian function [69]. FOXL2
regulates the cell cycle by inducing G1 arrest and protects cells from oxidative damage by pro-
moting oxidized DNA repair and by increasing the amount of the anti-oxidant agent glutathi-
one [69]. FOXL2 suppresses proliferation, invasion and promotes apoptosis of cervical cancer
cells [70]. The promoter methylation of FOXL2may have a significant role in tumorigenesis in
gastric cancer. In contrast,MLH1 3'methylation was required for MMR deficiency and showed
MSI. TheMLH1 3'methylation group had a tendency toward a good prognosis in the Kaplan–
Meier survival estimate.

However, CIMP and MMR deficiency are dependent on each other. MSI-associated spo-
radic CRCs arise through a process that involves CIMP [66,71]; therefore, integrated statistical
analysis of CIMP and MMR deficiency should be performed. For example, in duodenal adeno-
carcinomas, CIMP/MLH1methylation status showed a significant prognostic value in both OS
and time-to-recurrence (TTR) in multivariate analysis [72]. Patients with CIMP-high/MLH1-
unmethylated tumors had the worst OS and TTR [72]. In our multivariate analysis of patients
with gastric cancer, only the CIMP-high/MLH1 3'methylated group had a good prognosis.
The reason for good prognosis in the CIMP-high/MLH1 3'methylated group remains
unknown. This phenomenon may be because of synergistic inactivation of vital genes due to
mutation and promoter methylation. To further confirm our findings, we performed an inde-
pendent validation of our results from in patient data submitted to The Cancer Genome Atlas
database (TCGA). [73–75] CIMP-high/MLH1 hyper-methylated group showed more frequent
lymph node metastasis (p = 0.0009), advanced disease stage (p = 0.0078; S1 File), and slightly
better Disease free survival (S2 File). On the other hand, CIMP/MSI status can’t show the sig-
nificant value as prognostic marker (S2 Table). This result shows thatMLH1 has the most
important role among MMR genes in the carcinogenesis of GC. Further investigation is
required to elucidate the relationship between CIMP status and MMR deficiency. This
approach will lead to a new strategy for the treatment of gastric cancer.

In conclusion, our data suggests that stratification of patients with CIMP based onMLH1
methylation status may enable prediction of gastric cancer prognosis. The CIMP-high/MLH1
3'methylated group had good prognosis, but other groups may require intensive treatment for
improvement of survival, which needs to be validated in future studies.

Supporting Information
S1 File. Relationship between CIMP andMLH1methylation in Gastric cancer patients in
TCGA database.We investigated the methylation status of 17 promoter CpG island-related
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loci (APC, CACNA1G, CHFR, DAPK, DCC,MGMT,MINT,MLH1, p16, RASSF1, RASSF2,
RASSF3, RASSF5, RASSF6, RUNX3, SFRP2, and UNC5C) in TCGA database (TCGA provi-
sional). Upper 25% of each locus was determined as hyper-methylated. CIMP-high was defined
as not less than 5 of the hyper-methylation of these loci (Figure A). The overlapping relation-
ship between CIMP andMLH1methylation status was analyzed. 55 patients were in the
CIMP-high/MLH1methylated, 29 patients were in the CIMP-low/MLH1methylated, 77
patients were in the CIMP high/MLH1 non-methylated and 177 patients were in the CIMP-
low/MLH1 non-methylated groups (Figure B). Correlation between tumor depth, lymph node
metastasis, distant metastasis, Stage and CIMP/MLH1methylation status were analyzed using
Fisher’s exact test. Positive lymph node metastasis (p = 0.0009) and higher Stage (p = 0.0078)
were positively correlated with CIMP-high/MLH1methylated group (Figure C).
(DOCX)

S2 File. Disease free survival in Gastric cancer patients in TCGA database. Kaplan—Meier
survival curves were generated according to theMLH1methylation status. The disease free sur-
vival rates were determined for theMLH1methylated and non-methylated groups. Disease
free survival rates were slightly higher in theMLH1methylated group compared to the non-
methylated group but the difference was not significant (log-rank P = 0.1173) (Figure A). Dis-
ease free survival rates were analyzed for the CIMP-high and CIMP-low groups, and the rate
was slightly higher in the CIMP-high group than in the CIMP-low group but the difference
was not significant (log-rank P = 0.1847) (Figure B). Disease free survival rates were analyzed
and compared between CIMP-high/MLH1methylated and other groups. We noted that the
disease free survival rates were slightly higher in the combined CIMP-high/MLH1methylated
group, compared to the other groups where the differences were not statistically significant
(log-rank P = 0.1073) (Figure C).
(DOCX)

S1 Table. Primer sequences.
(DOCX)

S2 Table. Multivariate analysis of outcome predictors based on CIMP/MSI status.
(DOCX)
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