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Abstract

With rapid advances in the development of DNA sequencing technologies, a plethora of high-throughput genome and
proteome data from a diverse spectrum of organisms have been generated. The functional annotation and evolutionary
history of proteins are usually inferred from domains predicted from the genome sequences. Traditional database-based
domain prediction methods cannot identify novel domains, however, and alignment-based methods, which look for
recurring segments in the proteome, are computationally demanding. Here, we propose a novel genome-wide domain
prediction method, SECOM. Instead of conducting all-against-all sequence alignment, SECOM first indexes all the proteins in
the genome by using a hash seed function. Local similarity can thus be detected and encoded into a graph structure, in
which each node represents a protein sequence and each edge weight represents the shared hash seeds between the two
nodes. SECOM then formulates the domain prediction problem as an overlapping community-finding problem in this
graph. A backward graph percolation algorithm that efficiently identifies the domains is proposed. We tested SECOM on five
recently sequenced genomes of aquatic animals. Our tests demonstrated that SECOM was able to identify most of the
known domains identified by InterProScan. When compared with the alignment-based method, SECOM showed higher
sensitivity in detecting putative novel domains, while it was also three orders of magnitude faster. For example, SECOM was
able to predict a novel sponge-specific domain in nucleoside-triphosphatase (NTPases). Furthermore, SECOM discovered
two novel domains, likely of bacterial origin, that are taxonomically restricted to sea anemone and hydra. SECOM is an open-
source program and available at http://sfb.kaust.edu.sa/Pages/Software.aspx.
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Introduction

In recent years, genome sequencing projects have generated a

vast amount of biological sequence data. To make use of these

data, comparative analysis has often been used to induce

meaningful hypotheses through discovery of conserved sequences

with regulatory functions and novel genes [1].

Each protein contains domains that have unique functions and

can evolve independently of the rest of the protein chain [2]. A

domain is generally considered as a compact and semi-indepen-

dent unit that can fold into a stable, three-dimensional (3D)

structure [3]. Molecular evolution gives rise to families of related

proteins with similar sequences and structures. Such evolutionary

relationships between closely related species can be revealed by

comparative analysis of their domains [4,5].

The prediction of protein domains has long been considered

one of the most fundamental steps in deciphering the evolution

and functions of proteins as well as species. Domain detection is

often closely related to the determination of discrete structural

folding units. Various domain prediction methods have been

reported in the literature. The existing methods can be classified

into two main categories [6], namely template-based methods and

de novo (or ab-initio) methods. The template-based methods identify

the similarities between a target sequence and the template

sequences in a protein structure database such as Protein Data

Bank (PDB) [7]. However, the accuracy of the template-based

methods is highly dependent on the quality of the template

structures. Therefore, such methods should not be assumed to

work well for proteins containing novel domains, especially when

they are from less characterized species. On the other hand, the

ab-initio methods can predict protein domains by taking advantage

of various sequence-based features, including sequence profiles,

secondary structure predictions, and correlated mutations. Those

methods use computational tools, such as neural networks [8],

support vector machines [9,10], and hidden Markov models [11].

However, the accuracy of ab-initio domain prediction methods on

multidomain proteins is still very low [12].
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All these methods have either a well-defined structural database

or structure-related features as their foundations. However,

structural information is available for only a very tiny fraction of

the entire set of proteins. Therefore, there is an increasing need to

predict novel domain-specific signatures from protein sequences.

Moreover, when the proteome data are given as the input (e.g.,

proteins from a single genome), more information can be found.

Homologous analysis of the sequences is assumed to provide

evolutionary, functional, and structural information. The main

difference between proteome-scale and single-protein-level do-

main detection is that a domain is assumed to be a recurring

segment of amino acids within the proteome.

Various homologous search approaches have been proposed to

solve this problem. The DIVCLUS program [13] performs all-

against-all Smith-Waterman pairwise comparisons. The resulting

pairs are then merged using single linkage clustering. This method

is quite sensitive but computationally expensive. The Domainer

algorithm [14] works in a similar manner. It first conducts an all-

against-all BLAST search to identify segment pairs with high

degrees of homology. These segment pairs are then iteratively

merged into consistent clusters. There are two main bottlenecks in

the existing all-against-all alignment-based methods. First, after

the pairwise alignment, irrelevant domains are clustered into the

same domain by the clustering algorithms. For instance, a protein

may comprise several different domains or even multiple copies of

the same domain. The widely used single linkage-clustering

algorithm merges these different domains into one due to the

chain effect. Second, the asymptotic runtime of the most efficient

method is still O(N2m2), where N is the number of proteins in the

inquiry dataset and m is the maximum length of the proteins in the

dataset. This is too slow for the proteome-scale domain detection

problem.

To overcome these two bottlenecks, we propose a novel

genome-scale domain detection method: SECOM, a hash SEed

and COMmunity searching-based domain detection method.

Given all the protein sequences from a genome, SECOM

efficiently identifies all the sequentially homologous regions that

recur within these proteins. SECOM does not conduct all-against-

all sequence comparisons. Instead, we assume that the domains of

the input protein set have highly conserved segments. The highly

conserved segments are not necessarily those sharing identical

amino acids, however. They may be those with sequential

similarities. SECOM identifies the highly conserved segments by

using hash seeds as proposed in a recent study by Li et al. [15]. We

then formulate the domain detection problem into a graph

representation, in which each node is an input protein sequence

and each edge represents the number of hash seeds shared

between the two nodes. The problem is to identify all the strongly

connected subgraphs. Such subgraphs, however, can overlap

because a protein sequence can contain different domains.

Therefore, we introduce a clique percolation algorithm to identify

the strongly connected subgraphs, i.e., communities, in the graph.

Each community corresponds to a domain detected by SECOM.

In this way, SECOM is able to identify the overlapping domains.

The runtime is nearly-linear to the size of the inputs and quadratic

to the number of domains, which is a much smaller number than

the size of the input.

Materials and Methods

Outline of SECOM
At the foundation of our method is the assumption that if a

cluster of protein segments corresponds to the same domain, most

pairs of these segments should have at least one small fragment

that shares high sequential similarity; i.e., the pairs of segments

share hash seeds. The cluster of segments that correspond to a

domain is called a domain cluster. The outline of SECOM is

illustrated in Figure 1. Given a set of protein sequences, SECOM

first identifies the highly conserved fragments, i.e., the hash seeds,

which occur at least twice in this set.

After this step, we have a many-to-many mapping between the

protein sequences and the hash seeds; i.e., each protein sequence

contains some hash seeds and each hash seed corresponds to a

number of protein sequences. This mapping can be represented by

a graph, where the nodes represent the protein sequences. Two

nodes are connected if the two protein sequences share at least one

hash seed. The weights of the edges are the numbers of shared

seeds. Ideally, a domain is represented by a clique in this graph.

However, due to mutation during evolution, same domains even

in the paralogs may share no hash seed. Because of this, we aim at

finding strongly connected subgraphs, instead of the cliques.

Meanwhile, a protein is usually composed of different domains,

which imposes the requirement that the subgraphs can have

overlapping nodes and edges in our graph problem formulation.

This is equivalent to the problem of finding overlapping

communities in complex networks. We propose a backward clique

percolation algorithm that efficiently identifies domains in the

graph. In the remainder of this section, we introduce the technical

details of SECOM.

Indexing Protein Sequences with Hash Seeds
Li et al. proposed the idea of hash seeds [15]. A hash seed is a

short fragment of amino acids. The size of the amino acid

alphabets can be either 20 or smaller, such as the classifications

proposed in [15]. A hash function is used to calculate the unique

hash value for a hash seed, which enables efficient seed matching.

Li et al. [15] also demonstrated that hash seed-based homology

searches are significantly more sensitive and efficient than exact

seed- and spaced seed-based searches. We therefore utilize the

hash seed idea to find highly conserved fragments in the input

protein sequences.

All the protein sequences are parsed into sliding fragments of

length n and step size one. The hash function with a large prime

base is used to calculate the hash value of each fragment. The

amino acid classifications proposed in [15] are used in SECOM as

an option for users. A protein sequence is represented by a set of

successive n{mers and hence as hash seeds. Protein homology

searches can be efficiently performed through these hash seeds

instead of through amino acids. Two hash seeds generate a hit if

and only if they have the same hash value. All of the proteins in the

database can thus be indexed in this way. The hash seeds are then

stored in a balanced binary search tree according to their hash

values, which can be done in O((Nm)log(Nm)) time, where N is

the number of proteins in the inquiry dataset and m is the

maximum length of the proteins in the dataset. Further

implementation details about the hash seeds can be found in the

Materials S1.

Domain Detection through Clique Percolation
The length of the hash seeds is short compared with the length

of the domains. Thus, the protein segments that correspond to a

domain are supposed to contain similar sets of hash seeds. The

next step is to identify all such groups of segments. We first convert

the mapping between the protein sequences and the hash seeds

into an undirected graph, in which each node represents a protein

sequence and each edge represents the number of shared hash

seeds between the two sequences. If there are no common hash

seeds between two protein sequences, there is no edge between the
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two nodes in the graph. Ideally, if a domain does not have

mutations in the corresponding proteins, there should be a

complete subgraph, i.e., a clique, with the same, high edge weights

in the graph connecting those proteins together. However, due to

changes during the evolution, the same domain sequence in

different proteins may contain different numbers of hash seeds, or

even no hash seeds. Therefore, the problem is formulated as

finding all the strongly connected subgraphs in the graph.

Moreover, since proteins usually contain more than one domain,

a practical algorithm must be able to find the overlapping

subgraphs.

In graph theory, a subgraph that is more highly connected than

other parts of the graph is also called a community. The

community-finding problem has received much attention since

the seminal paper by Newman [16]. Unfortunately, the overlap-

ping community-finding problem has not been tackled in most of

the traditional graph-based or clustering algorithms. In 2005, Palla

et al. proposed a clique percolation method for uncovering

overlapping communities [17]. They defined the k-clique com-

munity as a set of nodes belonging to adjacent k-cliques, i.e.,

cliques with k nodes. Later, Kumpula et al. proposed a more

efficient clique percolation algorithm to find the overlapping k-

communities [18], for a fixed k. Their algorithm works in a

sequential manner. This algorithm can detect the overlapping k-

clique communities in linear time in terms of the number of k-

cliques in the graph.

However, none of these algorithms can be directly applied to

the domain finding problem. Both algorithms require the

enumeration of all cliques with sizes smaller than kmax, where

kmax is the size of the largest clique in the graph. This is not

practical for proteome-scale domain detection, in which we have a

dense graph of about 20,000–70,000 nodes. A populated domain

can appear hundreds or even thousands of times in a genome. On

the other hand, one may suggest using a small value instead of

kmax to overcome this issue. However, this will cause irrelevant

domains to be merged together due to the chain effects.

Here, we propose a heuristic algorithm that does not enumerate

all the small cliques by using the properties of the domain

detection problem. First, from our protein sequence-indexing step,

we extract and store all the sequences that share the same hash

seeds. According to the way our graph is defined, all such

sequences are connected to each other and thus form a clique.

Second, the more frequently a hash seed appears, the higher the

confidence assigned to this seed. Larger cliques therefore have

higher confidence.

According to these properties, in order to avoid the chain effect

caused by the 2-clique, our algorithm is designed to work in a

backward manner. It first eliminates all the edges with weights

smaller than a pre-defined threshold. We use two as the default

value, which means that two sequences are considered to be

homologous if they contain at least two common hash seeds. The

algorithm then begins with the largest clique in the graph, i.e., the

one that corresponds to the most frequent hash seed. If there are

other cliques with the same size kmax in the graph, our algorithm

projects the cliques into kmax (kmax{1){cliques using the same

method described in [18]. Each connected component in this

projection corresponds to a kmax{clique community. The

communities are then compared with the communities with larger

size. If the majority (SECOM uses 70% as the default) of the nodes

of the smaller community are shared between the two, these two

communities are merged. This procedure continues until no

additional merges can be conducted. Our algorithm then checks

the clique size in descending order, until size two. For a clique size

k, if there is no clique with the same size, it can still be merged into

a community if at least 70% of the nodes are members of the

community.

The overlapping communities can thus be generated through

this backward clique percolation algorithm. For the percolation

steps in our algorithm, the runtime is linear in terms of the number

of cliques, as shown in [18]. For the community merging steps, the

worse-case runtime is quadratic in terms of the number of

communities, which is usually a much smaller number than the

number of nodes or cliques.

Note that SECOM predicts the conserved regions of the

domains instead of estimating the exact boundaries of the

domains. To predict the boundaries, one can apply the widely

used method in local alignment algorithms, which extends the

aligned conserved regions in both directions until the alignment

score is lower than a certain threshold. Biological features can also

be extracted to enhance the prediction accuracy for boundaries.

Since these are not the main focus of the paper, we leave it as a

user option.

Results

Validation of the Proposed Method
To assess the ability of SECOM to identify domains, we ran

SECOM on five recently sequenced non-model organism

genomes including a sponge [19], hydra [20], sea anemone [21],

sea urchin [22], and coral [23], which contain 30,327, 17,398,

27,273, 42,420, and 69,160 annotated protein sequences, respec-

tively. The details about the five proteomes can be found in the

Materials S1.

SECOM has three parameters, which are available for the users

to set, i.e., the length of the hash seeds (n), the threshold for

merging two communities (h), and the amino acid classification. By

default, n is set to 9, h is set to 70%, and the 20 amino acids are

classified into 15 groups as described in [15]. The discussion about

how the performance varies for different parameter settings can be

found in Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10 in the

Materials S1.

To evaluate the performance of SECOM, we conducted a step-

by-step validation process by comparing SECOM with both the

database-based (i.e., InterProScan) and the alignment-based (i.e.,

DIVCLUS) domain detection methods. The domains identified by

SECOM are first compared with the Pfam and Superfamily

domains predicted by InterProScan [24] to evaluate the ability of

SECOM to recover the results of the database-based methods.

The domains predicted by SECOM but not by InterProScan are

deemed as putative novel domains. We then compared the

putative novel domains identified by SECOM and DIVCLUS to

evaluate the ability of SECOM to recover the results of the

alignment-based methods. We further analyzed the putative novel

domains that are predicted by SECOM, but not by InterProScan

or DIVCLUS. The outline of the validation procedure is

illustrated in Figure 2.

Figure 1. Outline of SECOM. Given a set of protein sequences (‘‘A’’ to ‘‘H’’), SECOM first finds all the hash seeds (‘‘1’’ to ‘‘9’’) that appear at least
twice in this set. A seed-protein graph is then built, in which each node is a protein sequence and two nodes are connected if they share at least one
hash seed. The highly connected subgraphs (i.e., communities) are found in this graph. The communities can be overlapping and each of them
(‘‘Domain I’’ and ‘‘Domain II’’) is a predicted domain cluster by SECOM.
doi:10.1371/journal.pone.0039475.g001
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Performance on Recovering Database Annotations
In validating SECOM, we assumed that domain annotations by

InterProScan were the ‘‘gold standard’’ and evaluated the ability

of SECOM to reproduce the results of InterProScan. We

evaluated both cluster-level and in-cluster-level performance.

The cluster-level performance measures how many domain

clusters are recovered, whereas the in-cluster-level performance

measures how many segments in a cluster are recovered. The

overall performance metrics for SECOM and DIVCLUS are

presented in Table 1, and details of the evaluation criteria can be

found in the Materials S1.

As we can see from Table 1, SECOM has higher recall than

DIVCLUS has on both the cluster level and the in-cluster level,

whereas DIVCLUS demonstrates higher precision. This is because

DIVCLUS uses all-against-all alignment while SECOM is a local

seed-based method. It has been demonstrated that seed-based

methods are more sensitive than alignment-based methods

because they are centered on local homologous regions [25,26].

The higher precision but lower recall suggests that DIVCLUS

tends to find domain segments with high sequential similarities,

which usually results in small domain clusters. SECOM, on the

other hand, finds more domain clusters and more segments in

those clusters, which results in the lower precision. It should be

noted that such conclusions are based on the assumption that the

InterProScan annotations are ideal. Overall, we showed that the

tradeoff between recall and precision for SECOM is better than

that for DIVCLUS at both cluster and in-cluster levels, and

SECOM is on average 2,000 times faster than DIVCLUS.

We then compared SECOM with DIVCLUS on more details.

As test dataset we used the sponge protein repertoire. The

comparison results on the other proteomes were similar (data not

shown). The sponge proteome contained 30,327 predicted protein

sequences. After excluding protein sequences shorter than 20

amino acids, 30,124 sequences were used as input. In total,

InterProScan identified 4,091 domain clusters, 2,627 of which

contain at least two segments from the sponge protein sequences.

Since both SECOM and DIVCLUS required a domain to appear

at least twice in the proteome, we considered these 2,627 domains

as the ‘‘gold standard’’.

Figure 2. Illustration of the multi-step validation procedure to evaluate the performance of SECOM. SECOM and DIVCLUS are first
tested by recovering the Pfam and Superfamily domains annotated by InterProScan. The putative novel domains predicted by SECOM and DIVCLUS
are then compared against each other. The putative novel domains predicted only by SECOM are finally analyzed.
doi:10.1371/journal.pone.0039475.g002

Table 1. Overall performance of SECOM and DIVCLUS on the five aquatic proteomes.

Species Sponge Coral Hydra Urchin Anemone Average

Method DIV SEC DIV SEC DIV SEC DIV SEC DIV SEC DIV SEC

recallclu 51.6 57.0 9.4 13.8 57.5 63.0 89.9 97.4 2.2 51.4 42.1 56.5

precisionclu 68.6 62.1 89.6 51.3 70.9 64.1 80.6 77.9 95.6 69.1 81.1 64.9

F1clu 58.9 59.4 17.0 21.7 63.5 63.5 85.0 86.6 4.3 59.0 55.4 60.4

recallinClu 17.3 17.6 20.7 26.8 22.7 24.7 17.6 17.5 18.7 17.5 19.4 20.8

precisioninClu 98.7 97.0 99.9 99.3 99.2 98.6 99.7 99.3 99.9 99.2 99.5 98.7

F1inClu 29.4 29.8 34.3 42.2 36.9 39.5 29.9 29.8 31.5 29.8 32.5 34.4

Runtime (min) 3660 1.4 1803 0.4 4024 0.7 9371 6.7 2103 1.1 4192.2 2.1

All the recall, precision and F1 score values are percentiles. DIV denotes DIVCLUS and SEC denotes SECOM.
doi:10.1371/journal.pone.0039475.t001
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SECOM predicted 4,919 domains for the sponge proteome,

whereas DIVCLUS predicted 3,840 domains. Most of the

SECOM predicted domains (90.0%) contained less than six

segments with the largest domain containing 207 segments. The

distribution of size of the domain clusters is shown in Figure 3. As

expected, cluster size follows a power law distribution. In total,

62% (3,055/4,919) domains predicted by SECOM and 68%

(2,634/3,840) domains predicted by DIVCLUS matched Inter-

ProScan’s results. The average size of the clusters of the SECOM-

recovered domains was four, whereas the average size for the

corresponding clusters was 51 when predicted by InterProScan.

This suggests that the domains annotated by InterProScan tend to

have larger cluster size. As discussed earlier, SECOM predicts

more InterProScan domains than DIVCLUS does (Table 1). The

tradeoff between the recall and the precision for SECOM is better

than that for DIVCLUS as demonstrated by the higher F1 score.

SECOM is also three orders of magnitude faster than DIVCLUS.

We further tried to evaluate the revised performance of

SECOM and DIVCLUS by considering the annotations of

InterProScan as unperfect. First, we removed the segments that

did not share at least two hash seeds with other segments in the

same cluster from the clusters of segments annotated by

InterProScan. Then, when a predicted domain cluster was

compared with an annotated domain cluster, the segments that

shared at least two hash seeds with all the other segments in the

predicted cluster were considered true positive segments. Follow-

ing this, we compared the revised performance of SECOM and

DIVCLUS, as shown in Table 2 (and Table S1). As we can see, all

the revised recall and precision values for both methods are higher

than the values obtained by using InterProScan output as the

‘‘gold standard’’, with SECOM predicting 69.2% of the Inter-

ProScan domains. In these clusters, almost all the segments

(99.8%) detected by SECOM share high sequential similarities.

On average, 76.7% of the segments annotated by InterProScan

are detected by SECOM and grouped into the correct clusters.

The additional domain clusters predicted by SECOM but not by

InterProScan are considered as putative novel domains.

We also evaluated the performance of the two methods using

different thresholds. The receiver operating characteristic (ROC)

curves in Figure 4 imply that SECOM has an overall improved

performance over DIVCLUS. The differences of area under curve

(AUC) between SECOM and DIVCLUS were tested using non-

parametric bootstrapping by performing 2,000 resampling. The p-

values (less than 0.001) suggest significant improvements of

SECOM over DIVCLUS. However, at small false positive rates,

SECOM has very similar but slightly lower AUC than DIVCLUS,

as shown in Figure 4. Note that the unsmooth curves of

DIVCLUS on coral and sea anemone are due to the fact that

DIVCLUS predicted small numbers of domains on these two

proteomes.

Figure 3. Distribution of cluster sizes for the domain segments predicted by SECOM. The distribution of the clusters with larger sizes,
containing at least 11 segments, are enlarged as the inset.
doi:10.1371/journal.pone.0039475.g003

Table 2. Revised performance SECOM and DIVCLUS on the
sponge proteome.

DIV SEC

recallclu 61.6 69.2

precisionclu 70.3 63.8

F1clu 65.8 66.4

recallinClu 76.2 76.7

precisioninClu 99.7 99.8

F1inClu 86.4 86.7

Runtime (min) 3660 1.4

All the recall, precision and F1 score values are given as percentiles. DIV denotes
DIVCLUS and SEC denotes SECOM.
doi:10.1371/journal.pone.0039475.t002
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SECOM’s Ability to Predict Putative Novel Domains
SECOM and DIVCLUS predicted, respectively, 1,783 and

1,138 putative novel domains (domains not recovered by

InterProScan). Of the 1,138 DIVCLUS predicted domains, 825

are also recovered by SECOM, with average recall and precision

values of 84.4% and 96.1%, respectively. The majority of the

putative novel domains are thus predicted by both SECOM and

DIVCLUS.

We also found 1,015 SECOM domains that were not recovered

by either DIVCLUS or InterProScan. To assess whether these

domains were putative novel domains or false positives, we used a

validation process similar to the one used in [27]. A cluster of

segments is likely to be a real domain if the proteins containing

these segments have other evidence of similarities; for instance,

sharing common domains that are annotated by InterProScan is

such evidence. For each of the 1,015 clusters, we annotated all the

protein sequences with known domains using InterProScan. We

excluded those clusters that contained fewer than two segments to

which the corresponding proteins contained annotated domains

and those domain clusters in which the predicted domain

overlapped with the known domain regions from InterProScan.

After this filtering step, 86 clusters remained, 15 of which

contained more than four segments. Of these, 78.4% putative

novel domains occurred in proteins with at least one known

domain. The 10 largest clusters of putative novel domains

predicted by SECOM are summarized in Table 3. The most

frequent annotated domains in these clusters are usually shared by

most of the segments in the clusters, not by segments in different

clusters, suggesting that these may be different novel domains.

To further validate the putative novel domains, we selected a

domain cluster of size 19 (Tables 3 and S2 and Figure 5 that

seemed to contain a novel domain specific to the sponge

Amphimedon queenslandica. Of the 19 proteins, 16 also have a P-

loop containing nucleoside triphosphate hydrolases (PF05729)

with 150635 amino acids after the SECOM predicted domain.

We performed BLAST analysis on all the protein sequences in this

cluster against the NCBI NR database. For all 19 proteins, the top

hits were predicted proteins in A. queenslandica and all the proteins

matched only four different A. queenslandica protein IDs given the

database redundancy. The top BLAST hits that were not in A.

queenslandica were with proteins annotated as ‘‘NACHT, LRR and

PYD domains-containing protein 10’’ (13 out of the 16 proteins).

NACHT, LRR and PYD domains are usually present in proteins

that assembled into the inflammasome once immunological cells

recognize the invading pathogens [28–30]. The three proteins

without the PF05729 domain do not match any NACHT-, LRR-

and PYD- containing proteins. We further conducted a multiple

sequence alignment of all 19 segments of this predicted domain by

using ClustalX [31] (Figure 5(A)). The segments aligned well and

the hash seeds identified by SECOM were always aligned to the

same columns.

Although several proteins containing a SECOM putative novel

domain have at least one known domain, there are still 840

domain clusters remaining unverified. We found 13 putative novel

SECOM domains that never appeared in a protein together with

any Pfam or Superfamily domains, but that are identified across

more than one species. Two examples are discussed here. The first

example is present in 20 sea anemone and 9 hydra proteins. The

Figure 4. Performance with varying thresholds. (A)–(E). ROC curves for SECOM (magenta) and DIVCLUS (cyan) on sponge, coral, hydra, urchin
and sea anemone, respectively. (F). Precision-recall curves for SECOM (magenta) and DIVCLUS (cyan) on sponge. The ROC plots suggest that SECOM
provides a better overall performance. At small false positive rate, SECOM has very similar but slightly lower AUC, i.e., AUC for FPR below 5% is 0.0056
v.s. 0.0064, 0.0022 v.s. 0.0025, 0.0016 v.s. 0.0020, 0.0062 v.s. 0.0062, and 0.0017 v.s. 0.0150 on sponge, coral, hydra, urchin and sea anemone,
respectively.
doi:10.1371/journal.pone.0039475.g004
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sequence alignment of the 29 segments is shown in Figure 5(B).

Interestingly, when searching the Pfam-B database, all 29 proteins

hit the domain PB011651, a domain of unknown function found

only in bacterial genomes. A perfect hit is found with a protein

predicted from marine metagenomic datasets stored in the

environmental sample database (http://www.ncbi.nlm.nih.gov/

protein/143884714?report = genbank&log$=prottop&blast_rank=1&

RID=DYMP8HHZ011) (Figure S11), indicating a possible bacterial

origin of the sea anemone and hydra proteins by lateral gene transfer

[32]. Another interesting example can be found in 28 sea anemone and

21 hydra proteins (Figure 5(C)). Like the previous example, most of the

proteins that contain these segments (46 out of 49) are single-domain

proteins and no hits are found after searching the Superfamily or Pfam-

B databases, but a search of the Pfam-A database retrieves a domain of

unknown function also found only in bacteria genomes identified in

marine environmental metagenomic projects (http://www.ncbi.nlm.

nih.gov/protein/142495124?report = genbank&log$ = prottop&blast_

rank = 1&RID = DYMSR9PC016). A BLAST search of the NCBI

NR database reveals that this domain is also found in some Cnidarian

and Fungal species (Figure S12).

Discussion

With the increasing availability of new genome sequences for

non-model organisms, there is an urgent need for highly efficient

and effective tools to annotate and analyze genomes of species for

which there is a paucity of sequencing data and functional

annotation, particularly if compared to model organisms. Here, we

propose SECOM, a powerful, novel tool that automatically

identifies protein domains at a genome-wide scale. SECOM is

based on the assumption that domains are recurring segments in

protein repertoires and are more highly conserved during

evolution than are those in the inter-domain regions. Here, we

were able to show that these assumptions are reasonable and

demonstrate that SECOM is able to infer high coverage of

domains predicted by both database- and alignment-based

methods.

Furthermore, SECOM shows high sensitivity to detecting

putative novel domains, which makes it a valuable tool for

comparative genomic studies through which scientists are often

searching novel taxonomically restricted proteins defined by

species-specific domains or specific combinations of domains.

Here, we show that SECOM is able to detect significantly more

Table 3. Summary of shared annotated domains of the 10 largest clusters detected by SECOM but not covered by InterProScan or
DIVCLUS.

Size # Domain % Description GO Function

19 19 SSF52540 84.2 P-loop containing nucleoside triphosphate hydrolases

PF05729 84.2 NACHT

SSF52047 31.6 RNI-like

SSF53167 10.5 Purine and uridine phosphorylases

18 2 IPR011050 11.1 Pectin lyase-like Pectin lyase fold/virulence factor

11 11 IPR002181 100 Fibrinogen_C Fibrinogen, alpha/beta/gamma chain,
C-terminal globular

Molecular Function: receptor binding (GO:0005102),
Biological Process: signal transduction
(GO:0007165)

11 4 IPR008957 27.3 Fibronectin type III Fibronectin, type III-like fold

IPR003961 27.3 fn3 Fibronectin, type III

9 9 SSF101898 100 NHL repeat

PF01436 100 NHL

IPR000315 77.8 zf-B_box Zinc finger, B-box Cellular Component: intracellular (GO:0005622),
Molecular Function: zinc ion binding (GO:0008270)

9 9 SSF52540 100 P-loop containing nucleoside triphosphate hydrolases

PF05729 100 NACHT

SSF52047 22.2 RNI-like

7 7 SSF52540 71.4 P-loop containing nucleoside triphosphate hydrolases

PF05729 71.4 NACHT

SSF52047 28.6 RNI-like

SSF53167 28.6 Purine and uridine phosphorylases

6 6 SSF52540 100 P-loop containing nucleoside triphosphate hydrolases

IPR020683 83.3 Ankyrin repeat Ankyrin repeat-containing domain

PF00023 66.7 Ank Ankyrin repeat

6 6 IPR020683 100 Ankyrin repeat Ankyrin repeat-containing domain

IPR002110 100 Ank Ankyrin repeat

6 2 PF05970 33.3 DUF889

The first column lists the size of the clusters. The second column lists the number of protein sequences that have at least one annotated Pfam or Superfamily domain.
The third and fourth columns list the most frequent annotated domains and their frequencies in the clusters. The fifth column shows the domain descriptions. The sixth
column lists the enriched Gene Ontology (GO) function (if available).
doi:10.1371/journal.pone.0039475.t003
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putative novel domains than DIVCLUS can and discover novel

domains in proteins that are already functionally annotated by

InterProScan. Using SECOM to analyze five non-model organ-

isms, we are able to find several putative novel domains and to

propose the possible origin of these by Lateral Gene Transfer from

aquatic microbial communities. Note that SECOM can be used

together with any other domain predictors. Given a proteome

dataset, the database-based methods, such as InterProScan, can be

first applied to detect known domains. The remaining protein

subsequences after cutting the InterProScan domains out can then

be used as inputs for SECOM, which has been demonstrated to be

sensitive to detect novel domains.

Finally, SECOM is several orders of magnitude faster than

DIVCLUS. Note that similar to many all-against-all alignment-

based domain predictors, DIVCLUS calls the Smith-Waterman

algorithm as a subroutine. Thus, the speed of such methods is

dominated by the alignment step. Therefore, SECOM is expected

to be orders of magnitude faster than the other widely used

genome-scale domain predictors and this can be very advanta-

geous in reducing the computational time when analyzing several

large genomes in parallel. As shown in Figures S5 and S10, the

runtime of SECOM seems to be sublinear to the length of hash

seeds and constant to the merging threshold. However, the space

complexity increases quickly when longer hash seeds are used. To

be more specific, when six is used as the length of hash seeds,

300 Mb of memory is needed, whereas almost 1,000 Mb of

memory is needed for seed length nine.

Supporting Information

Figure S1 The relationship between the length of the
hash seeds and the cluster-level recall and precision of
SECOM on the sponge proteome.
(PDF)

Figure S2 The relationship between the length of the
hash seeds and the in-cluster-level recall and precision
of SECOM on the sponge proteome.
(PDF)

Figure S3 The relationship between the length of the
hash seeds and the revised cluster-level recall and
precision of SECOM on the sponge proteome.
(PDF)

Figure S4 The relationship between the length of the
hash seeds and the revised in-cluster-level recall and
precision of SECOM on the sponge proteome.
(PDF)

Figure S5 The relationship between the length of the
hash seeds, and the runtime and the memory use of
SECOM on the sponge proteome.
(PDF)

Figure S6 The relationship between the merging thresh-
old and the cluster-level recall and precision of SECOM
on the sponge proteome.
(PDF)

Figure S7 The relationship between the merging thresh-
old and the in-cluster-level recall and precision of
SECOM on the sponge proteome.

(PDF)

Figure S8 The relationship between the merging thresh-
old and the revised cluster-level recall and precision of
SECOM on the sponge proteome.

(PDF)

Figure S9 The relationship between the merging thresh-
old and the revised in-cluster-level recall and precision
of SECOM on the sponge proteome.
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Figure S10 The relationship between the merging
threshold and the runtime and the memory use of
SECOM on the sponge proteome.
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Figure S11 The BLAST taxonomy report for the putative
novel domain that contains 29 segments.

(PNG)

Figure S12 The BLAST taxonomy report for the putative
novel domain that contains 49 segments.

(PNG)

Table S1 Overall performance of SECOM and DIV-
CLUS on the five aquatic proteomes. The revised recall,

precision and F1 score values are given in percentiles. DIV denotes

DIVCLUS and SEC denotes SECOM.

(TEX)

Table S2 An example of a putative novel domain
cluster. Of these 19 segments, 16 have a P-loop containing

nucleotide triphosphate hydrolases domain (PF05729). The first

column lists protein ID of the best hit for A. queenslandica. The

second column lists the positions of the segments identified by

SECOM on the protein sequences. The third column lists the

distance of the SECOM predicted domains to the PF05729

domains. In the fourth column is the description of the top five

BLAST hits that are not A. queenslandica proteins.

(TEX)

Materials S1 Supplemental methods.

(PDF)

Acknowledgments

We are grateful to Ming Li for fruitful discussions. We thank Virginia

Unkefer for editorial work on the manuscript.

Author Contributions

Conceived and designed the experiments: MF XG. Performed the

experiments: MF KW XG. Analyzed the data: MF XG. Contributed

reagents/materials/analysis tools: MF XG KW T. Ravasi T. Ryu. Wrote

the paper: MF XG. Critical revision of the manuscript: T. Ravasi T. Ryu

KW.

Figure 5. Three putative novel domains predicted by SECOM only. PSIPRED [8] is used to predict the secondary structures of the consensus
sequences of the three domains. CON stands for the consensus sequences and SS stands for the predicted secondary structures. (A). ClustalX
alignment of the 19 segments. The protein IDs are those of the best BLAST hit in A. queenslandica followed by the location of the predicted domain.
The hash seeds that correspond to the communities from which the cluster is built are boxed. (B) and (C). ClustalX alignments of two putative novel
domains predicted by SECOM only. NV stands for sea anemone and HM stands for hydra.
doi:10.1371/journal.pone.0039475.g005
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