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The liver—a central metabolic organ that integrates whole-body metabolism to maintain
glucose and fatty-acid regulation, and detoxify ammonia—is susceptible to injuries
induced by drugs and toxic substances. Although plasma metabolite profiles are
increasingly investigated for their potential to detect liver injury earlier than current clinical
markers, their utility may be compromised because such profiles are affected by the
nutritional state and the physiological state of the animal, and by contributions from
extrahepatic sources. To tease apart the contributions of liver and non-liver sources to
alterations in plasma metabolite profiles, here we sought to computationally isolate the
plasma metabolite changes originating in the liver during short-term fasting. We used
a constraint-based metabolic modeling approach to integrate central carbon fluxes
measured in our study, and physiological flux boundary conditions gathered from the
literature, into a genome-scale model of rat liver metabolism. We then measured plasma
metabolite profiles in rats fasted for 5–7 or 10–13 h to test our model predictions. Our
computational model accounted for two-thirds of the observed directions of change
(an increase or decrease) in plasma metabolites, indicating their origin in the liver.
Specifically, our work suggests that changes in plasma lipid metabolites, which are
reliably predicted by our liver metabolism model, are key features of short-term fasting.
Our approach provides a mechanistic model for identifying plasma metabolite changes
originating in the liver.

Keywords: metabolic network, rat, liver, plasma, metabolomics, fasting, central carbon flux, gluconeogenesis

Frontiers in Physiology | www.frontiersin.org 1 March 2019 | Volume 10 | Article 161

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2019.00161
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2019.00161
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2019.00161&domain=pdf&date_stamp=2019-03-01
https://www.frontiersin.org/articles/10.3389/fphys.2019.00161/full
http://loop.frontiersin.org/people/39594/overview
http://loop.frontiersin.org/people/284761/overview
http://loop.frontiersin.org/people/634026/overview
http://loop.frontiersin.org/people/187800/overview
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00161 February 27, 2019 Time: 16:38 # 2

Vinnakota et al. Network Modeling of Fasting Metabolism

INTRODUCTION

The liver is the primary organ responsible for metabolizing
drugs and toxicants, a process collectively known as xenobiotic
metabolism. This function makes the liver highly susceptible to
injury and potential failure (Zimmerman, 1999). Current clinical
markers of liver cell damage, such as the enzymes alanine amino
transferase (ALT) and aspartate amino transferase (AST), which
appear one to several days following exposure to a toxicant,
are often limited in sensitivity and specificity to detect the
pathology or injury (Zimmerman, 1999). Metabolite profiles,
as measured in the plasma and urine of laboratory animal models
of liver injury, are actively being investigated for their potential
to detect liver damage earlier than current clinical markers
and thereby facilitate timely intervention (Kamp et al., 2012;
Mattes et al., 2014; Beger et al., 2015; Iruzubieta et al., 2015;
Chang et al., 2017; Jarak et al., 2017). Additionally, they are
being analyzed to identify canonical metabolic pathways (i.e., not
including xenobiotic metabolism), such as lipid, amino acid, and
oxidative stress pathways, which are perturbed during a drug-
or toxicant-induced liver injury. However, plasma metabolite
profiles and canonical metabolic pathways are also affected by
the nutritional and physiological state of an animal, which could
confound the identification of liver injury-induced changes in
the plasma metabolite profile (Mellert et al., 2011; Mu et al.,
2015). Importantly, the plasma metabolite profile consists of
contributions from all other organs in the body, each of which is
determined by the physiological state of the organ. It is important,
therefore, to identify the contributions of liver metabolism
to the plasma metabolite profile, and the metabolic pathways
contributing to the observed changes under physiological and
pathophysiological perturbations.

Genome-scale computational modeling of organ metabolism
constitutes an important approach toward obtaining mechanistic
insights into organ metabolism and canonical metabolic
pathways under various conditions (Blais et al., 2017). Here, we
subjected rats to short-term fasting in vehicle control groups of
a larger study involving three different toxicants, and applied a
genome-scale rat metabolic network to assess liver contributions
to plasma metabolite profiles and to identify the responsible
metabolic pathways. The short-term fasting conditions studied
here were dominated by hormonally regulated changes in liver
glycogen breakdown without significant transcriptomic changes
of liver enzymes, which created a challenge in applying a genome-
scale network modeling approach to describe liver function.
We made our modeling analysis represent the liver mainly by
constraining the model with the measured metabolic fluxes in
this study and fluxes reported in the literature under similar
conditions. Specifically, we measured the evolution of key
metabolic fluxes in the liver, the liver transcriptome, and plasma
metabolite profiles in three in vivo studies during which the rats
underwent short-term food deprivation for up to 13 h. We used a
recently published algorithm to integrate the measurements with
a rat metabolic network model, and predicted the direction of
change in extracellular metabolite concentrations resulting from
a perturbation of metabolic fluxes in the network (Blais et al.,
2017; Pannala et al., 2018). By comparing model predictions

of the directions of metabolite changes with measured plasma
metabolite profiles, we assessed the contributions of the liver to
those changes.

MATERIALS AND METHODS

Animals and Study Groups
Male Sprague-Dawley rats at 10 weeks of age were purchased
from Charles River Laboratories (Wilmington, MA,
United States). The rats were fed with Formulab Diet 5001
(Purina LabDiet; Purina Miles, Richmond, IN, United States)
and given water ad libitum in an environmentally controlled
room with a 12:12-h light-dark cycle at 23◦C. All experiments
were conducted in accordance with the Guide for the Care and
Use of laboratory Animals of the United States Department
of Agriculture, using protocols approved by the Vanderbilt
University Institutional Animal Care and Use Committee, and
by the United States Army Medical Research and Materiel
Command Animal Care and Use Review Office.

Three types of measurements, plasma metabolite profiles,
liver gene expression, and stable isotope tracer-based metabolic
flux profiles, were made at one or two time points in three
experimental studies. The three studies described here were the
vehicle control groups of a larger study involving three different
toxicants. The vehicle for each toxicant was different due to their
differing physical and chemical properties. The time points also
varied slightly because of the differences in their toxicity in the
larger study. Table 1 summarizes the number of animals for each
measurement in each study.

Catheter Implantation for
Infusions and Sampling
Catheter implantation surgery was performed 7 days before each
experiment, as previously described (Shiota, 2012). Rats were
anesthetized with isoflurane, after which one of two procedures
was performed depending on the type of measurement to be
collected during the experiment. To measure changes in gene
expression and plasma metabolite profiles, the right external
jugular vein was cannulated with a sterile silicone catheter
[0.51 mm inner diameter (ID) and 0.94 mm outer diameter
(OD)]. Alternatively, to measure metabolic flux, both the carotid
artery and the right external jugular vein were cannulated with
sterile silicone catheters (0.51 mm ID and 0.94 mm OD). The
free ends of the implanted catheters were passed subcutaneously
to the back of the neck, where they were fixed. Finally, each

TABLE 1 | Number of animals used for each measurement per time point in
Studies 1–3.

Measurement Study 1 Study 2 Study 3

5 h 10 h 5 h 10 h 7 h 13 h

Metabolic flux – 9 – 8 – 8

Plasma metabolite profiles 8 8 8 8 9 9

Liver gene expression 8 8 8 8 8 8

Frontiers in Physiology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 161

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00161 February 27, 2019 Time: 16:38 # 3

Vinnakota et al. Network Modeling of Fasting Metabolism

implanted catheter was occluded with a metal plug after a flush
with heparinized saline solution (200 U heparin/ml). The rats
were housed individually after the surgery.

Procedures for Measuring Changes in
Gene Expression and Plasma
Metabolite Profiles
Two time points were selected for sampling tissue and blood after
vehicle administration in each of the three studies analyzed in the
present paper: they were 5 h and 10 h for Studies 1 and 2, and
7 h and 13 h for Study 3. The administered vehicles and their
dosages were polyethylene glycol at 6 ml/kg, corn oil at 2 ml/kg,
and saline at 2 ml/kg in Studies 1, 2, and 3, respectively. Following
blood collection, animals were given vehicle by oral gavage at
7 a.m. and moved to a new housing cage, where they were
given access to water ad libitum but not food. Then, at 12 p.m.
(5 h group) or 5 p.m. (10 h group), after blood collection, animals
in Studies 1 and 2 were anesthetized by intravenous injection
of sodium pentobarbital through the jugular vein catheter and
immediately subjected to laparotomy. The same procedures were
performed at 2 p.m. (7 h group) or 8 p.m. (13 h group) in Study
3. After laparotomy, the liver was dissected and frozen using
Wollenberger tongs precooled in liquid nitrogen. The collected
plasma and liver samples were stored at −80◦C until use for
further analyses.

Methods for Measuring Metabolite Flux
In vivo Procedures in the Rat
At 7 a.m. on the day of the study, rats in all three studies were
administered vehicle (50% polyethylene glycol or 6 ml/kg of
either saline or corn oil) by oral gavage. Then, after food and
water were removed, they were anesthetized with isoflurane at
12:50 p.m. (Studies 1 and 2) or 3:50 p.m. (Study 3). Subsequently,
a 200-µl arterial blood sample was collected through the carotid
artery catheter to determine the natural isotopic abundance of
circulating glucose, after which a bolus of [2H2]water (99.9%)
was delivered subcutaneously to enrich total body water to
4.5%. A [6,6-2H2]glucose prime (80 mg · kg−1) was dissolved
in the bolus. Post-awakening, at 1 p.m. or 4 p.m. (i.e., 6 or
9 h after dosing), rats were connected to sampling and infusion
lines and placed in bedded containers without food or water.
Following the bolus, [6,6-2H2]glucose was administered as a
continuous infusion (0.8 mg · kg−1

·min−1) into the systemic
circulation through the jugular vein catheter for the duration
of the study. Sodium [13C3]propionate (99%) was delivered as
a primed (110 mg · kg−1), continuous (5.5 mg · kg−1

·min−1)
infusion starting 120 min after delivery of the [2H2] water
bolus. All infusates were prepared in a 4.5% [2H2] water-
saline solution unless otherwise specified. Stable isotopes were
obtained from Cambridge Isotope Laboratories (Tewksbury,
MA, United States). Blood glucose was monitored (AccuCheck;
Roche Diagnostics, Indianapolis, IN, United States) and donor
erythrocytes were infused to maintain hematocrit throughout
the study. Three blood samples (300 µl each) were collected
over a 20-min period following 100 min of [13C3]propionate

infusion. Arterial blood samples were centrifuged in EDTA-
coated tubes for plasma isolation, and the three 100-µl plasma
samples were stored at −20◦C prior to glucose derivatization
and gas chromatography-mass spectrometry (GC-MS) analysis.
Rats were rapidly euthanized through the carotid artery catheter
immediately after the final steady-state sample was collected.

Preparation of Glucose Derivatives
Plasma samples were divided into three aliquots and derivatized
separately to obtain di-O-isopropylidene propionate, aldonitrile
pentapropionate, and methyloxime pentapropionate derivatives
of glucose. For di-O-isopropylidene propionate preparation,
proteins were precipitated from 20 µl of plasma using 300 µl
of cold acetone, and the protein-free supernatant was evaporated
to dryness in screw-cap culture tubes. Derivatization proceeded
as described previously (Antoniewicz et al., 2011) to produce
glucose 1,2,5,6-di-isopropylidene propionate. For aldonitrile and
methyloxime derivatization, proteins were precipitated from
10 µl of plasma using 300 µl of cold acetone and the protein-
free supernatants were evaporated to dryness in microcentrifuge
tubes. Derivatizations then proceeded as described previously
(Antoniewicz et al., 2011) to produce glucose aldonitrile
pentapropionate and glucose methyloxime pentapropionate. All
derivatives were evaporated to dryness, dissolved in 100 µl of
ethyl acetate, and transferred to GC injection vials with 250 µl
glass inserts for GC-MS analysis.

GC-MS Analysis
GC-MS analysis was performed using an Agilent 7890A gas
chromatography system with an HP-5 ms (30 m × 0.25 mm ×
0.25 µm, Agilent J&W Scientific; Agilent Technologies Inc.,
Santa Clara, CA, United States) capillary column interfaced
with an Agilent 5975C mass spectrometer. Samples were
injected into a 270◦C injection port in splitless mode. Helium
flow was maintained at 0.88 ml ·min−1. For analysis of
di-O-isopropylidene and aldonitrile derivatives, the column
temperature was held at 80◦C for 1 min, ramped at 20◦C ·
min−1 to 280◦C and held for 4 min, then ramped at 40◦C ·
min−1 to 325◦C. For methyloxime derivatives, the same oven
program was used except the ramp to 280◦C was 10◦C ·min−1.
After a 5 min solvent delay, the MS collected data in scan
mode from m/z 300 to 320 for di-O-isopropylidene derivatives,
m/z 100 to 500 for aldonitrile derivatives, and m/z 144 to
260 for methyloxime derivatives. Each derivative peak was
integrated using a custom MATLAB R©(Mathworks Inc., Natick,
MA, United States) function (Antoniewicz et al., 2007) to
obtain mass isotopomer distributions (MIDs) for six specific ion
ranges: aldonitrile – m/z 173–177, 259–265, 284–288, 370–374;
methyloxime – m/z 145–149; di-O-isopropylidene – m/z 301–
308. To assess uncertainty, root mean square error was calculated
by comparing the baseline MID of unlabeled glucose samples to
the theoretical MID computed from the known abundances of
naturally occurring isotopes.

2H/13C Metabolic Flux Analysis (MFA)
A detailed description of the in vivo metabolic flux analysis
methodology employed in these studies has been previously
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provided (Hasenour et al., 2015). Briefly, a reaction network was
constructed using the INCA software package (Young, 2014). The
reaction network defined the carbon and hydrogen transitions
for biochemical reactions linking hepatic glucose production and
associated intermediary metabolism reactions. Flux through each
reaction was estimated relative to citrate synthase (fixed at 100)
by minimizing the sum of squared residuals between simulated
and experimentally determined MIDs of the six fragment ions
previously described. Flux estimation was repeated at least
25 times from random initial values. Goodness-of-fit was assessed
by a chi-square test, and 95% confidence intervals were computed
by evaluating the sensitivity of the sum-of-squared residuals to
variations in flux values (Antoniewicz et al., 2006). The average
sum of squares of residuals (SSR) of each experimental group
fell within the 95% confidence interval of the corresponding chi-
square distribution with D degrees of freedom: Study 1 (D = 22):
SSR = 29.65 ± 7.05; Study 2 (D = 23): SSR = 28.77 ± 2.83; Study
3 (D = 26): SSR = 22.69 ± 1.83. Relative fluxes were converted to
absolute values using the known [6,6-2H2]glucose infusion rate
and rat weights. Flux estimates for the steady-state samples were
averaged to obtain a representative set of values for each rat.

Metabolomic Analysis
Sample Preparation and Ultrahigh Performance
Liquid Chromatography/Mass Spectrometry
(UHPLC/MS)
Sample preparation was carried out at Metabolon, Inc. in a
manner similar to a previous study (Hatano et al., 2016).
Briefly, individual samples were subjected to methanol extraction
and then split into aliquots for analysis by UHPLC/MS. The
global biochemical profiling analysis comprised four unique
arms: reverse phase chromatography positive ionization methods
optimized for hydrophilic compounds (LC/MS Pos Polar) and
hydrophobic compounds (LC/MS Pos Lipid); reverse phase
chromatography with negative ionization conditions (LC/MS
Neg), and a hydrophilic interaction liquid chromatography
(HILIC) method coupled to negative ionization (LC/MS Polar)
(Evans et al., 2014). All of the methods alternated between full
scan MS and data-dependent MSn scans. The scan range varied
slightly between methods but generally covered 70–1,000 m/z.

Metabolites were identified by automated comparison of
the ion features in the experimental samples to a reference
library of chemical standard entries that included retention
time, molecular weight (m/z), preferred adducts, and in-source
fragments as well as associated MS spectra, and curated by
visual inspection for quality control using software developed
at Metabolon. Identification of known chemical entities was
based on comparison to metabolomic library entries of purified
standards (Dehaven et al., 2010).

Statistical Analysis of Metabolomic Data
We performed statistical analysis to identify metabolites that
changed significantly with the duration of fasting. The raw
data consisted of MS counts for each metabolite detected in a
given plasma sample. We imputed any missing values with the
minimum observed value for each metabolite. We then computed
distributions of fold-change values for each metabolite and

pooled them across the three studies to resolve changes during
short-term fasting above experimental and biological noise.
From these pooled distributions, we calculated 99% confidence
intervals for the mean fold-change values of each metabolite
using the percentile approach (Efron and Hastie, 2016). Briefly,
for each metabolite at each of the two points in a study, we
constructed n × 105 instances of MS count data by random
sampling with replacement, where n is the number of animals.
Then, for each metabolite in the given study, we calculated
n× 105 fold-change values from the synthetic data sets generated
in the previous step. We pooled these fold-change values across
studies for a given metabolite, and calculated 105 sample means,
which constitute the bootstrapped distribution of the mean fold-
change. To obtain the 99% confidence interval of the mean
fold value for each metabolite, we identified a percentile-based
confidence interval from the bootstrapped distribution of the
mean fold-change value, which excluded values above the highest
0.5th percentile and those below the lowest 0.5th percentile.
A metabolite was determined to have significantly increased or
decreased if both bounds of the 99% confidence interval of
its mean fold-change value were above or below the value 1.
All statistical analyses were performed in MATLAB R©R2017b
(Mathworks Inc., Natick, MA, United States). We have provided
MATLAB code for this analysis in the Supplementary Material.

RNA Sequencing and Data Analysis
RNA Isolation and Sequencing
Total RNA was isolated from the liver, using TRIzol Reagent
(Thermo Fisher Scientific, Waltham, MA, United States) and
the direct-zol RNA Mini Prep kit (Zymo Research, Irvine, CA,
United States). The isolated RNA samples were then submitted
to the Vanderbilt University Medical Center VANTAGE Core
(Nashville, TN, United States) for RNA quality determination
and sequencing. Total RNA quality was assessed using a 2100
Bioanalyzer (Agilent, Santa Clara, CA, United States). At least
200 ng of DNase-treated total RNA with high RNA integrity
was used to generate poly-A-enriched mRNA libraries, using
KAPA Stranded mRNA sample kits with indexed adaptors
(Roche, Indianapolis, IN, United States). Library quality was
assessed using the 2100 Bioanalyzer (Agilent), and libraries were
quantitated using KAPA library Quantification kits (Roche). In
Study 1, pooled libraries were subjected to 75-bp single-end
sequencing according to the manufacturer’s protocol (Illumina
HiSeq 3000, San Diego, CA, United States). In contrast, in
Studies 2 and 3, the respective pooled libraries were subjected
to 150-bp paired-end sequencing on Illumina NovaSeq 6000 and
75-bp paired-end sequencing on Illumina HiSeq 3000 according
to the manufacturer’s protocol. Bcl2fastq2 Conversion Software
(Illumina) was used to generate de-multiplexed Fastq files.

Analysis of RNA-Seq Data
Analysis of RNA-seq data consists of two stages: (1) deter-
mination of transcript abundance and (2) determination
of differentially expressed genes. We determined transcript
abundance from Fastq files, consisting of raw sequence reads,
using a recently published software tool Kallisto (Bray et al.,
2016). Using Kallisto, we first generated a reference transcriptome
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index from cDNA files based on genome assembly Rnor6.0
for rat, published on ENSEMBL Release 92 (Zerbino et al.,
2018). We then determined transcript abundance using Kallisto,
which is based on pseudoalignment of raw sequence reads to
the reference transcriptome index. We used appropriate Kallisto
settings for processing single-end sequence reads from Study 1,
and paired-end sequence reads from Studies 2 and 3. Using these
transcription data, expressed in units of transcripts per million
(TPM), we used the analytical tool Sleuth (Pimentel et al., 2017)
to investigate differential expression of genes between two time
points in each. Within Sleuth, we applied a likelihood ratio test
to identify statistically significant gene expression changes and
a Wald test to compute the effect sizes (logarithms of the fold-
changes), between the two time points in each study, for each
test. From these results, we obtained effect sizes for the genes
that were identified by the likelihood ratio test to have changed
significantly. Finally, we designated the genes with absolute
effect sizes in the top 10th percentile as biologically significant,
conditional upon statistical significance.

Curation of Rat Metabolic Network iRno
and Assignment of Physiological
Flux Bounds
We first updated a recently published functional rat genome-
scale network reconstruction iRno, which contains 2,325 genes
and 5,620 metabolites in 8,336 reactions and eight compartments
connected by Gene-Protein-Reaction rules, and is capable of
simulating 327 liver-specific metabolic functions (Blais et al.,
2017). The updates to iRno included additional reactions
or modification of existing reactions based on experimental
evidence (Supplementary Table S1). For instance, we removed
a reaction (S)-lactate:ferricytochrome-c 2-oxidoreductase, which
was determined to be non-existent in mammalian systems.
Additionally, we added 90 transport and 105 exchange reactions
to iRno to improve its coverage of exchangeable metabolites that
were detected in plasma metabolite profiles in the present study.
The updated iRno contains 2,325 genes and 5,709 metabolites
including 3,201 unique metabolites in 8,534 reactions including
595 exchange reactions in eight compartments. Supplementary
Table S1 provides the updated iRno.

The liver operates in a gluconeogenic mode during the short-
term fasting trajectory in the present study. In this state, the liver
takes up amino acids, lactate, and glycerol to produce glucose
and urea. The liver also takes up non-esterified fatty acids to
produce ketone bodies. We constrained the uptake rates of amino
acids, fatty acids, lactate, and glycerol, using values reported in
the literature from in vivo measurements in rats undergoing
short-term fasting (Supplementary Table S2).

Application of Transcriptionally Inferred
Metabolic Biomarker Response
(TIMBR) Algorithm
Transcriptionally inferred metabolic biomarker response
(TIMBR) is a recently published method developed for
predicting changes in extracellular metabolites due to gene
expression changes under defined physiological operating

conditions by integrating those changes into genome-scale
network reconstructions (see Blais et al., 2017 for details). In the
present study, we applied TIMBR to predict metabolite changes
during a 5–6-h window of short-term fasting, where gene
expression changes have little influence on metabolic state (Ikeda
et al., 2014), in contrast to the changes in the central carbon
metabolism fluxes. TIMBR calculates the global network demand
required for producing a metabolite (Xmet) by minimizing the
weighted sum of fluxes across all reactions for each condition
and metabolite, while satisfying the steady-state mass balance
and a defined optimal fraction of maximum network production
flux capability (νopt) to produce a metabolite as shown below:

Xmet = min
∑
|v|

s.t. : vX ≥ vopt; vlb < v < vub ; S · v = 0
(1)

where ν is a vector of reaction fluxes and S is the stoichiometric
matrix. We included boundary conditions for uptake and
secretion rates into the algorithm by fixing the respective lower
(νlb) and upper bounds (νub) of the metabolite exchange reactions
(νex), as shown in Eq. (2). Similarly, we integrated measurements
from 13C-labeled tracer studies for some of the central carbon
metabolism fluxes into the TIMBR algorithm by constraining
the lower and upper bounds of the respective reactions in
the model (νmfa) (Eq. 3).

vlb < vex < vub (2)

vlb < vmfa < vub (3)

Using this method, we determined the relative production
scores for all metabolites (Xraw) from 5 to 7 h (X5−7) and 10
to 13 h (X10−13) time points (Eq. 4), and then calculated the
TIMBR production scores (Xs) as the z-transformed scores across
all exchangeable metabolites (Eq. 5).

Xraw =
X5−7 − X10−13

X5−7 + X10−13
(4)

Xs =
Xraw − µ

σ
(5)

Figure 1 shows the workflow for the application of the TIMBR
algorithm (adapted from Pannala et al., 2018). We performed
the model computations in MATLAB R2017b using the linear
programming solver provided in the GNU Linear Programming
Kit. We refer the reader to the original publication for detailed
descriptions of the TIMBR algorithm and the corresponding
computer codes (Blais et al., 2017).

RESULTS AND DISCUSSION

Liver Glucose Production and
Glycogenolysis Fluxes Decrease
With Fasting Duration
During fasting, the liver produces glucose by synthesizing
it from glycerol, lactate, and amino acids, as well as by
breaking down glycogen. Figure 2 shows a schematic of the
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FIGURE 1 | Schematic (adapted from Pannala et al., 2018) illustrates how we integrated physiological flux bounds for exchangeable metabolites (νex), measured
central carbon fluxes (νmfa) with the rat metabolic network model iRno to compute global network demand (Xmet) using TIMBR, by minimizing the sum of the
absolute value of flux across all reactions at the earlier (X5-7) and later (X10-13) time points. We then calculated a z-transformed TIMBR score (Xs) from the raw
metabolite production score (X raw) for each metabolite, whose positive or negative sign indicated its predicted tendency to increase or decrease in plasma. The
TIMBR scores were compared with the measured fold-change values of significantly changed metabolites in the plasma to assess the contributions of liver
metabolism to those changes.

liver glucose production pathways, which include reactions of
glycogenolysis, gluconeogenesis, and the tricarboxylic acid cycle.
The aforementioned fluxes are collectively termed central carbon
fluxes. The flux values through individual reactions at 10 and
13 h of fasting (Figure 3, Studies 1–3) were measured by stable
isotope tracer studies, and those at 5–7 h of fasting (Figure 3,
Est. 5–7 h) were compiled from the literature under conditions
similar to our studies. In all studies considered for flux values
at 5–7 h, food was withdrawn at the beginning of the light
cycle. To reduce the influence of potential confounding factors,
we first obtained absolute flux of liver glucose production from
Rossetti et al.’s (1993) study conducted in 322 g male Sprague-
Dawley rats [standard error (SE) = 7 g, n = 35] fed standard
chow under conscious unrestrained conditions. The fractional
contribution of glycogen to liver glucose production (48%) at
5–7 h was reported to be invariant to rat strain, body weight,
state of anesthesia, and measurement technique (Rossetti et al.,
1993; Neese et al., 1995; Peroni et al., 1997; Sena et al., 2007; Jin
et al., 2013). The remaining 52% of glucose output came from
glycerol, and lactate and amino acids (Rossetti et al., 1993; Neese
et al., 1995; Peroni et al., 1997; Sena et al., 2007; Jin et al., 2013).

The reported range of glycerol contribution was 15–19% and
that of lactate and amino acids was 37–41% (Peroni et al., 1997;
Sena et al., 2007; Jin et al., 2013) in various rat strains and a
wide range of body weights. We selected fractional contributions
of glycerol and lactate from the study of Jin et al. (2013)
where they used 324 g male Sprague-Dawley rats (SE = 4 g,
n = 9). Table 2 shows the fractional contributions of various
precursors to liver glucose output at 5–7 h and Figure 3 shows the
absolute flux values.

Overall glucose output progressively decreased by 30% from
5 to 7 h until 13 h of fasting. Much of this reduction was
due to a decrease in the flux of glycogenolysis, whose fractional
contribution to glucose output decreased from 48% at 5 h to
2.3% at 13 h of fasting (Table 2). Thus, the contributions of
the remaining precursors—glycerol, lactate, and amino acids—to
glucose output remained nearly constant as absolute values but
increased as fractions of glucose output. As a result, the absolute
fluxes through the reactions downstream of glycogen breakdown
(PYGL in Figure 2), beginning with glucose-6-phosphate
isomerase (GPI in Figure 2) and ending in the tricarboxylic acid
cycle at succinate dehydrogenase (SDH in Figure 2), were nearly
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FIGURE 2 | Figure (adapted from Pannala et al., 2018) depicts liver central
carbon metabolism pathways that produce glucose by breaking down
glycogen (glycogenolysis) and by gluconeogenesis from glycerol, lactate, and
amino acids during fasting. Unidirectional arrows indicate reactions that
operate far from thermodynamic equilibrium and are practically irreversible.
Bidirectional arrows indicate reactions that operate closer to thermodynamic
equilibrium and are reversible under physiological conditions. ALDO, aldolase;
CS, citrate synthase; EndoRa, endogenous liver glucose production; ENO,
enolase; GAPDH, glyceraldehyde phosphate dehydrogenase; GK, glycerol
kinase; GPI, glucose-6-phosphate isomerase; IDH, isocitrate dehydrogenase;
LDH, lactate dehydrogenase; OGDH, oxoglutarate dehydrogenase; PC,
pyruvate carboxylase; PCC, propionyl-CoA carboxylase; PCK,
phos-phosphoenolpyruvate carboxykinase; PK, pyruvate kinase; PYGL,
glycogen phosphorylase; SDH, succinate dehydrogenase.

equal in magnitude at 10 and 13 h of fasting but higher than the
values at 5–7 h of fasting (Figure 3).

The major conclusions from the central carbon flux data
(Figure 3) were that glycogenolysis and overall glucose output
decline with fasting duration. A key observation was that the
glycogenolysis flux was almost completely depleted after 13 h
of fasting. The flux analysis assumption that liver metabolism
operated in a pseudo-steady state at 5–7 h and 10–13 h is
consistent with numerous observations reported in the literature
(McGarry et al., 1973; Rossetti et al., 1993). The 5–7-h time
interval represented the end of an early post-absorptive period—
where glycogen breakdown contributed to half of the liver glucose
output—which was followed by a steep decline in glycogenolysis
and a steep increase in ketogenesis plateauing at the 10–13-
h time interval. Although the absolute flux of gluconeogenesis
from glycerol was nearly equal at all time points, the flux
of gluconeogenesis from lactate and amino acids was higher
at the 10–13-h time interval, which indicated the coupling
of liver metabolism to extra-hepatic sources of precursors for
gluconeogenesis after longer fasting durations. Finally, a key
approximation in the central carbon flux analysis was that the

FIGURE 3 | Central carbon metabolic pathway fluxes through the reactions
illustrated in Figure 2, measured in Studies 1–3 (10 and 13 h time points), and
estimated from the literature at 5–7 h time interval. Bars represent mean flux
values, and the error bars represent the SE of the means. The numbers of
biological replicates in Studies 1–3 were 9, 8, and 8, respectively. Fluxes
labeled by an asterisk (GAPDH, GK, ENO, and PCC) were expressed in
hexose units, i.e., divided by a factor of two from their actual values.
Abbreviated reaction names on the y-axis follow their definitions in the legend
for Figure 2.

liver provided all of the glucose output. Although the kidney
is also known to contribute to overall gluconeogenesis, its
contribution is important only at fasting durations beyond 24 h
(Mithieux et al., 2006). Together with previous evidence, our data
suggest the presence of distinct metabolic states after 5–7 h and
10–13 h of fasting.

Metabolite Changes Observed
During Short-Term Fasting
Plasma metabolites changed after short-term fasting (Table 3).
Given the similarity in liver central carbon fluxes, we treated the
5-h (Studies 1 and 2) and 7-h (Study 3) fasting durations as early
time points, and the 10-h (Studies 1 and 2) and 13-h (Study 3)
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TABLE 2 | Fractional contributions of metabolic precursors glycogen, glycerol, and
lactate and amino acids to liver glucose production at varying durations of fasting.

Metabolic precursor Percent contribution to liver glucose output

5–7 h 10 h 13 h

Glycogen 48a 20b 2.3b

Glycerol 15a 16b 23.4b

Lactate and amino acids 37a (33a) 64b (51c) 74.3b (59c)

(lactate)

The fractional contribution of lactate alone to liver glucose production is shown in
parentheses adjacent to that of lactate and amino acids in total. a(Rossetti et al.,
1993; Jin et al., 2013). bThis study. c(Lopez et al., 1998).

TABLE 3 | Observed changes in metabolites between early (5–7 h) and late
(10–13 h) time intervals, experimentally measured in the plasma, and in the subset
that is represented in the rat metabolic network model as exchangeable between
the hepatocyte and plasma.

Elevated Depressed

Metabolite set Total (p < 0.01) (p < 0.01)

Experimentally measured in plasma 824 121 72

Model represented and exchangeable 216 33 6

with plasma

durations as later time points for determining metabolite fold-
change values and their statistical significance. Of the 884
metabolites observed across the three studies, 198 changed
significantly (p < 0.01). Of these, 39 metabolites were represented
in the rat metabolic network model (iRno) as exchangeable
between liver cells and the extracellular space or plasma. We
compared our model predictions for the direction of change with
fasting to those for the 39 metabolites, 33 of which showed an
increase and 6 of which showed a decrease.

We also compared the significant changes in plasma
metabolites observed in the present study to those reported

in the literature on short-term fasting in the rat (McGarry
et al., 1973; Ho, 1976; Brass and Hoppel, 1978; Palou et al.,
1981; Kotal et al., 1996; Ikeda et al., 2014). In terms of
major metabolite pathways, most of the changes reported in
the literature were in agreement with those found in our
study (Table 4). Important changes indicative of fasting were
a reduction in glucose and phospholipids, and an elevation of
ketone bodies, fatty acyl carnitines, corticosterone, and choline.
Furthermore, key liver-specific metabolite changes observed here
and in the literature were the elevation of primary and secondary
bile acids, and the elevation of bile pigments bilirubin and
biliverdin. Supplementary Table S3 provides detailed lists of
those metabolites and the entire summary of statistical analysis
of all metabolites.

Reports on large-scale data on plasma metabolite changes
during a short-term fast, the number of biological replicates
required to resolve them, and their sensitivity to the type of
vehicle administered, do not exist in the literature. The number
of metabolites measured in Studies 1, 2, and 3 were 569, 645,
and 633, respectively, where the vehicle administered to the rats
was different for each study. The metabolite fold-change values
needed to be pooled across the three studies to resolve metabolite
changes above experimental and biological noise during short-
term fasting. The sum total of unique metabolites measured in
the plasma in all three studies was 824 (Table 3), of which 420
were common to all three studies, 183 were common to exactly
any two studies, and 221 were observed in exactly any one study.
We calculated bootstrapped 99% confidence intervals of the fold-
change values of the 420 common metabolites and confirmed
that the vehicle was not a significant factor influencing metabolite
changes (see Supplementary Table S3).

Among the 193 significantly changed metabolites (Table 3),
104 (54%) were measured in all three studies, 44 (23%) in
exactly any two studies, and 45 (23%) in exactly any one study.
Similarly, among the 631 unchanged metabolites, 316 (50%) were
measured in all three studies, 139 (22%) in exactly any two

TABLE 4 | Concordance of observed changes in plasma metabolite data with reported changes in the literature due to short-term fasting.

Number of metabolites reported in Fraction in agreement

Pathway this study (and in the literature) with this study Reference

Elevated Unchanged Depressed

Amino acid 3 (6) 18 (13) 1 (3) 0.6 Palou et al., 1981

Carbohydrate 0 0 1 (1) 1.0 McGarry et al., 1973; Palou et al., 1981

Hemoglobin and porphyrin 3 (3) 0 0 1.0 Kotal et al., 1996

metabolism

Lipid/carnitine 0 (0) 0 1 (0) 1.0 Brass and Hoppel, 1978

Lipid/corticosteroids 1 (1) 0 0 (0) 1.0 Dauchy et al., 2010; Ikeda et al., 2014

Lipid/diacylglycerol 1 (0) 0 7 (8) 0.9 Ikeda et al., 2014

Lipid/acyl carnitine 23 (23) 0 0 1.0 Brass and Hoppel, 1978

Lipid/ketone bodies 2 (2) 0 0 1.0 McGarry et al., 1973; Palou et al., 1981

Lipid/phosphatidylcholine 0 0 11 (11) 1.0 Ikeda et al., 2014

Lipid/phosphatidylinositol 0 0 5 (5) 1.0 Ikeda et al., 2014

Lipid/choline 1 (1) 0 0 1.0 Ikeda et al., 2014

Lipid/bile acids 9 (9) 0 0 1.0 Ho, 1976

Lipid/sterol 0 0 1 (1) 1.0 Ikeda et al., 2014
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studies, and 176 (27%) in exactly any one study. Taken together,
there was no study-wise representation bias in the proportion of
metabolites among the changed and unchanged groups, nor was
there any differential effect of the vehicle on metabolite changes
between studies, ensuring that pooling of metabolite fold-change
data across studies was not confounded by known experimental
differences between studies.

Of the 216 metabolites represented in iRno as exchangeable
metabolites, 163 (76%) were measured in all three studies, which
indicated the overall reliability of the data on exchangeable
metabolites. Similarly, among the 39 significantly changed
metabolites, 35 (90%) were measured in all three studies, which
indicated the reliability of the metabolite data against which
our model predictions were compared. Of the remaining four,
N-carbamoylaspartate was measured in Study 3, acetylcarnitine
in Study 1, inosine in Studies 1 and 2, and isocitrate in
Studies 1 and 3.

Metabolite pathway annotations showed that lipids, amino
acids, and cofactors and vitamins account for 49%, 23%,
and 4% of the 824 metabolites, respectively, which indicated
that lipid metabolites constituted the single largest category.
Among the 193 metabolites that changed significantly, lipid
metabolites again constituted the single largest group at 58%. The
fraction of significantly changed lipid metabolites among all lipid
metabolites was also highest at 28%, when compared to changes
in other major pathways (19% or less). These results underscore
the significance of lipids during short-term fasting.

Metabolic Gene Expression Did Not
Change Significantly During
Short-Term Fasting
Gene expression changes in the liver during short-term fasting
in all three studies (Table 5) revealed that the transcripts from
each study mapped to a similar total number of genes (about
14,000), of which 2,258 were mapped to 2,240 in iRno. Out
of the 2,325 genes in iRno, which were annotated with NCBI
gene identifiers, 2,240 had 2,258 ENSEMBL gene identifiers that
were used to annotate our transcriptomic data, with several
genes mapping to than one ENSEMBL identifier. Based on the
criteria of a false discovery rate of less than 0.1 and a biological
effect size cutoff of 0.6 (corresponding to the 90th percentile),
we found no statistically and biologically significant change in the
expression of metabolic genes mapping to iRno in Studies 1 and
3 except for 100 genes in Study 2. Therefore, we did not use any
differential gene expression-based weights in our implementation

TABLE 5 | Summary of gene expression changes with fasting.

Study Number of genes

Mapped to Mapped to

Total iRno (total) iRno (q < 0.1)

1 14,115 2,240 0

2 14,581 2,240 100

3 14,419 2,240 0

of the TIMBR algorithm to predict plasma metabolite
changes. Supplementary Table S4 shows the results of the
gene expression analysis.

Liver Metabolism Accounts for 64% of
Plasma Metabolite Changes
We integrated liver central carbon flux data, as well as known
physiological flux bounds for metabolite exchange fluxes at early
(after 5–7 h of fasting) and late (after 10–13 h of fasting) time
points, with iRno using the TIMBR algorithm. We then used the
TIMBR algorithm to compute a TIMBR score, whose positive or
negative sign indicated the tendency of a metabolite to increase
or decrease in the plasma, respectively, owing to changes in
the liver metabolic network demand induced by fasting. The
TIMBR predictions agreed overall with the metabolite changes
observed here; TIMBR scores accurately predicted five out of
six depressed, and 20 out of 33 elevated metabolites (Table 6).
A summary of the 39 metabolites, their observed log2(fold-
change) values, and corresponding TIMBR scores (Figure 4)
revealed an overall accuracy of 64% for predicting any changes,
and accuracies of 61% and 83% for predicting elevated and
depressed metabolites, respectively. The probability that 64% or
higher prediction accuracy could be achieved by chance was
calculated to be 0.054, using the exact binomial test. Therefore,
our network model of liver metabolism could account for 64%
of plasma metabolite changes (increase or decrease) that were
represented in the model, during short-term fasting.

The results in Figure 4, organized by metabolite pathways,
revealed three major pathways represented in our data set: amino
acids (8 metabolites), cofactors and vitamins (7 metabolites),
and lipids (18 metabolites). The model accuracy in predicting
metabolite changes for these three major pathways was 75% for
amino acids, 42% for cofactors and vitamins, and 78% for lipids,
providing estimates of both the reliability of the network model
and the hepatic origin of metabolite changes in the pathways. In
particular, the model achieved 100% accuracy in predicting the
elevation of five primary and secondary bile acids (under lipids in
Figure 4), and two bile pigments (under cofactors and vitamins),
which are specific to the liver.

Computational Model Assumptions,
Limitations, and Interpretation of
Predictions
The rat metabolic network model, iRno, currently the most
comprehensive genome-scale model of rat metabolism,
instantiated with physiological flux bounds pertinent to the

TABLE 6 | Concordance of TIMBR predictions with observed directions of change
in metabolite data.

Direction of Number of metabolites Concordant model

change measured predictions

Elevated 33 20

Depressed 6 5

All 39 25
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FIGURE 4 | Binary heat map of TIMBR scores of significantly changed exchangeable metabolites in plasma represented in iRno compared with measured
fold-change values, grouped by major biochemical pathways: amino acid, carbohydrate, cofactors, and vitamins, TCA cycle, lipid, nucleotide, and peptide. The
values in the left-hand side column (data) are measured log2(fold change) values of metabolites, grouped as depressed (black background), or elevated (white
background) metabolites. The values in the right-hand side column are the computed TIMBR scores whose negative (black background) or positive (white
background) sign indicates a predicted tendency of the metabolite to be depressed or elevated in plasma.

liver, was tested for satisfying defined liver-specific metabolic
functionalities (Blais et al., 2017). The implicit assumption in our
model was that overall liver metabolism could be represented
by a single network with a representative set of physiological
boundary conditions. This assumption seemed to contradict the
known metabolic differences in hepatocytes between perivenous
and periportal regions in the liver (Thurman et al., 1986).
Despite not representing those different kinds of hepatocytes
in our model, the overall satisfaction of liver metabolic tasks
attested to a sufficient representation of liver metabolic functions
originating in both regions. Additionally, the physiological flux
bounds and central carbon fluxes employed to constrain the
model did not include any metabolic heterogeneity. Finally,
a key assumption in analyzing the model was that the network
maintained a steady state, which was reasonable given the known
metabolic flux conditions at 5–7 h and 10–13 h.

A limitation of our modeling analysis was the restricted
coverage of metabolites exchanged between the plasma and
liver cells. Additional curation of iRno, which included addition

of exchange fluxes to improve network coverage of plasma
metabolites, was limited by the paucity of literature evidence
on the exchangeability of those metabolites. Consequently,
the fraction of lipid metabolites among the 216 exchangeable
metabolites (37%) was lower than that of the overall data set
(49%). However, the fraction of lipid metabolites among the 39
significantly changing metabolites was higher at 46%, which is
consistent with the trend in lipid metabolite fractions observed
in the overall data set. Therefore, metabolite changes mapped to
the network model are not biased by their limited coverage.

The measured changes in the circulating metabolites in plasma
reflected the fasting response of the whole body. Our modeling
effort sought to investigate plasma metabolite changes that can
be associated with changes in liver metabolism under short-
term fasting conditions where the primary observation was a
decrease in the hormonally regulated flux of liver glycogenolysis
and no significant transcriptomic changes of liver enzymes (Lin
and Accili, 2011). Our metabolic network analysis was made liver
specific and relevant to liver metabolism by the flux constraints.
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We used the in vivo central carbon fluxes derived from our tracer-
infusion studies under short-term fasting conditions coupled
with literature data from several studies during short-term
fasting that sets the overall metabolite uptake and secretion
fluxes of the liver (Lopez et al., 1998; Jin et al., 2013). This
analysis assumed that the bulk of the glucose production flux
captured by the in vivo metabolic flux analysis was of hepatic
origin under these conditions (Hasenour et al., 2015). Thus,
even though the measured metabolite changes were reflective
of the overall systemic response, our computational analysis
estimated those changes that were in concordance with a hepatic
origin. To assess the impact of liver transcriptomic changes,
we repeated our implementation of the TIMBR method using
all of the transcriptomic changes regardless of their statistical
significance and found that the predicted directions of metabolite
changes were unaltered from those shown in Figure 4 (see
Supplementary Figures S1–S3).

Finally, the estimated model accuracy in predicting bile
acids and bile pigments (100%, p = 0.004, subset of lipids),
lipids (78%, p = 0.03), and amino acids (75%, p = 0.29)
demonstrated the capability of the model to describe liver
metabolic functions, and provided estimates of contributions of
liver metabolism that agreed with metabolite changes observed in
those pathways. In particular, lipid metabolite changes emerged
as indicators of changes in liver metabolism, which were
characterized both experimentally and computationally with
sufficient statistical significance.

CONCLUSION

Liver glycogenolysis became vanishingly small over the course of
a short-term fast of 13 h, which resulted in a decline in the overall
liver glucose output from 5 h until 13 h. Metabolites in plasma
during this period showed changes known to be associated
with short-term fasting, whereas liver gene expression did not
change significantly. Finally, our computational analysis showed
that two-thirds of the metabolite changes in plasma between
5–7 h and 10–13 h of fasting could be explained by central
carbon flux changes in the liver without significant changes
in gene expression.
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FIGURE S1 | Binary heat map of TIMBR scores of significantly changed
exchangeable metabolites in plasma represented in iRno compared with
measured fold-change values, computed using both liver physiological flux
changes and gene expression changes in Study 1 and grouped by major
biochemical pathways: amino acid, carbohydrate, cofactors, and vitamins, TCA
cycle, lipid, nucleotide, and peptide. The values in the left-hand side column (data)
are measured log2 (fold change) values of metabolites, grouped as depressed
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(black background), or elevated (white background) metabolites. The values in the
right-hand side column are the computed TIMBR scores whose negative (black
background) or positive (white background) sign indicates a predicted tendency of
the metabolite to be depressed or elevated in plasma.

FIGURE S2 | Binary heat map of TIMBR scores of significantly changed
exchangeable metabolites in plasma represented in iRno compared with
measured fold-change values, computed using both liver physiological flux
changes and gene expression changes in Study 2 and grouped by major
biochemical pathways: amino acid, carbohydrate, cofactors, and vitamins, TCA
cycle, lipid, nucleotide, and peptide. The values in the left-hand side column (data)
are measured log2 (fold change) values of metabolites, grouped as depressed
(black background), or elevated (white background) metabolites. The values in the
right-hand side column are the computed TIMBR scores whose negative (black
background) or positive (white background) sign indicates a predicted tendency of
the metabolite to be depressed or elevated in plasma.

FIGURE S3 | Binary heat map of TIMBR scores of significantly changed
exchangeable metabolites in plasma represented in iRno compared with
measured fold-change values, computed using both liver physiological flux
changes and gene expression changes in Study 3 and grouped by major
biochemical pathways: amino acid, carbohydrate, cofactors, and vitamins, TCA
cycle, lipid, nucleotide, and peptide. The values in the left-hand side column (data)
are measured log2 (fold change) values of metabolites, grouped as depressed

(black background), or elevated (white background) metabolites. The values in the
right-hand side column are the computed TIMBR scores whose negative (black
background) or positive (white background) sign indicates a predicted tendency of
the metabolite to be depressed or elevated in plasma.
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modifications.
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