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Abstract
Purpose  Fluorescence in situ hybridization (FISH) plays a critical role in cancer screening but faces challenges in signal 
clarity and manual intervention. This study aims to enhance FISH signal clarity, improve screening efficiency, and reduce 
false negatives through an automated image acquisition and signal enhancement framework.
Methods  An automated workflow was developed, integrating a dynamic signal enhancement method that optimizes global 
and local features. An improved Cycle-GAN network was introduced, incorporating residual connections and layer-wise 
supervision to accurately model and compensate for complex signal characteristics. Key metrics such as signal brightness, 
edge gradients, contrast improvement index (CII), and structural similarity index (SSIM) were used to evaluate performance.
Results  The proposed method increased weak signal brightness by 49.02%, edge gradients by 48.61%, and CII by 32.52%. 
The SSIM reached 0.996, indicating high fidelity to original signals.
Conclusion  Visual analysis demonstrated clearer, more continuous, and uniform fluorescence signals, effectively mitigating 
fragmentation and uneven distribution. These improvements reduced false negatives and enhanced genomic abnormality 
detection accuracy. The proposed method significantly improves FISH signal clarity and stability, providing reliable support 
for cancer screening, genomic abnormality detection, molecular typing, prognosis evaluation, and targeted treatment planning.

Keyword  Fluorescence in situ hybridization (FISH); feature enhancement; cyclic generative adversarial network (Cycle-
GAN); cancer screening

Introduction

Fluorescence in situ hybridization (FISH) is a critical tech-
nique in subcellular biology, widely applied to investigate 
genomic spatial organization and gene expression. It has 
played a vital role in elucidating the genomic mechanisms 

of chronic lymphocytic leukemia (CLL) (Bloehdorn et al. 
2021). By precisely detecting abnormalities in key genes 
such as RB1, DLEU, and LAMP, FISH has uncovered 
molecular insights, including the tumor suppressor function 
loss of RB1, microRNA dysregulation caused by DLEU, 
and the immune evasion potential associated with LAMP1. 
These findings have provided a foundation for molecular 
subtyping, prognosis evaluation, and targeted therapies for 
CLL patients, linking specific gene deletions to clinical out-
comes and fostering therapeutic innovation.

Despite its importance, FISH technology faces limitations 
in detecting complex structural variations and small muta-
tions, as well as challenges like signal attenuation and back-
ground noise interference, especially in the analysis of weak 
signals (Safaee et al. 2024; Trieu et al. 2019; Yang et al. 
2025). Additionally, the labor-intensive and time-consuming 
workflows, along with reliance on manual analysis, make it 
difficult to scale for high-throughput applications.
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In recent years, deep learning has made significant 
strides in overcoming challenges in fluorescence imaging 
and genomic research. (Tian et al. 2023) enhanced image 
quality using deep learning; however, reliance on labeled 
datasets restricts its generalizability. Li. H et al. (2021a, 
b) improved low-light imaging quality, but the approach 
demands substantial computational resources. For RNA spot 
detection, (Eichenberger et al. 2021), developed a threshold-
free method, whereas Bouilhol (2022) and Mabaso (2018) 
employed convolutional neural networks (CNNs) to enhance 
accuracy, However, these methods exhibit limited robustness 
in noisy environments. Similarly, Liu's HRDNet (Liu et al. 
2021) improved resolution for small objects, but its high 
computational demands limit practical applications. Dheeraj 
Agrawal (2024) proposed an image enhancement algorithm 
that improves the visual effects and quantitative indicators of 
low-light or hazy images by fusing illumination estimation, 
dehazing filter and discrete wavelet transform. Simulation 
results show that this method outperforms traditional algo-
rithms in visibility and performance.

Automated segmentation and 3D imaging facilitate 
genomic analysis. AC Yadav (2025) proposed an MRI-
based brain tumor segmentation model based on the U-NET 
network, aiming to optimize image fidelity, including noise 
reduction and spatial alignment to ensure the highest quality 
input for the segmentation model, enhancing precision in 
detecting and delineating intricate brain tumor boundaries 
and advancing the effectiveness of medical image analysis. 
Memmel's FocAn tool (Memmel et  al. 2020) improved 
DNA repair focus analysis, but its applicability is limited. 
Lew (2021) emphasized the consistency of the automated 
pathology system. Wang's automated FISH signal analysis 
(Wang et al. 2012) simplified the workflow but relied on 
manual parameter adjustment, while Li's high-throughput 
tilt scanning (Li et al. 2021a, b) improving the speed and 
efficiency of whole-slide imaging in pathology, but pointed 
out the lack of flexibility.

Three-dimensional reconstruction of f luorescence 
in situ hybridization can help researchers observe and 
understand the spatial relationship of the genome in 
cells or tissues, reveal the three-dimensional structure 
and spatial arrangement of the genome, help understand 
the sequence, location and interaction of the genome, 
and conduct research on gene expression and regulatory 
mechanisms. Imbert (2022) A highly modular software 
was launched that can be used to segment nuclei and 
cells, detect and quantify RNA, and visualize results at 
the single-cell level. However, there are performance 
bottlenecks when processing large-scale 3D data, and the 
user interface still needs to be optimized. Frankenstein's 
Confocal scanning (Stachelek et  al. 2022) 3D scoring 
tool (Frankenstein et  al. 2021) improved FISH image 
analysis efficiency, though rare spot detection remained 

problematic. Wang (2023a, b) the application of Hi-C 
technology in disease mechanism research was discussed, 
and its difficulties in noise processing and the association 
between Hi-C maps and functional analysis were pointed 
out. Abdelhedi (2019) linked DPY19L2 defects to 
chromatin abnormalities, Revealing abnormalities in 
chromatin organization. Kloetgen (2020) studied the 
dynamic changes of chromosomes in acute leukemia and 
revealed the relationship between chromosome remodeling 
and disease occurrence, but the analysis efficiency 
was low and the functional research was insufficient. 
Kulasinghe (2020) used 3D-DNA FISH technology to 
detect ALK abnormalities in non-small cell lung cancer, 
but the sensitivity, specificity and data acquisition of 
this technology in clinical translation still need to be 
optimized.

This article proposes a series of solutions to the problem 
that weak signals in fluorescence microscope image 
acquisition are easily blurred or attenuated by defocus and 
optical characteristics, as well as inaccurate signal detection 
caused by background noise interference:

1.	 Automated image acquisition and processing:

An automated workflow for fluorescence microscopy was 
developed, enabling real-time image sharpness evaluation 
and automatic focal positioning. A high-quality dataset of 
in-focus, out-of-focus, and low-signal fluorescence images 
laid the foundation for a Cycle-GAN-based fluorescence 
signal compensation network.

2.	 Integrated feature analysis method:

A novel global–local feature analysis method dynamically 
computed global and local weights to suppress defocus-
related background noise while enhancing weak signal 
resolution and saliency, improving signal visibility.

3.	 Cycle-GAN-based fluorescence signal compensation 
network:

Enhanced with residual connections and multi-layer 
convolution modules, the Cycle-GAN network adaptively 
optimized signal brightness and contrast through end-to-
end training and hierarchical supervision, mitigating signal 
attenuation.

4.	 Visual analysis of signal compensation effects:

Comprehensive evaluations showed that the proposed 
method effectively resolved issues like signal breaks and 
uneven distribution, producing clearer, more coherent 
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fluorescence signals and improving the visibility of weak 
signal regions.

Materials and methods

Chronic lymphocytic leukemia (CLL) is characterized by 
slow progression, high clinical heterogeneity, and distinct 
genetic and epigenetic features, making it an ideal model for 
studying disease progression, personalized treatment, and 
cancer biomarkers. CLL samples typically exhibit weak and 
uneven fluorescence signals under fluorescence microscopy, 
along with high background noise and signal out-of-focus. 
Therefore, these samples are suitable for testing and 
validating methods for signal enhancement, denoising, and 
feature compensation to assess the applicability and stability 
of the proposed methods in clinical environments. Using XL 
RB1/DLEU/LAMP1 deletion probes and fluorescence in situ 
hybridization (FISH), three distinct loci in the 13q14 region 
of chromosome 13 in humans are targeted to investigate 
whether the pathogenesis of CLL is associated with 
fluorescence signal loss (Nelson et al. 2007) (Supplementary 
Information note 1).

Automated fluorescence microscope imaging 
process

In traditional image acquisition processes, operational errors 
and insufficient reproducibility often lead to inconsistent 
experimental results. Additionally, weak fluorescence sig-
nals are prone to blurring or even loss when out of focus, 
significantly degrading image quality. Manual adjustments 
of focus and image clarity assessment are also inefficient, 
failing to meet the demands for high-throughput and rapid 
processing. To address these issues, this paper proposes an 
automated imaging process for fluorescence microscopes, 
which includes four key steps: (1) Sample Positioning: The 
microscope moves to the target area without low-magnifi-
cation scanning. (2) Focus Adjustment: The stage descends 
in 0.8 µm increments, capturing 150 images to determine 
the optimal focus using an energy gradient algorithm. (3) 
Image Acquisition: 11 images are taken at 0.44 µm intervals 
within a 2.2 µm z-stack range for each field of view. (4) Field 
Repetition: The process is repeated for all sample areas to 
ensure complete coverage. This automated process improves 
efficiency, reproducibility, and image quality, meeting high-
throughput demands (Fig. 1 and Supplementary Information 
note 2).

Fig. 1   Fluorescence microscope. a Image Acquisition. b Collection principle, Scale bar: 50 μm

Fig. 2   Fluorescence Signal Enhancement Method
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Fusion of regional and local feature analysis 
methods

To address common issues in fluorescence imaging, such as 
uneven brightness distribution, loss of detail, and background 
noise effect, this section proposes a region-weighted and 
local feature analysis method. The overall structure is shown 
in Fig. 2.the method begins by segmenting the nuclei from 
11-layer(z-stack) fluorescence feature images, generating 
individual nuclear images (256 × 256 pixels). Global average 
and maximum values are dynamically calculated to generate 
weights, adjusting brightness distribution and achieving 
a naturally balanced visual effect. Spatial weight maps 
are generated using local feature maps and convolution, 
highlighting key areas while suppressing background noise.
by combining 16-neighborhood averaging to fine-tune the 
brightness range, the method compensates for dark areas, 
midtones, and highlights separately, balancing overall 
brightness and enhancing local details.

(1)	 Global dynamic feature optimization

The purpose of global feature optimization is to enhance 
the overall brightness characteristics of grayscale images, 
making them more balanced and suitable for subsequent pro-
cessing. The specific method involves calculating the global 
average and maximum brightness of the entire image using 
the following formulas:

Here, |Ω| represents the total number of pixels in the 
image. The pixel grayscale value at Xc(x, y) in a continuous 
grayscale distribution scenario is calculated, where uC is the 
global average value, and sup denotes the least upper bound 
of the pixel grayscale values, i.e., the global maximum value 
MaxC.

The average value �c reflects the overall brightness trend, 
while the maximum value Maxc represents the brightest part 
of the brightness range. A dynamic adjustment coefficient 
Wc  is generated for the entire image, which is used to control 
image enhancement, compression, or brightness range 
mapping. This ensures the visual effect of the image appears 
more natural.

A representative set of image datasets was selected 
for analysis, and under each parameter setting, both 
subjective perceptions and objective indicators (such as 
image sharpness and signal-to-noise ratio) were calculated 

(1)�c =
1

|Ω| ∫ Xc(x, y)dxdy

(2)Maxc = sup{Xc(x, y)|(x, y) ∈ Ω}

(3)Wc = (� ∙ �c + � ∙Maxc + �)

for the enhanced images. Through multiple experiments, 
the parameters α (brightness adjustment), β (contrast 
enhancement), and γ (detail enhancement) were adjusted to 
optimize the enhancement effect of the fluorescence image. 
Professional doctors were invited to subjectively score the 
fluorescence images under each parameter combination. 
After multiple experiments and data analysis, the results 
showed that when α = 0.6, β = 0.4, and γ = 0.1, the enhanced 
image was closest to the real visual effect in terms of 
fluorescence characteristics. At this time, the image reached 
a relatively balanced state in terms of brightness, contrast, 
and detail expression, which not only retained sufficient 
image details but also avoided distortion that may be caused 
by excessive enhancement. the generated Wc was ultimately 
compressed to the range [0,1] for adjusting image brightness 
or contrast.

After dynamic weight adjustments, the pixel values 
ensured balanced overall image brightness, making the 
images more suitable for visual observation or subsequent 
processing.

(2)	 Local dynamic feature enhancement
The purpose of local feature optimization is to highlight 

prominent local regions in the image (such as edges and 
high-brightness areas) while suppressing the background or 
less significant regions.

For each value at position (i, j) , the local mean �(i, j) and 
local maximum Max(i, j) are calculated.

In this process, N(i, j) represents a local (3 × 3) 
neighborhood window centered on the pixel (i, j) . The mean 
and maximum values from this neighborhood are extracted 
and concatenated to form a feature map. This feature map, 
denoted as F(i, j) , is then processed through a convolution 
operation:

Conv represents the convolution kernel function, which 
is responsible for generating the spatial weight map. This 
operation ensures a smoother weight distribution across the 
feature map. By utilizing the local weight map, the weights 
of individual pixels are adaptively adjusted to emphasize 
prominent regions and enhance local details. This refinement 
ultimately leads to the generation of the final output feature 
map, preserving crucial information while improving spatial 
consistency.

(4)Xc�(x, y) = Wc ∙ Xc(x, y)

(5)�(i, j) =
1

|N(i, j)| ∫ Xc(x, y)dxdy

(6)Max(i, j) = sup{Xc(x, y)|(x, y) ∈ N(i, j)}

(7)X��
c
= (Conv(F(i, j))) ∙ Xc�
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(3)	 Segmented signal region optimization

The local maximum Lmax(i, j) and local minimum Lmix(i, j) 
represent the least upper bound and greatest lower bound of 
grayscale values, respectively, within the 3 × 3 neighborhood 
window centered at (x, y).

The local minimum R1 is defined as the greatest lower 
bound (infimum) of the local minimum values, the local 
maximum R2 is described as the least upper bound 
(supremum) of the local maximum values:

By using a heatmap, high-intensity signal regions 
in the image (prominent fluorescence signal areas) can 
be quickly located. The neighborhood average value 
around the maximum fluorescence signal edge (4 × 4) is 
calculated, enabling a more precise analysis of the local 
environment of fluorescence characteristics. Based on 
this, the parameters of the piecewise linear function can 
be adjusted accordingly.

Let N16(P) represent the 16-neighborhood centered at 
pixel p , and avg(p) denote the average pixel value within 
this neighborhood.

(4)	 Dynamic optimization of piecewise linear enhancement

Based on the neighborhood average value range of 
different images I(x, y) , three piecewise intervals are defined: 
R1:the local minimum grayscale value of the image. R2 the 
local maximum grayscale value of the image.

According to the value range of avg(p) ,  the 
corresponding enhancement slopes (Zhang et  al. 2023) 
k1 = S1∕R2, k2 = (S2 − S1)∕(R2 − R1), k3 = (250 − s2)∕

(250 − r2) are selected to enhance the image dynamically. 
all current gray values higher than R2 are mapped to a gray 
value of 255 in the output image (S2 = 255), so we compress 
the gray value of the original image (R1 is 0), remove the 
background noise other than the fluorescent features, and 
then amplify the gray value between (R1 = R2), and the gray 
value between R1 and R2 is linearly mapped.

(8)Lmax(x, y) = sup{I(x, y)|(x, y) ∈ N(i, j)}

(9)Lmix(x, y) = inf{I(x, y)|(x, y) ∈ N(i, j)}

(10)R1 = inf{Lmix(i, j)|(i, j) ∈ Ω}

(11)R2 = sup{Lmax(i, j)|(i, j) ∈ Ω}

(12)avg(p) =
1

|N16(P)| ∫ I(x, y)dxdy

Here: k1 is used to enhance the brightness of signal 
regions. k2 ensures a smooth transition in medium-brightness 
areas, enhancing gradient details in the signal. k3 suppresses 
overly bright regions while preserving details in high 
dynamic range areas.

After piecewise linear transformation, the final 
compensated image is generated.

Fluorescence signal compensation network based 
on cycle‑GAN

In order to better compensate for the intensity of the 
fluorescence signal, Zhu (Goodfellow et  al. 2014; Zhu 
et al. 2017) introduced the Cycle-Consistency Generative 
Adversarial Network (Cycle-GAN), which performs 
image translation on unpaired data using a generator and a 
discriminator. Cycle-GAN employs cycle-consistency loss to 
ensure that the generated image remains consistent with the 
original during inverse transformations, thereby preserving 
fluorescence features. Its independence from paired data, 
strong detail retention, and flexibility make it a promising 
solution for enhancing insufficient fluorescence signals.

However, Cycle-GAN has certain limitations, including 
long training times, limited compensation capability in 
extremely weak signal regions, and insufficient optimization 
of fine-grained features. this study optimizes Cycle-GAN by 
introducing the following enhancements: Preprocessing with 
Multi-layer Fluorescence Image Feature Fusion and Precise 
Segmentation: To improve signal intensity characteristics 
using both regional and local feature analysis. Combination 
of Unsupervised and Supervised Learning: Incorporates 
a layer-wise supervision mechanism in the generator, 
utilizing limited real paired data to optimize generation 
results. transformer Module in the Generator: Designed 
with residual blocks to retain fine details and enhance feature 
extraction capabilities. Enhanced Discriminator: Adds 
multi-layer convolution operations and a fully convolutional 
classification layer to improve the discrimination of 
fluorescence features. Multiple Loss Constraints: Includes 
generation loss, cycle-consistency loss, and adversarial loss, 
ensuring greater realism and consistency when generating 
compensated images. The overall net-work structure is 
shown in Fig. 3.

(13)

O(x, y) =

⎧
⎪⎨⎪⎩

k1 ∙ I(x, y) ifavg(p) < R1

k2 ∙
�
I(x, y) − R1

�
+ S1 ifR1 ≤ avg(p) < R2

k3 ∙
�
I(x, y) − R2

�
+ S2 ifavg(p) ≥ R2

⎫
⎪⎬⎪⎭

(14)R(x, y) = O(x, y) ∙ X��
c
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1.	 Hybrid unsupervised-supervised learning framework

Integrates a layer-wise supervision mechanism within 
the generator, effectively utilizing a limited set of real 
paired data to guide and refine the generation of fluores-
cence-enhanced images. The training process uses the 
Adam optimizer, which dynamically adjusts learning 
rates based on first and second moment estimates, ensur-
ing faster convergence, improved training stability, and 
overall efficiency. By balancing unsupervised learning 
(for broader feature adaptation) with supervised refine-
ment (for precise correction), the model enhances fidelity 
in fluorescence signal reconstruction.

2.	 Transformer-based feature enhancement in the generator

Incorporates residual blocks into the generator to 
preserve fine-grained image details and improve feature 
extraction, preventing the loss of important fluorescence 
information. This allows the generator to focus on critical 
fluorescence regions and improve spatial relationships 
between varying fluorescence intensities. Optimized using 
Adam, which dynamically refines parameter updates, 
ensuring stable feature learning while mitigating gradient 
vanishing and over-smoothing.

3.	 Enhanced discriminator:

Integrates multi-layer convolutional operations, ena-
bling the model to progressively analyze fluorescence 
intensity variations across different scales, leading to more 
robust discrimination of signal artifacts and noise. This 
enhances the model’s ability to distinguish fluorescence 
signal patterns while maintaining computational effi-
ciency. The Adam optimizer is used to iteratively refine 
discrimination accuracy, adapting to complex fluorescence 
distributions and improving robustness against noise.

4.	 Multiple Loss Constraints:

Includes generation loss, cycle-consistency loss, and 
adversarial loss, ensuring enhanced realism, consistency, 
and accuracy in the generated compensated images.

The proposed optimizations significantly improve the 
compensation performance of Cycle-GAN, particularly in 
weak signal regions, while maintaining fine-grained feature 
details (Supplementary Information note 3 and Fig. 1).

To enhance fluorescence signal features, a multi-layer 
fluorescence image dataset is selected as the original 
image domain X . After regional local feature analysis, an 
enhanced fluorescence feature image x is generated, a sam-
ple library is constructed, and the image is trained end-to-
end. Lossfunction_X measures the difference between the 
enhanced fluorescence image x and the fluorescence fea-
ture compensation image y′ generated by the generator G . 

Fig. 3   Overall Network Structure
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Lcyc_X represents the difference between the enhanced 
image x and the converted image x′ generated by the gen-
erator F , and LGANXY represents the distribution difference 
between the generated fluorescence feature compensation 
image y′ and the multi-layer fluorescence feature fusion 
image domain Y .

The generator G is trained to map G ∶ X → Y  , ensuring 
that the generated sample y = G(X) aligns as closely as 
possible with the distribution of the real fluorescence image 
domain Y. Meanwhile, the inverse mapping F ∶ Y → X 
ensures that x = G(y) maintains consistency with the 
distribution of the multilayer fluorescence feature image 
domain X.

Discriminators DX,DY  are introduced to differentiate 
between real and generated fluorescence images. These 
discriminators evaluate whether the generated fluorescence 
feature images are real or synthetic. Through adversarial 
training between the generator and discriminators, the 
system gradually approaches a dynamic equilibrium point 
(Supplementary Information Fig. 2).

In the supervised learning phase, the model is further 
optimized with limited paired data. By applying z-stack 
supervision to the generator, utilizing a small number of real 
multilayer fused fluorescence images (see Supplementary 
Information Fig. 3), the model can more accurately capture 
fluorescence features. This enhances the realism and 
consistency of the generated images. The robust supervision 
process alleviates the challenges posed by the limited 
labeled data, significantly improving the model's ability to 
learn detailed fluorescence signals and thereby achieving 
the goal of generating compensated fluorescence images. A 
small set of feature images serves as dataset X, while real 
multilayer fused fluorescence feature images (Z) are used for 
step-by-step training of the generative network, as shown in 
(Supplementary Information note 4).

Results

Experimental environment

The fluorescence microscopy image dataset used in this 
study was independently collected and constructed by 
the authors to ensure its high relevance and applicability 
to the research objectives. The dataset consists of 800 
fluorescence-labeled images, including focused images, 
defocused images, and low-light signal images. We used an 
Olympus BX61 upright fluorescence microscope, equipped 
with a 60 × oil objective lens (oil immersion objective lens), 
used with a 10 × eyepiece, with a total magnification of 
600x, an objective numerical aperture of 1.4, a resolution 
of 2448 × 2048, and supports 11-layer (z-stack) image 
acquisition, which fully meets the needs of studying 

chromosome spatial distribution and genomic marker signal 
detection. According to the experimental requirements, the 
UV exposure time was set to 20 ms; for the three fluorescent 
dyes, the exposure time was optimized within the range of 
200 ms to ensure the clarity of the signal and the sensitivity 
of the experiment, while effectively reducing the impact of 
photobleaching.

Training parameters were as follows:

Batch size was set to 1, considering the high-resolution 
nature of fluorescence images and memory constraints 
in Cycle-GAN training. Training was conducted for 200 
epochs, ensuring sufficient optimization. Initial learning 
rate was set to 0.0005, and a linear decay strategy was 
applied, gradually reducing it to 0.0002 over the training 
process. The alpha value was set to 0.5 to balance the 
adversarial loss between the generator and discriminator, 
ensuring stable training dynamics. The dataset used for 
training consists of two parts, supporting both unsupervised 
and supervised learning: Unpaired Data: 600 unpaired 
multilayer fluorescence feature images, serving as the 
primary data source for unsupervised learning, enabling 
Cycle-GAN to learn feature transformations without direct 
supervision. Paired Data: 200 paired multilayer fluorescence 
feature images, used in supervised learning to optimize the 
generator layer by layer via pixel-wise reconstruction loss 
and feature similarity loss, improving realism and detail 
fidelity. These paired data are used for the supervised 
learning portion to optimize the generator layer by layer by 
directly calculating the differences (e.g., pixel-level loss or 
feature similarity loss) between the generated images and 
target images, thereby improving the realism and detail 
fidelity of the generated images.

Comparison of model performance

The performance of several models was compared, 
including GAN (Pan et al. 2023), VAE(Wang et al. 2022), 
traditional Cycle-GAN (Chen et al. 2024), and Pix2Pix 
(Kim et al. 2024) (baseline network). The proposed network 
demonstrates It achieves faster convergence, with significant 
loss reduction during the first 50 epochs, and stabilizes by 
150 epochs, indicating high robustness and efficiency. Unlike 
GAN and Cycle-GAN, which exhibit significant early-stage 
loss fluctuations, and VAE, which struggles with fine detail 
retention, the proposed network effectively balances feature 
retention and compensation. By leveraging cycle consistency 
loss, fluorescence feature similarity loss, and adversarial 
loss, the network significantly enhances fluorescence signal 
intensity and detail, particularly after the fifth layer. These 
results highlight its capability to deliver stable and accurate 
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fluorescence signal compensation, making it a highly 
effective solution for complex imaging tasks (Supplementary 
Information note 5 and Fig. 4–5).

The loss curve of the strongly supervised network 
indicates continuous optimization, with the model 
progressively im-proving its fitting capability to the data 
(Supplementary Information Fig. 6.a). During the early 
training phase, the sharp decline in loss reflects the model's 
ability to quickly learn the main features of the data. In 
the later stages, the loss stabilizes, suggesting that the 
model is approaching a state of convergence with stable 
performance. the fluorescence feature compensation curve 
illustrates the performance of different methods in image 
feature compensation. Each curve represents a different 
method, with the vertical axis indicating the percentage of 
compensation effect and the horizontal axis corresponding 
to the image index.

It is observed that the proposed method shows a 
significant improvement in compensation effects after the 
fifth layer of images. This demonstrates the clear advantage 
of the proposed method in enhancing fluorescence features 
(Supplementary Information Fig. 6.b).

Evaluation of experimental results

To validate the effectiveness of the algorithm, both 
subjective visual evaluation and objective metric evaluation 
were employed. In the visual evaluation, the results of the 
proposed algorithm were directly compared with those of 
network compensation methods. By observing the images 
processed by different algorithms, the performance in 
enhancing details, improving clarity, and enhancing overall 
visual effects was assessed. Objective metrics were used 

to evaluate image quality, including Structural Similarity 
Index (SSIM) (Osorio et al. 2022), Contrast Improvement 
Index (CII) (Suradi and Abdullah 2021), Contrast (Wang 
et al. 2020), and Energy of Gradient (EOG) (X. Wang et al. 
2023a, b). These metrics quantitatively measured the quality 
changes before and after image processing, including image 
clarity, contrast, and structural fidelity.

The enhancement algorithm operates selectively on 
each fluorescence channel, prioritizing the compensation 
of channels with low brightness or weak signals while 
maintaining stability and non- effect areas with no signal 
or saturated signals. This demonstrates the precision and 
selectivity of the enhancement process. The enhanced 
images exhibit improvements in brightness and contrast, 
particularly strengthening the fluorescence signal intensity 
in key layers(z-stack). Notably, the algorithm significantly 
enhances the brightness and detail clarity in regions 
with weak signals. The proposed network demonstrates 
superior performance in fluorescence signal compensation 
compared to traditional models. It achieves the highest 
SSIM (0.999), indicating near-perfect similarity to the 
original images, and shows significant improvements 
in contrast (49.02%) and edge gradient (EOG, 48.61%). 
The contrast improvement index (CII) ranges from 1.021 
to 1.353, reflecting effective and balanced enhancement 
without over-compensation. According to the statistical 
analysis results provided, this method does show 
significant improvements compared with other methods 
(such as CycleGAN, Cycle, Pix2Pix) in multiple 
indicators. This method is significantly better than 
other methods in SSIM, Contrast and EOG, and shows 
significant improvements compared with CycleGAN, 
Cycle and Pix2Pix (all p values are less than 0.05). In 

Fig. 4   Network compensation for this article
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Contrast and EOG, this method is similar to Pix2Pix (p 
values are 0.8273 and 0.7722 respectively). However, 
in CII, Methods has no significant difference with other 
methods and performs similarly (p values are all greater 
than 0.05). (Detailed description is in the Supplementary 
Information note 6 and Fig. 7 and 8).

Unlike Cycle-GAN, which fails to significantly enhance 
signal intensity, GAN, which produces blurry results, and 
VAE, which introduces noise and artifacts, the proposed 
network excels in maintaining signal clarity, minimiz-
ing noise, and preserving edge and texture details. These 
results highlight its ability to enhance fluorescence signals 
effectively as shown in Fig. 4, improving the detection and 
distinguishability of abnormal cell characteristics while 
maintaining high stability and naturalness across experi-
ments (Detailed description is in the Supplementary Infor-
mation note 7 and Fig. 9).

Visualization analysis

To validate the accuracy and consistency of compensated 
fluorescence features, a detailed visualization analysis was 
conducted on the fluorescence signals of weakly expressed 
genes, such as RB1, DLEU, and LAMP1 genes. The process 
involved the following steps and findings:

Fluorescence Signal Detection: Orange Filter: Used to 
detect the orange fluorescence signal of the DLEU gene, 
marking the 13q14 region, commonly deleted in CLL and 
associated with prognosis. Green Filter: Observed the green 
fluorescence signal of the RB1 gene, marking the 13q14.2 
region, where deletions may indicate complex disease 
progression. Blue Filter: Detected the blue fluorescence 
signal of the LAMP1 gene, marking the 13q34 region, which 
may influence prognosis.

To verify the accuracy and consistency of compensated 
fluorescence features, 3D reconstruction techniques were 

used to visualize the spatial distribution of these weakly 
expressed genes. Feature point detection and description 
algorithms were applied to extract key points, ensuring 
speed and accuracy in feature extraction and matching. 
Spatial consistency was evaluated by calculating the overlap 
ratio between the reconstructed image and reference image 
using the Dice coefficient, while reconstruction precision 
was assessed using the Jaccard index, quantifying the 
overlap area relative to the union of regions.

Visualization of Compensation Effects: Commercial 
tools such as Mimics and 3D Slicer were utilized to perform 
three-dimensional fusion reconstruction of the compensated 
tricolor fluorescence signal images (as shown in Fig. 5.c-
l), further validating the proposed method's effectiveness. 
Observations across 11 layers(z-stack) of fluorescence 
images revealed that the compensation technique 
significantly enhanced fluorescence signal intensity while 
suppressing background interference. The reconstructed 
signals exhibited sharper edges, more uniform distribution, 
and fully preserved fluorescence signal details, as illustrated 
in Fig. 5.

Single-Layer Image Analysis: The probe-labeled DLEU1 
gene (13q14.2 region) exhibited relatively intact orange fluo-
rescence signals (Fig. 5a), indicating no significant dele-
tions of this gene. The probe-labeled LAMP1 gene (13q34 
region) showed blue fluorescence signals, but these were 
sparse, making it difficult to accurately assess fluores-
cence distribution (Fig. 5e). The probe-labeled RB1 gene 
(13q14.2 region) displayed green fluorescence signals with 
fragmentation or fusion phenomena, suggesting potential 
abnormalities and partial fluorescence feature loss (Fig. 5i). 
This initial analysis implies possible genomic abnormali-
ties in the patient, with particular attention required for the 
RB1 gene, as its deletion may be closely associated with 
tumor progression. After network-based compensation, the 
distribution of orange fluorescence signals became clearer 

Fig. 5   Comparison of 3D 
Reconstruction Results
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and more complete (Fig. 5b), making the signal charac-
teristics more reliable. The blue fluorescence signals were 
compensated from single-fluorescence to dual-fluorescence 
features, enhancing the detection capability for the LAMP1 
gene (Fig. 5f). Weak signal regions in the green fluores-
cence signals were compensated, displaying more uniform 
dual-fluorescence features (Fig. 5j). This improved the vis-
ibility and detection accuracy of weak fluorescence signals, 
addressing issues of signal blurriness caused by attenuation 
and background noise. Optimization of weak signal regions 
for genes like RB1 and LAMP1 made previously undetect-
able abnormal signals clearly visible, reducing the occur-
rence of false-negative results and improving the reliability 
of screening outcomes. Compensation for fragmentation and 
fusion phenomena in the green fluorescence signals of the 
RB1 gene, along with the restoration of dual-fluorescence 
features for the LAMP1 gene, demonstrated the method's 
ability to precisely identify complex chromosomal abnor-
malities such as deletions, breaks, and fusions.

Discussion

This study proposes a fluorescence signal enhancement 
and compensation framework that effectively addresses 
key challenges in fluorescence microscopy, especially in 
the diagnosis of chronic lymphocytic leukemia (CLL). By 
integrating automated acquisition, a hybrid global–local 
feature analysis, and a Cycle-GAN-based network, the 
framework significantly improves signal clarity, accuracy, 
and robustness, overcoming the limitations of traditional 
techniques, particularly issues such as signal attenuation, 
background noise interference, and image blur.

The application of this method in FISH effectively detects 
chromosomal abnormalities (such as RB1, DLEU1, LAMP1) 
and improves image quality, addressing challenges like 
signal fragmentation and uneven distribution. Automated 
acquisition greatly enhances efficiency and reproducibility, 
reducing human error in high-throughput genetic screening. 
Clinically, the framework reduces false negatives and 
accurately detects complex genetic abnormalities, thus 
supporting the implementation of personalized treatment 
and precision medicine.

Furthermore, the application of the framework not only 
limited to CLL, but also holds potential for the diagnosis of 
other cancers and genetic diseases. For example, by appro-
priately adjusting the network structure and data input, it 
can be used in areas such as breast cancer, lung cancer, and 
neurodegenerative diseases, enhancing genomic analysis, 
and diagnostic accuracy for these diseases. Additionally, by 
combining different imaging modalities, such as confocal 
microscopy or other molecular imaging technologies, the 

framework maintains high versatility, promoting its wide 
adoption in biomedical applications.

However, slight deviations in local features remain a 
challenge and require further optimization in future research 
to improve the framework's universality and performance 
across different datasets and imaging modes. Overall, this 
framework provides more precise and reliable technical 
support for the personalized diagnosis and treatment of CLL 
and other diseases, advancing the development of precision 
medicine.

Patents

The authors have filed one patent applications based on 
this work: fluorescence image signal data storage and color 
classification method (CN113539368B).
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