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Monoclonal antibodies that recognize cell surface molecules have been used deliver anti-
genic cargo to dendritic cells (DC) for induction of immune responses. The encouraging
anti-tumor immunity elicited using this immunization strategy suggests its suitability for
clinical trials. This review discusses the complex network of DC, the functional specializa-
tion of DC subsets, the immunological outcomes of targeting different DC subsets and their
cell surface receptors, and the requirements for the induction of effective anti-tumor CD4
and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review
preclinical experiments and the progress toward targeting human DC in vivo.
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INTRODUCTION
Dendritic cells (DC) are superior antigen presenting cells (APC)
that are critical for the initiation of immune responses. They are
uniquely equipped to take-up, process, and present antigens (Ag)
for the activation and expansion of naïve and memory T cells. The
idea of harnessing the immunogenicity of DC to induce immune
responses, coupled with the capacity to generate large numbers of
DC ex vivo, gave rise to the exploration of DC-based vaccines. Since
the initial clinical trials in the 1990s, there have been a plethora
of DC-based vaccine trials employing diverse methodologies for
the propagation, antigenic loading, and administration of these
DC (Tacken et al., 2007). Though DC-based vaccines can induce T
cell responses, objective clinical responses are anecdotal and DC-
based vaccines have largely failed to live up to their expectation as
an effective means of treating cancer (Lesterhuis et al., 2008; Eubel
and Enk, 2009).

To enhance the efficacy of DC-based vaccines, there is a need
to identify the parameters that potentially thwart positive clinical
outcomes (Lesterhuis et al., 2008; Robson et al., 2010). Whilst the
ability of Ag-loaded DC to raise measurable anti-tumor responses
has been demonstrated, the question of whether optimal priming
has been achieved remains unanswered. Certainly the observation
that only a small proportion of the injected Ag-loaded DC ever
reach the lymph node (Morse et al., 1999; De Vries et al., 2003)
where naïve T cells require priming, suggests that only sub-optimal
immune activation is ever achieved (Lesterhuis et al., 2008). From
an immunological perspective, it is not clear if the ex vivo Ag-
loaded DC directly prime immunity or whether they simply shuttle
their Ag to the draining lymph node where it is acquired by resident

Abbreviations: Ag, antigen; APC, antigen presenting cells; cDC, conventional
DC; DC, dendritic cells; mAb, monoclonal antibody; OVA, ovalbumin; pDC,
plasmacytoid DC; TLR, toll-like receptor; Treg, T regulatory cells.

DC that subsequently prime recipient T cells. Even if the ex vivo
Ag-loaded DC directly activate naïve T cells, it remains to be deter-
mined if they do so as efficiently as DC that naturally acquire Ag
in vivo.

An alternative strategy to vaccinating with ex vivo Ag-loaded
DC, is to directly deliver the Ag to DC in vivo. Since DC express
a unique pattern of cell surface receptors, monoclonal antibodies
(mAb) against these receptors can be used as vehicles to deliver Ag
to the DC (Figure 1). Numerous studies in animal models have
exploited this strategy to elicit potent immune responses, and in
some instances, effective anti-tumor responses. A multitude of
factors govern the efficiency and type of immune response evoked
by targeting DC in vivo. On the one hand, one needs to consider
the biological function of the receptor, its expression pattern, and
the nature of the interaction between the targeting mAb and the
receptor (agonist/antagonist). On the other hand, the DC subset
or subsets expressing this receptor and their maturation state, may
be critical to the type of immune response evoked.

This review discusses the network of DC, the outcomes of
delivering Ag in vivo to DC subsets in experimental models, and
the implications that this may have for DC-based vaccines in the
clinical setting.

DC DIVERSITY
Dendritic cells are not a homogenous population of cells, but rep-
resent a complex network of subsets that differ in ontology and
specialized functions (Figure 2). A major division, seen both in
mouse and man, occurs between plasmacytoid DC (pDC) and
myeloid DC, the latter of which are commonly referred to as con-
ventional DC (cDC; Shortman and Liu, 2002). The pDC are the
most effective producers of type I IFN (Asselin-Paturel et al., 2001;
Hochrein et al., 2001) and provide an innate defense against viral
infections, but their role in Ag presentation and priming of naïve
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FIGURE 1 | Methods for targeting antigen to DC in vivo. (A) The
heavy and light chain of the whole mAb or the single-chain fragments
of the variable regions (scFv) are sequenced and genetically
engineered to carry model Ag (star). Alternatively, (B) Ag can be
chemically conjugated to whole mAb. (C) The scFv of the mAb

recognizing DC-specific molecules can also be engrafted into stealth
liposomes. The liposomes can carry both antigen and cytokines (van
Broekhoven et al., 2004). (D) Nanoparticles carrying Ag are modified
to permit the attachment of DC-specific mAb and have been used to
target Ag (Cruz et al., 2010).

FIGURE 2 |The complex network of DC subsets. Plasmacytoid DC
provide an innate barrier against pathogens by the efficient production of
type I interferon. Conventional DC, which include both the lymphoid
tissue-resident DC and migratory DC, drive the adaptive immune
response. In the mouse spleen, the lymphoid tissue-resident DC are
divided into those that express of CD8α (CD8+), CD4 (CD4+), or those that
express neither CD4 or CD8α, the double negative (DN) DC subset. The
lymph nodes also contain migratory DC, which can be further segregated

into at least three subsets: the CD103+ DC, CD11b+ (dermal) DC, and
Langerhans’ cells. There is functional specialization between the DC
subsets, where the CD103+ DC and CD8+ DC are most proficient at
cross-presentation and activation of CD8+ T cells. By contrast, splenic DN
and CD4+ DC and lymphoid CD11b+ DC and Langerhans’ cells are more
efficient at driving CD4+ T cell responses. Although, under certain
conditions both CD4+ DC, DN DC, and Langerhans’ cells have been shown
to cross present antigen (Pooley et al., 2001; Flacher et al., 2010).

T cells remains unclear (Liu, 2005). By contrast, cDC are potent
APC that specialize in activating adaptive immune responses and
consequently, are the focus of this review.

In the mouse, blood-borne precursors seed the spleen and
develop into immature cDC (Naik et al., 2003, 2006; Wilson et al.,
2003; Liu et al., 2007, 2009) that sample the blood for pathogens.
These lymphoid tissue-resident cDC are usually divided into sub-
sets based on their expression of CD8α and CD4. The CD8+ DC
subset expresses CD8α but lacks CD4, the CD4+ DC expresses
CD4 but lacks CD8α, and the double negative (DN) DC expresses
neither CD4 nor CD8 (Vremec et al., 2000; Figure 2). The CD4+
DC and DN DC are often collectively referred to the CD8− DC.

Precursor–product studies have shown that CD8+ DC and CD8−
DC are not directly related, supporting the view that they repre-
sent different sublineages (Kamath et al., 2000, 2002; Naik et al.,
2003, 2006).

Blood-borne DC precursors also seed the lymph nodes giv-
ing rise to the immature lymphoid tissue-resident CD8+ DC and
CD8− DC subsets in these secondary lymphoid organs (Liu et al.,
2007, 2009). In addition to these resident DC, however, the lymph
nodes also contain migratory subsets (Figure 2). These migratory
DC, unlike the resident DC, do not develop from precursors within
the lymph nodes, but arrive via the afferent lymphatics in a mature
state (Henri et al., 2001, 2010; Turnbull and MacPherson, 2001).
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In the steady state, and at an increased rate upon activation, migra-
tory DC travel from the peripheral tissues that they survey, to the
draining lymph nodes (Wilson et al., 2008), where they share Ag
with the lymph node-resident cDC (Allan et al., 2006) or present
their Ag directly to T cells (Bedoui et al., 2009). There are several
subsets of migratory DC and their presence varies depending on
the peripheral tissues they monitor.

In the lung (Sung et al., 2006; Bursch et al., 2007; Desch et al.,
2011) and the mediastinal LN draining the lungs (Belz et al.,
2004b; Sung et al., 2006; GeurtsvanKessel et al., 2008), at least
two migratory DC subsets have been characterized; a CD11b+ DC
and a CD103+ DC. The CD103+ DC in the lung express langerin
(CD207) and only low levels of CD11b, consequently considered
CD11b− (Sung et al., 2006). Such CD11b− DC are also found in
the liver (Bursch et al., 2007), muscular layer of the small intes-
tine (Flores-Langarica et al., 2005), and the LN draining the liver
(Belz et al., 2004b), kidney (Belz et al., 2004b), gut (mesenteric),
and payer patches (Iwasaki and Kelsall, 2001). In fact, the CD103+
DC and CD11b+ DC are found in many tissues, suggesting that
most organs probably contain at least one CD11b−(CD103+)
and one CD11b+ DC population (Ginhoux et al., 2009). The
profile in the skin and its draining lymph nodes is more com-
plex. In the last few years, three DC subsets were identified: the
Langerhans’ cells (CD207+CD11b+CD103−), the classical der-
mal DC (CD207−CD11b+CD103−), and the CD103+ dermal
DC (CD207+CD11b−CD103+; Heath and Carbone, 2009). It has
been suggested that there are at least two other DC subsets in the
skin and its associated lymph nodes, but whether these demon-
strate functional specializations remains to be elucidated (Henri
et al., 2010).

DC SUBSET FUNCTIONAL SPECIALIZATION
All cDC subsets share the capacity to take-up, process, and present
Ag, and activate naïve T cells. However, the biological relevance
of the numerous DC subsets resides in their functional special-
ization (i.e., performing specific functions). The CD8+ DC are
the most potent producers of IL-12p70 (Hochrein et al., 2001),
and perhaps because of this they can direct T helper 1 (Th1)
responses (Maldonado-Lopez et al., 1999; Pulendran et al., 1999).
The defining characteristic of CD8+ DC is their strong capacity
to constitutively present exogenous Ag in the MHC class I path-
way, a process known as “cross-presentation” (den Haan et al.,
2000; Pooley et al., 2001; Belz et al., 2002). That is, CD8+ DC can
take-up exogenous Ag and present it on MHC class I for efficient
stimulation of CD8+ T cells (Figure 2). This critical function is
probably the reasons that CD8+ DC are the major subset involved
in presentation of viral Ag (Allan et al., 2003; Smith et al., 2003;
Belz et al., 2004a). Importantly for tumor immunity, where Ag
may be acquired from necrotic tumor mass, the CD8+ DC are also
superior at taking up dead and dying cells (Iyoda et al., 2002). This
coupled with their ability to cross-present, results in CD8+ DC
being superior at cross-presenting dead-cell-derived Ag (Short-
man and Heath, 2010). More recently, the migratory CD103+ DC
have also been shown to efficiently cross-present apoptotic cell-
associated Ag, soluble Ag, self-Ag, and viral Ag (del Rio et al.,
2007; Bedoui et al., 2009; Kim and Braciale, 2009; Desch et al.,
2011). Indeed the migratory CD103+ DC resemble lymphoid

tissue-resident CD8+ DC not only in their ability to cross-present,
but also in expressing langerin, XCR1 (Crozat et al., 2011), their
lack of CD11b expression, and their developmental requirement
for fms-like tyrosine kinase-3 (Flt3) ligand (Ginhoux et al., 2009)
and the transcription factors BatF3 (Hildner et al., 2008), Irf8
(Edelson et al., 2010), and Id2 (Ginhoux et al., 2009). The simi-
lar gene expression profile of these two subsets also supports the
notion of a developmental relationship (Ginhoux et al., 2009; Edel-
son et al., 2010; Crozat et al., 2011). The role of CD103+ DC in
tumor immunity remains to be investigated.

The ability of CD8− DC to cross-present Ag is somewhat
more controversial and there is evidence to support (Schulz and
Reis e Sousa, 2002; Kamphorst et al., 2010) and dispute (den
Haan et al., 2000; Belz et al., 2005; Schnorrer et al., 2006; Hild-
ner et al., 2008; Lin et al., 2008; Farrand et al., 2009; Segura
et al., 2009) their cross-presentation capacity. Despite the con-
troversy, there appear to be three scenarios that promote cross-
presentation in CD8− DC. Firstly, “activated” CD8− DC have
an enhanced ability to cross-present soluble Ag (Pooley et al.,
2001; Kamphorst et al., 2010). Secondly, receptor mediated-
endocytosis via DEC-205 promotes cross-presentation. Thus,
Ag delivered via DEC-205 to CD8− DC and even B cells, is
cross-presented (Kamphorst et al., 2010). Thirdly, Ag taken-up
by CD8− DC via the FcγR is cross-presented (den Haan and
Bevan, 2002). Indeed enforced expression of FcRγIIA endowed
non-professional APC with the capacity to cross-present (Gio-
dini et al., 2009). More recently it was shown that in CD8− DC,
the neonatal FcR, a non-classical FcR collaborates with FcγR to
facilitate cross-presentation of immuno-complexed Ag by direct-
ing intracellular sorting (Baker et al., 2011). The ability of the
FcγR to promote cross-presentation was exploited to induce anti-
tumor responses, though even in a prophylactic immunization
setting only mild anti-tumor immunity was evoked whether this
reached statistical significance was not clear (Akiyama et al.,
2003).

The role of other cell types in cross-presentation and activa-
tion of naïve CD8 T cells is yet to be established. Macrophages
(CD169+CD11c+) were shown to effectively cross-present apop-
totic material, though interestingly, a large proportion of these
macrophages expressed high levels of CD8α. The authors sug-
gest that these CD169+CD11c+ cells are macrophages not DC,
because in CD169-diphtheria toxin (DT) receptor (DTR) mice
treatment with DT depletes macrophages but not CD8+DC. How-
ever, upon close inspection of their data two things become
apparent: (1) There is indeed a small drop in the proportion
of CD8+ DC after DT treatment and (2) CD169+CD11c+ cells
only constitute a minute proportion of the total DC, therefore
depletion of CD8+CD169+CD11c+ would barely be detectable.
Thus, since this study did not rule out that DT treatment
in CD169-DTR mice depletes a proportion of CD8+DC (i.e.,
the CD8+CD169+CD11c+ DC) it is not clear whether deple-
tion of CD169+ cells prevents cross-presentation by removing
macrophages or a subpopulation of CD8+ DC (Asano et al., 2011).
However, macrophages have been shown to be involved in cross-
presentation – albeit in an indirect manner. Marginal metallophilic
macrophages transfer captured Ag to CD8+ DC, which then cross
present the Ag (Backer et al., 2010). Thus targeting Ag to marginal
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metallophilic macrophages can result in cross-presentation, albeit
in an indirect manner that requires Ag transfer to CD8+ DC.

Highly inflammatory conditions such as those generated by
immunization with completes Freund’s adjuvant induce mono-
cytes that are extremely effective at cross-presentation (Kamphorst
et al., 2010). Therefore in an immunization setting where inflam-
mation may be caused, targeting Ag to monocytes may be a way to
further boost cross-presentation.

Ultimately that capacity of a particular cell type to cross-present
does not equate to this cell playing a central role in cross-priming.
For example, though CD8− DC can cross-present via FcγR, in vivo
they are redundant for the activation of CD8 T cell responses
(den Haan and Bevan, 2002). The advent of the BatF3 deficient
mice, which lack CD8+ DC has also corroborated the critical role
CD8+ DC play in cross-presentation; CD8+ DC deficient mice
are inferior at cross-presenting viral and tumor antigen (Hildner
et al., 2008). The BatF3 deficient mice are not completely devoid
of CD8+ DC, indeed enough Clec9A+ DC are present to allow
MHC class II presentation. However, cross-presentation upon tar-
geting Clec9A was significantly inhibited in BatF3−/− re-iterating
the important role of CD8+ DC in activating CD8 T cells in vivo
(Caminschi et al., 2011).

Less controversial is the generalization that the CD8− DC are
more efficient at the presentation of Ag via MHC class II path-
way (Pooley et al., 2001; den Haan and Bevan, 2002; Carter et al.,
2006; Dudziak et al., 2007; Kamphorst et al., 2010). CD8− DC
have also have been shown to induce of Th2 type responses
(Pulendran et al., 1999). Similar to the CD8− DC, the migra-
tory CD11b+ DC appear proficient at MHC class II restricted
presentation (Figure 2). In a disease model of herpes simplex, it
is the migratory dermal DC (CD11b+CD103−) in the draining
LN that preferentially present Ag in the MHC class II pathway
(Zhao et al., 2003; Bedoui et al., 2009). In this viral diseases model,
Langerhans’ cells only play a minor or negligible role in MHC
class II presentation. However, in a skin infection model of Can-
dida albicans, Langerhans’ cells are essential for the generation of
Th17 cells, but unable to induce cytotoxic T cells, illustrating their
importance in the presentation of MHC class II Ag but limited
role in cross-presentation (Igyarto et al., 2011). There is evidence
to suggest that the function of migratory DC may also involve
“ferrying”Ag from the site of infection to the draining LN where it
is handed it over to CD8+ DC for cross-presentation (Allan et al.,
2006).

In conclusion, with some exceptions (Kim and Braciale, 2009;
Lukens et al., 2009), most experimental models support the
view that the lymphoid tissue-resident CD8+ DC and migratory
CD103+ DC dominate MHC class I-restricted cross-presentation,
whilst the migratory CD11b+ DC and Langerhans’ cells are more
efficient at MHC class II presentation (Figure 2). The most effec-
tive DC subset capable of priming anti-tumor T cell immunity
remains to be elucidated.

Though DC subsets have functional specializations, and theo-
retically these specializations can be harnessed to manipulate the
immune responses generated, in reality the technology has not
reached the stage of being able to deliver Ag to just one DC subset.
Most mAb that have been used to target Ag to DC, deliver the Ag to
multiple subsets and even other cell types. The interplay between

DC subsets, receptors, adjuvants, and immunological outcomes of
such targeting strategies is discussed below.

TARGETING DC IN VIVO
DC-SPECIFIC RECEPTORS
When attempting to deliver Ag to DC in vivo via the specific surface
receptors that they express, an immediate concern is the conse-
quence of simultaneously targeting other cell types expressing
the same receptor and therefore also acquiring the Ag. Particu-
larly when Ag presentation by certain cells, i.e., B cells, has been
shown to induce tolerance (Bennett et al., 1998). In this regard,
very few cell surface molecules are exclusively expressed by DC.
Even CD11c, the classical DC-marker in the mouse, is expressed
on activated CD8 T cells (Huleatt and Lefrancois, 1995), NK cells
(Laouar et al., 2005), and macrophages (Vallon-Eberhard et al.,
2006). Interestingly, however, there appears to be no obvious detri-
mental effect on the immune response generated, when cell types
in addition to DC receive the Ag. Indeed, CD11c (Wang et al.,
2000; Castro et al., 2008; Wei et al., 2009), DEC-205 (Hawiger
et al., 2001; Bonifaz et al., 2004), CD36 (Tagliani et al., 2008),
LOX1 (Delneste et al., 2002), mannose receptor (MR; He et al.,
2007), Clec12A (Lahoud et al., 2009) have all been successfully
used to elicit immune responses, despite their expression by non-
DC (Witmer-Pack et al., 1993; Inaba et al., 1995). Furthermore,
whilst promiscuous receptor expression does not prevent the
induction of immunity, it appears that it is the DC, and not the
other APC, that are directly responsible for the priming of T cells
(He et al., 2007; Nchinda et al., 2008; Lahoud et al., 2009). Thus,
Ag presentation by DC appears to dominate the immunological
outcome.

THE REQUIREMENTS FOR INDUCING IMMUNITY
The current paradigm of DC biology is that immature DC effi-
ciently take-up Ag, but are poor at interacting with T cells. DC
require some level of maturation to tolerize, or to effectively
stimulate and expand Ag-specific T cells (Albert et al., 2001).
Upon maturation/activation, DC shutdown Ag acquisition but
progressively increase Ag presentation and expression of appro-
priate co-stimulatory molecules required for efficiently priming
T cells (Villadangos and Schnorrer, 2007). Importantly, mature
DC retain the ability to capture and present Ag via endocytic
receptors (Platt et al., 2010). This is particularly relevant to the
delivery Ag to DC-receptors via mAb because it takes advantage
of the retained capacity of mature DC to endocytose and present
Ag taken-up via endocytic receptors. In the vaccine setting, it is
considered critical to mature (or activate) DC, since Ag presen-
tation by immature DC is likely to induce tolerance rather than
immunity. DC can undergo maturation in response to pathogens
and their by-products and experimentally this is mimicked by
the administration of adjuvants that mature DC (i.e., anti-CD40
mAb, poly I:C, CpG). Whilst the requirement for adjuvant for
the induction of humoral responses is variable (Caminschi et al.,
2009; Shortman et al., 2009), the induction of cellular immunity
and particularly the generation cytotoxic T lymphocyte (CTL)
responses clearly requires adjuvants. The most comprehensively
studied molecule utilized for the delivery of Ag to DC is DEC-
205 (Hawiger et al., 2001; Bonifaz et al., 2002, 2004). DEC-205
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is a multi-lectin endocytic receptor (Mahnke et al., 2000) and
though its primary function remains unclear, it has been reported
to bind dead cells (Shrimpton et al., 2009) and bacterial compo-
nents (Zhang et al., 2008). DEC-205 is expressed highly on CD8+
DC in the spleen, but is also found on Langerhans’ cells, der-
mal DC, and interstitial DC in lymph nodes. When anti-DEC-205
mAb is conjugated to model Ag and co-administered with DC-
maturation agents such as anti-CD40 mAb and poly I:C, vigorous
cellular and humoral immune responses are generated (Bonifaz
et al., 2004; van Broekhoven et al., 2004; Mahnke et al., 2005;
Boscardin et al., 2006; Charalambous et al., 2006; Trumpfheller
et al., 2006, 2008; Soares et al., 2007; Do et al., 2008; Johnson et al.,
2008). But in the absence of these maturation signals, targeting Ag
to DEC-205 can lead to T cell tolerance, by activation induced cell
death of responding T cells and by regulatory T cell (Treg) genera-
tion (Hawiger et al., 2001; Bonifaz et al., 2002, 2004; Mahnke et al.,
2003; Bruder et al., 2005; Kretschmer et al., 2005; Mukhopadhaya
et al., 2008; Yamazaki et al., 2008), emphasizing the importance of
creating the ideal priming environment. Similarly, targeting Ag to
DC via DCIR2 (Dudziak et al., 2007; Soares et al., 2007), Dectin-1
(Carter et al., 2006), MR (He et al., 2007), CD11c (Castro et al.,
2008; Wei et al., 2009), and MHC class II (Dickgreber et al., 2009)
also requires co-administration of activation stimuli to induce
robust cellular immunity. This suggests that targeting Ag to DC-
receptors in vivo will require the co-administration of activating
agents (or adjuvants) for optimal induction of anti-tumor CTL
and T helper cells.

BIASING THE TYPE OF IMMUNE RESPONSE GENERATED
A fundamental difference between the multiple DC subsets
appears to be their ability to cross-present Ag. In several exper-
imental settings, the lymphoid tissue-resident CD8+ DC and
the migratory CD103+ DC appear most efficient at cross-
presentation, whereas CD8− DC and other CD11b+ DC such as
dermal DC are more efficient at MHC class II presentation (den
Haan et al., 2000; Pooley et al., 2001; Zhao et al., 2003; del Rio et al.,
2007; Bedoui et al., 2009; Kim and Braciale, 2009). Indeed, when
the model Ag ovalbumin (OVA) is delivered to CD8+ DC or CD8−
DC using mAb, in the presence of maturation signals, a similar Ag
presentation hierarchy is observed: CD8+ DC targeted using anti-
DEC-205-OVA mAb are more efficient at inducing OVA-specific
CD8 T cell responses (Dudziak et al., 2007), whilst CD8− DC tar-
geted using anti-DCIR-2-OVA mAb or anti-Dectin-1-OVA mAb
are more efficient at inducing OVA-specific CD4+ T cell responses
(Carter et al., 2006; Dudziak et al., 2007). This evidence supports
the view that CD8− DC are inherently better at MHC class II
presentation while CD8+ DC favor cross-presentation.

The nature of the DC-surface molecule targeted can also influ-
ence the immune outcome and override DC subset specific Ag
presentation biases, a case-in-point demonstrated by targeting
antigen to Clec9A. This molecule is selectively expressed by CD8+
DC and to a lesser extent pDC but is not expressed by any other
cell types (Caminschi et al., 2008; Huysamen et al., 2008; San-
cho et al., 2008). Clec9A has an extracellular C-type lectin-like
domain and an intracellular hemITAM motif involved in signal-
ing (Huysamen et al., 2008; Sancho et al., 2009) and facilitates the
cross-presentation of dead-cell-associated Ag (Sancho et al., 2009).

When Ag is delivered to CD8+ DC using an anti-Clec9A mAb,
even in the absence of adjuvant, strong CD4+ T cell responses
are induced, superior to those obtained by targeting DEC-205
(Lahoud et al., 2011); clearly CD8+ DC can be targeted to induce
potent CD4+ T cell responses. Interestingly though, targeting Ag to
Clec9A induces T follicular helpers (TFH) and whilst they are crit-
ical in supporting B cell responses (Caminschi et al., 2008), their
role in supporting CTL responses is unclear. Indeed, targeting Ag
to Clec9A in the absence of DC-activating factors induced potent
B cell responses, presumably aided by the strong TFH response, but
failed to induce CTL (Lahoud et al., 2011). Either, the TFH pro-
vided inadequate help to support CTL induction, or alternatively,
effective CTL priming requires an additional DC-signal that is not
provided when Ag is delivered to Clec9A in the absence of DC-
activating factors. From a tumor-vaccine perspective, strong CTL
responses are desirable, therefore optimal T helper responses are
sought. One way to ensure strong T cells responses is to administer
targeted Ag in the presence of adjuvant. To this end, when mice
are immunized multiple times with targeting mAb carrying HIV
gag p24 in the presence of potent adjuvants (anti-CD40 and/or
poly IC or ICLC), targeting either DEC-205, Clec9A, or Langerin
facilitate strong endogenous anti-HIV gag p24 CD4+ and CD8+
T cell responses (Idoyaga et al., 2011).

It is important to emphasize that CD8+ DC are clearly capable
of inducing effective CD4+ T cell responses. When CD8+ DC and
CD8− DC are respectively targeted with anti-DEC-205 or anti-
DCIR2 mAb engineered to carry the LACK protein of Leishmania
major, both DC subsets induce transgenic LACK-specific CD4+
T cells to proliferate, albeit CD8− DC are more efficient (Soares
et al., 2007). Interestingly, however, CD8+ DC induce the CD4+ T
cells to produce exclusively IFN-γ, whereas the CD8− DC induce
both IFN-γ and IL-4. Furthermore, while both DC subsets induce
CD4+ T cell production of IFN-γ, the CD8+ DC required expres-
sion of CD70 but not IL-12p40, whereas the CD8− DC relied on
IL-12p40 but not on CD70 (Soares et al., 2007).

An alternative method of skewing the type of immune
response is through the type of adjuvant used. In a prime-
boost model where HIV gag p24 was targeted to the DEC-
205 receptor, potent Th1 type responses were induced when
poly I:C was used as an adjuvant (Trumpfheller et al., 2006;
Longhi et al., 2009). The HIV gag-specific CD4+ T cells pro-
duced IFN-γ, IL-2, and TNF-α (Trumpfheller et al., 2006; Longhi
et al., 2009). Compared with other toll-like receptors (TLR) [i.e.,
MALP-2 (TLR/2TLR6), Pam3Cys (TLR1/TLR2), lipopolysaccha-
ride (TLR4), R848 (TLR7/TLR8), and CpG (TLR9)], poly I:C was
the most efficient inducer of Th1 CD4+ T cells (Longhi et al.,
2009). Poly I:C also induced a Th1 response when anti-Clec9A
mAb was used to deliver OVA peptide to CD8+ DC (Joffre et al.,
2010). Interestingly, when curdlan (a β-glucan) was used to acti-
vate DC, immunization with anti-Clec9A mAb resulted in the
induction of Th17 response (Joffre et al., 2010). In the case of
targeting Ag to Clec9A it appears that the targeting mAb them-
selves may also affect the immunological outcome (Caminschi
et al., 2008; Joffre et al., 2010): as previously mentioned, in the
absence of adjuvant one anti-Clec9A mAb induces TFH (Lahoud
et al., 2011), whereas another induces Tregs (Joffre et al., 2010).
Importantly, both anti-Clec9A mAb induced robust CTL when
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co-administered with adjuvant (Sancho et al., 2008; Lahoud et al.,
2011).

Although both Th1 and Th2 helper cells have been associ-
ated with effective anti-tumor responses, the type of T helper cell
response induced may become an important consideration when
choosing which DC subset to target in vivo. The interplay between
the targeted DC subsets and the receptor used to deliver the Ag has
been investigated in several tumor models and is detailed below.

INDUCING ANTI-TUMOR IMMUNITY BY TARGETING DC IN VIVO
A variety of molecules expressed on DC have been used to deliver
Ag and elicit anti-tumor responses, including DEC-205 (Bonifaz
et al., 2004; Mahnke et al., 2005; Johnson et al., 2008), CD11c (van
Broekhoven et al., 2004; Wei et al., 2009), Clec9A (Sancho et al.,
2008), MHC class II (Dickgreber et al., 2009), LOX1 (Delneste
et al., 2002), MR (He et al., 2007), CD36 (Tagliani et al., 2008),
and even Bst2 (CD317), a molecules expressed on pDC (Loschko
et al., 2011). In the majority of studies OVA is employed as a model
tumor Ag, and mice are inoculated with OVA transfectants of the
melanoma cell line B16 (Bonifaz et al., 2004; van Broekhoven et al.,
2004; He et al., 2007; Sancho et al., 2008; Dickgreber et al., 2009;
Loschko et al., 2011), or EL4 (Delneste et al., 2002; Tagliani et al.,
2008). However, bona fide tumor Ag such as the tyrosine related
protein (TRP)-2 (Mahnke et al., 2005) and gp100 (Johnson et al.,
2008) have been also successfully delivered to DC using the anti-
DEC-205 mAb. With the exception of CD36 (Tagliani et al., 2008)
and LOX1 (Delneste et al., 2002), delivery of Ag to all other DC
molecules, required the provision of activation signals (e.g., CpG,
poly I:C, anti-CD40 mAb, or a combination of these) to mature
DC (Bonifaz et al., 2004; van Broekhoven et al., 2004; Mahnke
et al., 2005; He et al., 2007; Johnson et al., 2008; Sancho et al.,
2008; Dickgreber et al., 2009; Wei et al., 2009). In the absence of
these activation signals, the targeted Ag failed to elicit effective
anti-tumor immunity (van Broekhoven et al., 2004; Mahnke et al.,
2005; Dickgreber et al., 2009; Wei et al., 2009).

Prophylactic immunization with anti-CD36 (Tagliani et al.,
2008), anti-MR (He et al., 2007), anti-DEC-205 (Bonifaz et al.,
2004; Mahnke et al., 2005), anti-Clec9A (Sancho et al., 2008), anti-
CD11c (Wei et al., 2009), and anti-Bst2 mAb delivering tumor
Ag, could prevent or inhibit tumor growth. More importantly, in
therapeutic settings, established tumors have been shown to be
rejected, or to display delayed growth when mice were immunized
with Ag targeted using anti-DEC-205 (Bonifaz et al., 2004; Mahnke
et al., 2005; Johnson et al., 2008), Clec9A (Sancho et al., 2008), or
anti-CD11c (Wei et al., 2009) mAb.

Protective tumor immunity correlated with the induction of
strong CD4+ and CD8+ T cell responses (Mahnke et al., 2005; He
et al., 2007; Johnson et al., 2008). The CD4+ T cells displayed a
Th1 phenotype producing IFN-γ (Bonifaz et al., 2004) and TNF-
α (Wei et al., 2009), whilst the CD8+ T cells produced IFN-γ
(Wei et al., 2009) and possessed cytolytic capacity (Bonifaz et al.,
2004; Sancho et al., 2008; Wei et al., 2009). T cell subset depletion
studies demonstrated a strong dependence of anti-tumor activ-
ity on CD8+ T cells (Bonifaz et al., 2004; Mahnke et al., 2005),
whilst the role of CD4+ T cells was more variable (Bonifaz et al.,
2004; Mahnke et al., 2005). In the B16 tumor model (Mahnke
et al., 2005), mice immunized with anti-DEC-205 mAb carrying

the tumor Ag TRP-2, were critically dependent on CD4+ T cells
to prevent tumor growth. By contrast, mice immunized with anti-
DEC-205 mAb carrying OVA and challenged with B16-OVA were
less reliant upon CD4+ T cells to reject tumors (Bonifaz et al.,
2004). The basis for differences in CD4+ T cell dependence for
these tumor models is unclear, but may relate to the nature of
the antigen; with OVA providing foreign antigenic determinants
dominated by a single epitope versus TRP-2 representing an over-
expressed self antigen containing multiple weakly immunogenic
CD4 and CD8 epitopes.

Tumor Ag are often self-Ag over-expressed in malignancies,
and raising immunity against a self-Ag may face the additional
complication of pre-existing tolerance. In a study by Wei et al.
(2009), single-chain-fragment variable region (scFv) mAb specific
for CD11c were used to deliver the HER-2 protein and induce
protection against HER-2 expressing tumors. In an interesting
twist, these authors attempted to mimic the human scenario of
pre-existing tolerance to the tumor self-Ag. Transgenic BALB/c
mice expressing the rat HER-2/neu oncogenes (Balb–neuT) are
tolerant to the rat HER-2/neu protein and develop spontaneous
mammary carcinoma. When these mice are vaccinated in the pres-
ence of CpG with scFv-anti-CD11c carrying the rat-neu protein,
they are protected from subsequent challenge with neu-expressing
TUBO tumor cells. Furthermore, this vaccination strategy also
delayed the onset of the spontaneously arising mammary tumors
(Wei et al., 2009). Though the mechanisms of tumor protec-
tion were not investigated in detail, CD8+ T cells are unlikely
to have been directly involved in tumor cell lysis, as only low
anti-tumor cytotoxicity was detected. However, a distinct anti-
neu antibody response was induced and this may have provided
anti-tumor protection. Certainly this was the case in an alternative
vaccination strategy of the Balb–neuT mice, where the induced
antibody response was both necessary and sufficient to protect
against tumors (Park et al., 2005).

So far only one group appears to have compared in vivo DC-
targeting to priming with ex vivo Ag-loaded DC (Bonifaz et al.,
2004). Mice were inoculated with B16 expressing OVA, then 7 days
later, vaccinated with anti-DEC-205-OVA in the presence of anti-
CD40 mAb, or with ex vivo OVA-loaded and matured DC. In this
experimental setting, vaccinating with the ex vivo OVA-loaded DC
did not inhibit tumor growth. By contrast, vaccinating with anti-
DEC-205-OVA effectively prevented tumor growth (Bonifaz et al.,
2004). If this single comparative study is predictive of the clinical
experience, then in vivo targeting of DC may indeed prove a more
effective way of eliciting anti-tumor responses.

TRANSLATING MOUSE DC BIOLOGY TO CLINICAL
APPLICATION
Although vaccinating patients with ex vivo Ag-loaded DCs has
yet to emerge as an effective means of treating cancer patients, it
has shown promise in some cancer settings. Hormone refractory
prostate cancer appears particularly amenable to vaccine-based
immunotherapy. Dendreon’s Sipuleucel-T therapy (Provenge),
which utilizes blood DCs pulsed with full length, prostatic
acid phosphatase–GM-CSF fusion protein, has demonstrated
improved overall survival in cancer patients in two independent
Phase III clinical trials. Provenge has recently been approved by
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the FDA for the treatment of asymptomatic or minimally sympto-
matic metastatic, castration-resistant prostate cancer making it the
first in its class therapeutic cancer vaccine approved (Higano et al.,
2009). Interestingly, the complex process involved in Sipuleucel-
T therapy may reflect what is required to generate DC-mediated
immunity in cancer patients.

Vaccinating with ex vivo Ag-loaded DC remains a cumber-
some, labor intensive, and expensive procedure that depends on
the establishment and utilization of vaccine manufacturing facil-
ities that operate under clinical Good Manufacturing Practice
guidelines. Targeting DC in vivo using engineered Ag–mAb con-
structs should substantially simplify the therapeutic procedures
that cancer patients would be subjected to, eliminating the need
for leukophoresis and prolonged hospital stays whilst awaiting
the manufacture and quality control release of vaccine batches.
The challenge is to translate the positive experimental findings
from animal models into clinical outcomes. The first obstacle
will be to ensure that the candidate molecules chosen for tar-
geting of the vaccine Ag based on preclinical studies in mice
retain the same immunogenic properties when tested in can-
cer patients. Ideally, the expression pattern and function of the
DC-specific molecules should be conserved between species. Tar-
geting to DEC-205 has been extensively utilized in the mouse
to promote cross-presentation and immunity, and encouragingly,
the ability of DEC-205 to facilitate cross-presentation was mir-
rored by human monocyte-derived DC (Bozzacco et al., 2007)
leading to its clinical evaluation. Celldex Therapeutics are cur-
rently evaluating DC-targeting vaccines in Phase I/II clinical
trials for the treatment of several types of solid cancers. CDX
1401 is a fully humanized anti-DEC-205 mAb conjugated to
the NY-ESO-1 tumor Ag. Vaccination is combined with top-
ical administration of R848 gel (resiquimod™TLR7/8 agonist)
at the injection site to activate local DCs. Another therapeutic,
CDX-1307, is a fusion protein composed of a fully human MR-
specific mAb fused to human chorionic gonadotropin (hCG-β)
protein.Vaccination again is combined with various immunostim-
ulators such as topical resiquimod™gel, Poly IC:LC (Hiltonol™,
TLR 3 agonist), or GM-CSF to activate DC (Ramakrishna et al.,
2007). The potential drawback of targeting Ag to DEC-205 (or
macrophage MR or CD11c for that matter), is that the expression
pattern of these molecules is not restricted to DC in humans,
rather these molecules are also expressed on monocytes and
several types of lymphocytes. Thus, although Ag acquisition
by DC appears to control immunogenicity, ubiquitous expres-
sion of a receptor could potentially result in the targeting mAb
being mopped-up by other cells thereby reducing its targeting
efficiency.

Targeting molecules that are restrictively expressed on human
DC would therefore seem advantageous. Such a candidate could
be Clec9A, which is exclusively expressed on DC: it is expressed at
high levels on CD8α+ DC and at lesser levels on pDC (Caminschi
et al., 2008; Huysamen et al., 2008; Sancho et al., 2008). Strikingly,
Clec9A also appears to be exclusively expressed on human DC,
where only the CD141+ DC (Caminschi et al., 2008; Huysamen
et al., 2008; Sancho et al., 2008), considered to be the equiva-
lent of the mouse CD8+ DC (Bachem et al., 2010; Crozat et al.,
2010; Jongbloed et al., 2010), express this molecule. Similarly, the

function of Clec9A is conserved between species: both mouse
and human Clec9A binds necrotic material (Sancho et al., 2009).
Furthermore, targeting Ag in vivo to Clec9A via anti-Clec9A-
mAb-Ag conjugates induces anti-tumor responses in mice (Sancho
et al., 2008). The observation that Clec9A function and expres-
sion pattern appear to be conserved between mouse and human
and the demonstration of proof-of-concept in animal models of
tumor immunity, make Clec9A an ideal candidate for clinical
evaluation.

Other candidate molecules considered for the delivery of Ag to
human DC in vivo include DC-SIGN (a C-type lectin expressed on
human DC), DCIR (a C-type lectin expressed on various APC),
and the MR (He et al., 2004; Ramakrishna et al., 2004; Tacken
et al., 2005; Keler et al., 2007; Pereira et al., 2007; Gurer et al.,
2008; Meyer-Wentrup et al., 2008; Klechevsky et al., 2010; Flynn
et al., 2011). There are three types of preclinical tests designed to
assess the suitability of using receptors to deliver Ag to DC: primate
studies, humanized mice, and in vitro targeting assays.

Primate studies demonstrated that administration of anti-DC-
SIGN mAb targets APC (Pereira et al., 2007). In a more detailed
study in Rhesus macaques, the impact of targeting HIV gag p24
to DEC-205 was assessed. Targeting the viral protein to DEC-205,
in the presence adjuvant (poly ICLC), resulted in better cross-
priming of CD8+ T cells (Flynn et al., 2011). However, the CD4+
T cell responses of primates immunized with anti-DEC-205 mAb
or the non-targeted HIV gag p24 protein were comparable (Flynn
et al., 2011), as were the anti-Gag Ab responses. Surprisingly, the
avidity of the anti-Gag Ab was approximately 10-fold higher in
primates immunized with the non-targeted Gag p24. The authors
suggest that the aberrant expression of DEC-205 on all germinal
center B cells, may have resulted in the processing and presentation
of Gag protein by Gag-non-specific B cells thereby diverting the T
helper cells required for high-affinity Ab generation (Flynn et al.,
2011). Clearly these findings may have ramification for future clin-
ical trials and assessing the suitability of utilizing DEC-205 in Ag
delivery: DEC-205 strongly promotes cross-presentation and the
activation of CD8+ T cells, but may not promote the strongest
CD4+ T cell and B cell responses.

An alternative model of in vivo targeting utilizes “human-
ized mice,” that is mice reconstituted with human immune cells.
Humanized mice have been used to show that delivering Ag via
anti-DC-SIGN or anti-human DEC-205 mAb in vivo enhanced T
cell responses (Kretz-Rommel et al., 2007; Gurer et al., 2008).

In lieu of delivering Ag to DC in vivo, many preclinical tests
assess the outcomes of delivering Ag to human DC via receptor-
specific mAb in vitro. Targeting Ag to human DC using mAb
against DC-SIGN, DEC-205, DCIR, or the MR have been used
to induce Ag-specific T cell responses (He et al., 2004; Ramakr-
ishna et al., 2004; Tacken et al., 2005; Bozzacco et al., 2007;
Birkholz et al., 2010; Klechevsky et al., 2010; Tel et al., 2011).
So far only one study has directly compared the efficiency of
targeting Ag to these molecules (Bozzacco et al., 2007). When
anti-DEC-205, anti-DC-SIGN, and the anti-MR mAb, were com-
pared in their ability to target HIV p24 gag protein to human
DC, it was found all mAb bound their target molecules on
monocyte-derived DC and were internalized. However, anti-
DEC-205 induced more IFN-γ producing memory CD8+ T cells
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(Bozzacco et al., 2007). It is unclear to what extent these in vitro
findings reflect the potential efficacy of targeting these distinct
molecules in vivo.

SECOND-GENERATION VACCINATION APPROACHES AND
COMBINATION THERAPIES
One of the potential complications of targeting Ag to DC in vivo
using mAb, is that the mAb have to be engineered to carry the Ag.
So far researchers have either chemically conjugated Ag to the mAb,
or genetically fused the DNA sequence of the Ag to the sequence
encoding the mAb (Figure 1). A more versatile approach involved
creating a bifunctional vector containing the single-chain anti-
body recognizing DEC-205 fused to a core-streptavidin domain
(Wang et al., 2009). The streptavidin domain was used to attach
a diverse group of biotinylated Ag, and this bifunctional vector
injected in conjunction with a DC-maturation agent (anti-CD40)
successfully induced cellular and humoral responses (Wang et al.,
2009). In an alternative strategy, a fusion protein was designed
to contain an Ag attached to tandem Ig binding domains of pro-
tein G. These Ig binding domains bound a wide range of mAb
and provided a generic approach to attach any desired Ab to the
fusion protein. This strategy allowed the comparison of different
receptors in their ability to promote cellular and humoral immu-
nity. Targeting Ag to APC was vastly more efficient at inducing T
and B cell responses than free Ag, and certain receptors were inher-
ently more efficient at promoting cross-presentation (Kratzer et al.,
2010).

New approaches have emerged that build on the idea of target-
ing more complex Ag to DC using mAb that recognize DC-specific
molecules (Figure 1; Reddy et al., 2006). Stealth liposomes or
plasma membrane vesicles from tumor cells have been engi-
neered to encapsulate Ag as well as cytokines or TLR ligands
(i.e., lipopolysaccharide) whilst also being engrafted with single-
chain fragments of mAb that recognize DC-specific molecules.
Liposomes and plasma membrane vesicles carrying Ag and IFN-γ
have successfully been targeted to the DC using either anti-CD11c
or anti-DEC-205 mAb and induced potent anti-tumor responses
(van Broekhoven et al., 2004). In an alternative approach, poly
DL-lactic acid biodegradable nanoparticles were concomitantly
conjugated to anti-tumor (rat-neu) mAb and anti-CD40 mAb
(Dominguez and Lustgarten, 2010). Mice injected with nanoparti-
cles bearing both anti-tumor and anti-CD40 mAb were protected
against rat-neu tumor, whilst mice injected with nanoparticles
bearing either mAb alone were not protected. The authors pro-
pose that the formation of conjugates between DC and tumor
cells facilitated by the mAb-coated nanoparticles, promotes the
anti-tumor response (Dominguez and Lustgarten, 2010). The
notion of targeting nanoparticles to DC using DC-specific mAb
in a quest to enhance vaccine efficacy is actively being investi-
gated (Kwon et al., 2005; Cruz et al., 2010, 2011a,b; Joshi et al.,
2011).

Ultimately Ag can be targeted to DC exploiting other pro-
teins that can also bind cell surface receptors. The Shiga toxin
is composed of an A-subunit and B-subunit. The B-subunit
is non-toxic and binds glycolipid Gb3 found on APC such as
DC and B cells. Coupling antigen such as OVA to B-subunit
toxin results in DC-dependent priming of CTL, which inturn

inhibits tumor growth (Vingert et al., 2006). Similarly, the phenol-
soluble modulins released by Staphylococcus epidermidis, which
bind TLR2 have been exploited to deliver Ag and elicit anti-
tumor responses (Durantez et al., 2010). This type of target-
ing approach has reached the stage of clinical trials: adenylate
cyclase of Bordetella pertussis binds αMβ2 integrin (CD11b/CD18)
and can deliver Ag to CD11b+ DC (Guermonprez et al., 2002).
Adenylate cyclase has been utilized to deliver Ag and induces
strong CTL responses that inhibited tumor growth in animal
models (Fayolle et al., 1999) and is now being trialed in a
phase I/II study in melanoma patients for its ability to induce
immunity against an A2 epitope of the melanoma-Ag tyrosinase
(http://www.clinicaltrials.gov).

Priming an effective anti-tumor response utilizing DC-based
vaccines is the first step in tumor eradication. Optimal prim-
ing can minimize the development of Treg that can undermine
anti-tumor responses, and maximize the quantity and quality of
effector T cells. However, other obstacles such as the immunosup-
pressive microenvironment of the tumor may also need to be over-
come to make it more permissive to recruitment and functional
activation of the vaccine-induced CTL. Consequently combining
DC-based vaccines with other therapies that aim to antagonize
tumor-induced suppressive factors (i.e., IL-10, IL-13, TGF-β, IDO,
PGE2, VEGF), or dysregulate the emergence of T regulatory cell
networks (e.g., immunogenic chemotherapy such as doxorubicin,
cyclophosphamide or IL-2-DT ONTAK, or anti-CTLA-4 mAb), or
enhance the ongoing immune response (e.g., TLR ligands) should
improve vaccine efficacy and clinical outcomes (Palucka et al.,
2008; Robson et al., 2010).

CONCLUSION/FUTURE
Delivering Ag to DC in vivo using DC-targeting mAb has emerged
as an exiting new approach to DC-based vaccines. In mouse mod-
els, priming immunity by targeting Ag to DC in vivo has resulted
in effective anti-tumor immunity and regression of established
cancer. The challenge will be to translate this promising experi-
mental data into positive clinical outcomes for patients. Funda-
mental immunological differences between mouse and man, the
genetic diversity of humans and the impact of environmental fac-
tors, add to the inherent complication of translational research.
One step toward aligning experimental and clinical outcomes may
be to identify candidate molecules that are conserved between
species and have retained their functional properties when evalu-
ated in humans. Ultimately, empirical data from clinical trials will
assess this promising new approach to immune modulation and
vaccination.
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