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Abstract

DFosB plays a critical role in drug-induced long-term changes in the brain. In the current study, we evaluated locomotor
activity in male and female rats treated with saline or cocaine for 2 weeks and quantitatively mapped DFosB expression in
the dorsal striatum and nucleus accumbens of each animal by using an anti-FosB antibody that recognizes DFosB isoforms
preferentially. Behavioral analysis showed that while there was little difference between males and females that sensitized
to cocaine, nonsensitizing rats showed a large sex difference. Nonsensitizing males showed low behavioral activation in
response to cocaine on the first day of treatment, and their activity remained low. In contrast, nonsensitizing females
showed high activation on the first day of treatment and their activity remained high. Western blot and
immunohistochemical analyses indicated that basal levels of DFosB were higher in the nucleus accumbens than the
dorsal striatum, but that the effect of cocaine on DFosB was greater in the dorsal striatum. Immunostaining showed that the
effect of cocaine in both the dorsal striatum and nucleus accumbens was primarily to increase the intensity of DFosB
immunoreactivity in individual neurons, rather than to increase the number of cells that express DFosB. Detailed mapping of
DFosB-labeled nuclei showed that basal DFosB levels were highest in the medial portion of the dorsal striatum and
dorsomedial accumbens, particularly adjacent to the lateral ventricle, whereas the cocaine-induced increase in DFosB was
most pronounced in the lateral dorsal striatum, where basal DFosB expression was lowest. Sex differences in DFosB
expression were small and independent of cocaine treatment. We discuss implications of the sex difference in locomotor
activation and regionally-specific DFosB induction by cocaine.
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Introduction

Drug abuse gives rise to long-term changes in brain function.

DFosB, a truncated and long-lasting form of the immediate-early

gene FosB, has been studied extensively as a mediator of long-term

structural and functional changes within the reward circuitry of

the brain, especially in response to psychostimulants [1]. For

example, overexpression of DFosB enhances sensitivity to psy-

chostimulants, evidenced by heightened locomotor responses to

cocaine [2] and decreased threshold for conditioned place

preference[2] and self-administration [3].

DFosB accumulation has been most studied in the rodent

striatum [4]. The striatum is generally divided into dorsal striatum

(DS, caudate-putamen) and ventral nucleus accumbens (NAc).

The nucleus accumbens is further divided into core and shell,

based on chemorachitecture [5,6,7] and function [8]. The

principal cells in the striatum are GABAergic medium spiny

neurons (MSNs) [9]. Subtypes of MSNs are classified based

on their projections and chemoarchitecture. Striatonigral MSNs

express D1 dopamine receptors, Substance P and dynorphin

(Dyn), whereas striatopallidal cells express mostly D2 receptors

and enkephalin. These classes of MSNs are largely distinct in the

dorsal striatum [10,11], but less so in the NAc [12]. DFosB is

preferentially, but not exclusively, expressed in striatonigral

projection cells [13,14]. In addition, DFosB accumulation varies

subregionally with different drugs [15] and over time during the

course of drug administration and withdrawal [13].

Behavioral manifestations of drug abuse are sexually dimorphic,

and women may be more vulnerable to drug abuse [reviewed in

16,17,18]. In preclinical studies with rodents, females show greater

locomotor responses [19,20,21,22], motivation to take drug

[23,24], and preference for drugs [25] than males do. Sex

differences in physiology [26,27] and anatomy [28] of MSNs, as

well as in striatal dopamine responses to drugs [reviewed in 29]

likely underlie these behavioral differences, although sex differ-

ences are not fully understood.

While drug-induced DFosB expression has been described

[15,30,31], detailed quantitative investigation of drug-induced

DFosB accumulation among striatal suregions in males versus

females has been lacking. Psychostimulants are known to alter

immediate-early gene expression in regionally specific manners

[see 32 for review] and amphetamine-induced c-fos expression is

sexually dimorphic and regionally specific [33]. Given the

important role of DFosB in the effects of psychostimulants on

synaptic input to MSNs [34], more detailed description of DFosB

accumulation in both sexes could aid in determining how

subregional variation in the neural effects of drugs relate to drug

addiction. In the current study, we quantified the effects of

repeated cocaine administration on locomotor behavior and FosB

immunoreactivity in the DS and NAc of male and female rats. We
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used an antibody selective for DFosB and unbiased stereology to

obtain anatomically detailed and quantitative measures of cocaine-

induced DFosB accumulation.

Methods

Ethics Statement
All animal procedures were performed in accordance with the

National Institutes of Health Guide for the Care and Use of Laboratory

Animals and were approved by the Northwestern University

Institutional Animal Care and Use Committee (protocol 2009-

0969). All efforts were made to minimize suffering of animals used

for this study, and animals were euthanized with an overdose of

sodium pentobarbital.

Animals
Gonadally intact young adult male and female Sprague-Dawley

rats (Harlan, Indianapolis, IN), ,50 days old at the start of

experiments, were used. Animals were housed in same-sex groups

of 2 or 3 per cage and kept under a 12:12 light:dark cycle. Soy-free

rat chow (Teklad #2916, Harlan, Indianapolis, IN) and water

were available ad libitum. Estrous cycles in females were not

monitored to avoid vaginal lavage-induced stress, since stress is

known to induce DFosB accumulation in many brain areas [35].

Cocaine Treatment and Behavioral Monitoring
All behavioral testing was conducted during the mid-late light

phase. On each treatment/testing day, rats were placed individ-

ually in 45 cm 645 cm 645 cm testing chambers, and allowed to

acclimatize for 30 min. Each rat was then injected (i.p.) with saline

or cocaine (15 mg/kg), immediately returned to the chamber, and

allowed to move freely for 60 min after injection. Locomotor

behavior was digitally recorded using LimeLight software (Acti-

metrics, Wilmette, IL) during the 30 min acclimation period and

then for 60 min following injection. Data are expressed as

mean6SEM cumulative distance traveled during the 60 min

post-treatment period. Rats were treated for 2 weeks using a 5 days

on 2 days off treatment regimen, and then sacrificed 24 hrs after

their last injection to evaluate FosB protein levels by western blot

or immunohistochemistry (IHC) for FosB immunoreactivity (FosB-

IR) in the dorsal striatum (DS) and nucleus accumbens (NAc). Rats

were kept in their regular housing facility until immediately before

sacrifice.

Western Blots
Male and female rats (n = 3 per group) were deeply anesthetized

with sodium pentobarbitol (80 mg/kg, i.p., Virbac Animal Health,

Fort Worth, TX) and transcardially perfused with ice-cold HEPES

buffer (10 mM, with 0.5 mM phenylmethanesulfonylfluoride

(PMSF), 1 mg/ml leupeptin and 1 mg/ml aprotinin). Brains were

removed and the DS and NAc were dissected, homogenized in

cold buffer (20 mM HEPES, 20% glycerol, 1% NP-40, 5 mM

dithiothreitol 0.5 mM PMSF, 10 mg/ml leupeptin and 1 mg/ml

aprotinin), and stored at 280uC. Protein assays were performed

and samples of equivalent total protein were prepared in Laemmli

sample buffer. Samples were run on 12% SDS gels and transferred

to PVDF membranes. Membranes were blocked in 5% nonfat

milk in PBS and incubated with each of 3 anti-FosB primary

antibodies [sc-48 (1:1,000, Santa Cruz Biotechnology, Santa Cruz,

CA), H-75 (1:1,000, Santa Cruz Biotechnology), and 5G4

(1:2,000, Cell Signaling Technology, Danvers, MA)] overnight at

4uC. After primary antibody incubation, membranes were blocked

again in milk and incubated with peroxidase-conjugated second-

ary antibodies (goat anti-rabbit, 1:1,000, Vector Laboratories,

Burlingame, CA) and visualized with ECL-Plus chemilumines-

cence (GE Health Care, Piscataway, NJ). After exposure to film

(GE Hyperfilm), blots were stripped and reprobed for actin (I-19,

1:2,000, Santa Cruz Biotechnology) as a loading control.

Because 5G4 recognized primarily lower molecular weight

bands (34–37 kD) characteristic of DFosB, 5G4 was used

subsequently to evaluate DFosB protein levels in cocaine- or

saline-treated male and female rats by western blot and IHC. For

western blots, ImagePro Plus v.6.2 software (MediaCybernetics,

Bethesda, MD) was used to measure optical density of bands in the

34–37 kD range, and this was normalized to actin. All samples

were run in duplicate and the optical density values for each

animal were averaged for statistical analysis.

FosB immunohistochemistry
For analysis of FosB IHC in the DS, we used 9 rats per group.

For the NAc, an additional 6 rats per group were added for a total

of 15 rats per group. Twenty four hrs after the last cocaine or

saline injection, rats were deeply anesthetized with sodium

pentobarbitol (80 mg/kg, i.p., Virbac Animal Health) and

transcardially perfused with 4% paraformyladehyde in 0.1 M

phosphate buffer (PB, pH 7.4). Brains were removed, post-fixed in

the same fixative overnight at 4uC, cryoprotected in 30% sucrose

in PB, and then 50 mm coronal sections through the NAc and DS

were collected into 5 series. Brain sections were stored in 10%

sucrose and 0.03% sodium azide in PB at 4uC until further

processing.

FosB IHC was carried out at room temperature unless

otherwise stated. Every 5th section was initially treated with warm

(,80uC) 10 mM citric acid buffer (pH 6.0) for 30 min to retrieve

antigen [36]. Subsequently, the sections were immuno-stained

with the 5G4 anti-FosB antibody (1:400, Cell Signaling Technol-

ogies) followed by 3,3’-diaminobenzidine (DAB) visualization using

standard protocols [37]. Briefly, sections were rinsed 2610 min in

PB, incubated in freshly prepared 1% sodium borohydrate in PB

for 10 min, rinsed 365 min in PB, 265 min in 0.1 M Tris-buffer

(TB, pH 7.4), followed by incubation in 0.05% hydrogen peroxide

in TB for 30 min, 0.1% hydrogen peroxide in TB for 60 min,

0.05% hydrogen peroxide in TB for 30 min, rinsed 265 min in

TB, and 3610 min in 0.1 M Tris-buffered saline (TBS, pH 7.4).

Subsequently, sections were incubated in blocking solution

containing 5% normal goat serum (NGS, Vector Laboratories),

3% bovine serum albumin (BSA), 0.3% dimethyl sulfoxide

(DMSO) in 0.5 M TBS for 60 min. Following 965 min rinses in

TBS, sections were incubated in anti-FosB antibody diluted in

0.5 M TBS containing 1% NGS, 2% BSA, 0.3% DMSO for

,36 hrs at 4uC. Following 9610 min rinses in TBS, sections were

incubated in biotinylated anti-rabbit secondary antibody (1:800,

Vector Laboratories) for 3 hrs, rinsed 9610 min in TBS, followed

by rinses in 2610 min 0.1 M TBS, 265 min in TB (pH 7.4), and

265 min in TB (pH 7.6). Immunoreactivity was visualized by

incubation in 0.025% DAB and 0.01% hydrogen peroxide in TB

(pH 7.6) for 5 min. Sections were then rinsed 265 min in TB

(pH 7.6), 265 min in TB (pH 7.4), 165 min in PB, mounted on

gelatin-coated slides, air-dried, counterstained with cresyl violet,

dehydrated in ascending series of alcohol, cleared in xylene, and

coverslipped with Eukitt Mounting Medium (Electron Microscopy

Sciences, Hatfield, MA).

Quantification of FosB-IR
Slides were coded prior to analysis. The proportions of all

neuron-like cells, identified by cresyl violet staining, in the DS and

the NAc containing FosB-IR nuclei were estimated using random-

systematic sampling and the optical fractionator probe [38,39].

Sex- and Region-Specific DFosB in Rat Striatum
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Tissue was visualized with an Olympus BX60 microscope

(Olympus America, Center Valley, PA) equipped with Stereo-

Investigator 9 system (MicroBrightField, Williston, VT), including

a CCD camera and a XYZ-motorized stage. The DS, NAc Core,

and NAc Shell were delineated under a 4x objective and cells were

counted under a 100x oil-immersion objective. Throughout the

study, 30 mm630 mm68 mm counting frames were used. For the

DS, labeled nuclei were counted random-systematically in

counting frames distributed as 500 mm6500 mm grids in 3 sections

(anterior-posterior (AP): +1.56–0.60 mm relative to Bregma), for

approximately 208 counting frames (1.506106 mm3) per animal.

For the NAc, 350 mm 6350 mm grids were used in 4 sections (AP:

+2.40 – 1.20 mm relative to Bregma) for approximately 191

counting frames (1.386106 mm3) per animal. The grid size was

determined through a pilot study to achieve a stereologically

reliable sampling density (Coefficient of Error,0.1) [40]. The

intensity of staining in each labeled nucleus was categorized as

either light, medium, or dark (see Fig. 3 for examples). Light

staining was defined as light DAB reaction product clearly visible

in the nucleus without obscuring the view of the nucleolus,

medium staining was defined as DAB reaction product partially

obscuring the view of the nucleolus, and dark staining was defined

as DAB reaction product completely obscuring the view of the

nucleolus. FosB-IR data are expressed as mean6SEM percent of

all neuron-like cells. To verify the consistency of staining intensity

classification, random-systematically sampled cells from a subset of

animals in each group were analyzed for their mean optical

density using ImageJ. There were no significant treatment- or sex-

related differences in measured optical density of nuclei within an

intensity class, and each class of cells (light, medium, or dark) was

separated by approximately 20 optical density units on 8-bit gray

scale (0–256), on average.

Anatomical partitioning of dorsal striatum and nucleus
accumbens

To evaluate subregional variation in FosB staining, the DS was

divided into 4 zones, similar to the scheme used by Steiner and

Gerfen ([41] Fig. 4C]. The DS ventral to the ventral limit of the

lateral ventricle was classified as Ventral (V), and the remaining DS

was divided into 3 zones of equal medial-lateral width for Medial

(M), Intermediate (I), and Lateral (L) zones (Fig. 4C). Similarly, the

NAc Core was divided into 4 quadrants and 2 anterior (A) and 2

posterior (P) sections collapsed for 8 final subdivisions (4

quadrants62 AP levels, Fig. 6A). As such, both the anterior (A)

and posterior (P) NAc Core was divided into dorsomedial (DM),

dorsolateral (DL), ventromedial (VM), and ventrolateral (VL)

quadrants (Fig. 6A). The NAc Shell was divided into 2 halves and

2 anterior and 2 posterior sections collapsed for 4 final subdivisions

(2 halves62 AP levels, Fig. 7A). Both the anterior and posterior Shell

was divided into dorsomedial (DM) and ventrolateral (VL) halves

(Fig. 7A). Each zone was named based on AP, dorsal-ventral (DV),

and medial-lateral (ML) location within a structure, so that the

dorsomedial quadrant in the anterior NAc Core was named ADM,

for example (see Figs. 4C, 6A, and 7A for details).

Heat Maps
In order to display patterns of FosB-IR, heat maps were created

from a subset of sections from the rats included in the analyses of

Figure 1. Cocaine increased locomotor activity to a greater
extent in females than in males. A) Representative locomotor
activity traces during the initial 5 min following saline (Sal) or cocaine
(Coc) injection on the last day (Day 10) of treatment in males (M) and
females (F). Blue lines represent the movement of each animal during
this period. B) The mean6SEM distance traveled during 60 min
following cocaine or saline injection each day over the 2 week
treatment period. Cocaine increased locomotion, especially in female
rats. C) Distance traveled on the first day (D1) and the average of week 2
(Wk2) for cocaine-treated male (left) and female (right) rats. Data are
displayed separately for sensitizing and nonsensitizing rats; connected
points represent data for the same individual. Nonsensitizing males

showed consistently low activity throughout treatment, whereas
nonsensitizing females showed consistently high activity throughout
treatment. *p,0.05.
doi:10.1371/journal.pone.0021783.g001

Sex- and Region-Specific DFosB in Rat Striatum
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both DS and NAc (9 animals per group). To create the heat maps,

the xy-coordinate of each counted cell, as well as the coordinates

of the lateral ventricles and the anterior commissure, were

exported from StereoInvestigator and plotted in SigmaPlot 11

(Systat Software Inc. San Jose, CA). The plot of each section was

sorted according to its rostrocaudal coordinates, aligned in Adobe

Illustrator CS4 (Adobe Systems, Inc. San Jose, CA) using the

lateral ventricle and the anterior commissure as references. A

marker representing each counted cell was resized to roughly fill

the counting grid that contained the respective counting frame.

The markers were converted to gray scale based on their

classification (dark: 60, medium: 30, light: 5, in inverted 8-bit

gray scale). The generated vector graphics were converted to gray

scale raster images, smoothed by applying Gaussian blur filter

(sigma: DS: 30 px and NAc: 40 px), a color lookup table was

applied in ImageJ (NIH, Bethesda, MD), and heat maps were

superimposed on panels from the rat brain atlas [42]. Each map

was generated from 12 hemispheres per rostrocaudal level, chosen

on the basis of best fit with the respective panel of the brain atlas

and representing 2/3 of all sections analyzed for FosB-IR.

Statistical Analysis
Locomotor Behavior: The 60 rats used for FosB-IHC were

analyzed for locomotor behavior. Distance traveled on each of 10

injection days was analyzed with 3-way ANOVA (sex6drug6day).

In addition, distance traveled on the first day of injection (D1), the

average distance traveled in the 2nd week (Wk2, days 6–10), and

the ratio of Wk2 to D1 (Wk2/D1) were analyzed with 2-way

ANOVAs (sex6drug). Cocaine-treated males and females were

categorized as showing behavioral sensitization according to

criteria established by Boudreau and Wolf [43]. A cocaine-treated

animal was considered to show sensitization if its Wk2/D1 ratio

exceeded the average C.V. for the saline animals. For additional

analyses of locomotor sensitization, Wk2 and D1 data were

compared between sensitizing and nonsensitizing rats with

unpaired Student’s t-tests. Significant interactions and main effects

Figure 2. Cocaine increased DFosB protein levels in the dorsal striatum and nucleus accumbens. A) Representative western blots with
three FosB antibodies: 5G4, sc-48, H-75. Due to its specific and robust labeling for DFosB isoforms (34–37 kD), 5G4 was used for subsequent
experiments. B) Representative western blot of dorsal striatum samples from 2-week cocaine- or saline-treated males and females probed with 5G4
anti-FosB. The same blot reprobed for actin is shown below. Bar graph shows quantification of optical density from n = 3 animals/group.
C) Representative western blot of nucleus accumbens samples from 2-week cocaine- or saline-treated rats probed with 5G4 anti-FosB. The same blot
reprobed for actin is shown below. Quantification of optical density from n = 3 samples/group. Two-way ANOVAs showed that cocaine significantly
increased DFosB in both dorsal striatum (B) and nucleus accumbens (C).
doi:10.1371/journal.pone.0021783.g002

Figure 3. FosB immuno-staining in the striatum. Representative low magnification photomicrographs of striatal sections immuno-stained for
FosB (5G4) from a saline- (A) and cocaine- (B) treated rat; sections were counter-stained with cresyl violet. C) Higher magnification photomicrograph
from the dorsal striatum of a cocaine treated rat. FosB-IR nuclei of varying staining intensities that are in focus are indicated by arrows (dark = black
arrow, medium = gray arrow, and light = white arrow); several cresyl violet-stained cells that are FosB-negative are indicated by open triangles. Scale
bars: 100 mm for A and B, 10 mm for C.
doi:10.1371/journal.pone.0021783.g003

Sex- and Region-Specific DFosB in Rat Striatum
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in ANOVAs were further analyzed with appropriate lower order

ANOVAs and Student’s t-tests.

FosB-IR: For analysis of FosB protein levels with western blots,

a 2-way ANOVA (sex6drug) was used, followed by unpaired

Student’s t-tests. For analyses of FosB-IR nuclei with IHC, we used

4-way mixed ANCOVAs (sex6drug6AP level6zone) for the DS

and the NAc shell. For the NAc core, we used a 5-way mixed

ANCOVA, where zones were substituted by dorsal-ventral and

medial-lateral levels. Owing to the large number of animals in this

study, we processed sections in two cohorts with an equal number

of animals from each group. As such, cohort number was included

as a covariate to account for any differences between cohorts.

Significant interactions and main effects were further analyzed

with appropriate lower-order ANCOVAs and/or Student’s t-tests.

Separately, the data from cocaine-treated animals were analyzed

as above with the sensitization classification substituted for drug

treatment as an independent variable.

Bonferroni correction was used for all multiple comparisons

with t-tests. All statistical analyses were conducted with PASW

Statistics 18 (SPSS, Inc., Chicago, IL), and p,0.05 was considered

significant.

Results

Cocaine-induced locomotor behavior in male and female
rats

Overall Locomotor Behavior. The expected cocaine-

induced increase in locomotion is apparent in Fig. 1A, which

shows representative tracking data from each of the 4 groups

studied. The blue lines represent locomotion during the first 5 min

after saline or cocaine injection on the last treatment day.

Over 10 days of drug treatment, cocaine significantly increased

locomotor activity (Fig. 1B, drug: F1,56 = 206.5, p,0.001). Upon

the initial injection (D1), locomotor activity was significantly

greater in cocaine- than saline-treated rats (saline vs. cocaine:

F1,56 = 55.6, p,0.001); responses to cocaine increased during the

first week and remained high during the second week (Wk2:

F1,56 = 171.5, p,0.001). Averaged across the treatment period,

cocaine-treated females showed significantly more locomotor

activity than cocaine-treated males (males: 108.266.9 m/day vs.

females: 166.2616.0 m/day, F1,28 = 11.0, p = 0.003), while no sex

difference was observed in saline-treated rats (males: 11.260.6 m/

day vs. females: 11.761.0 m/day, F1,28 = 0.2, ns). Females’ greater

locomotor responses to cocaine were apparent from the start of

drug treatment, on D1 (males: 55.368.5 m/day vs. females:

96.8615.3 m/day; t28 = 4.1, p = 0.03), and this sex difference

persisted into Wk2 (males: 124.5611.5 m/day vs. females:

173.1617.6 m/day; t28 = 3.4, p = 0.03). No such sex-difference

was observed in saline-treated rats (D1: t28 = 0.4; Wk2: t28 = 1.1,

both ns). Locomotor responses to cocaine increased over the

course of 2 weeks (Wk2/D1 ratio: F1,56 = 6.1, p = 0.02) in both

males and females. And, while cocaine-induced locomotion was

consistently higher in females than in males, the degree of increase

in locomotion was nearly identical in both sexes (Wk2/D1 ratio:

males: 5.261.8 vs. females: 5.162.4; F1,56 = 0.001, ns).

Sex-specific Patterns of Locomotor Sensitization. Among

the cocaine-treated rats, similar proportions of males (10 out of 15)

and females (9 out of 15) showed locomotor sensitization to cocaine

as defined previously [43]. Interestingly, however, while the pattern

of locomotor activity in sensitizing rats was similar between males

and females (D1: t17 = 1.0, and Wk2: t17 = 1.8, respectively, both ns;

Fig. 1C), the behavior of nonsensitizing rats showed a significant sex

difference. Specifically, nonsensitizing males showed low activity on

D1 and their activity remained low, whereas nonsensitizing females

Figure 4. Cocaine induced regionally specific increases in FosB-
IR in the dorsal striatum of male and female rats. A) Bar graphs
showing the percentage of all neurons in saline- (Sal) and cocaine- (Coc)
treated male (M) and female (F) rats that were FosB-IR at any intensity
level (Total FosB), and broken down into medium or darkly stained cells.
B) Bar graphs showing the proportion of FosB-IR cells in each
anatomical zone of the dorsal striatum. Each bar shows the percentage
of all neurons in each treatment group that were light, medium, or
darkly stained. Overall FosB-IR was higher in the Medial and Ventral,
relative to the Lateral, zone, while cocaine-induced increases were most
prominent in the Lateral zone. Additionally, females exhibited slightly
higher FosB-IR than males. C) The partitioning scheme used to define
Medial (M), Intermediate (I), Lateral (L), and Ventral (V) zones. D) A table
summarizing the statistically significant differences (p,0.05) for dorsal
striatum as a whole (Overall) and each of the zones. ‘‘D’’ indicates a
significant drug effect, and ‘‘S’’ indicates a significant sex difference (See
text).
doi:10.1371/journal.pone.0021783.g004

Sex- and Region-Specific DFosB in Rat Striatum
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started high on D1 and their activity remained high. On D1,

nonsensitizing males responded to cocaine similarly as sensitizing

males but then failed to increase their responses over time, resulting in

much lower responses during Wk2 (sensitizing vs. nonsensitizing

males: F1,13 = 8.7, p = 0.011, Fig. 1C left). Nonsensitizing females, on

the other hand, exhibited greater responses to cocaine on D1 than

sensitizing females did (sensitizing vs. nonsensitizing females:

F1,13 = 13.8, p = 0.003, Fig. 1C right), and their responses remained

high. The difference between nonsensitizing males and females on

D1 was statistically significant (t9 = 3.7, p = 0.005). Thus, the higher

locomotor response seen in females as a whole (Fig. 1B) is largely

attributable to the behavior of nonsensitizing, but not sensitizing, rats.

Characterization of FosB antibodies
We investigated 3 commonly used anti-FosB antisera to

determine which best recognized DFosB isoforms. As shown in

Fig. 2A, 5G4 showed the most robust labeling of DFosB (MW: 34–

37 kD) with only a very weak band for the full length FosB (MW:

,48 kD). The sc-48 antibody also recognized DFosB, but labeling

was weaker than with 5G4. The H-75 antibody recognized

multiple higher molecular weight bands, including strong bands

for the full length FosB. Particularly H-75 and 5G4 also

recognized a smaller isoform (MW: ,21 kD). Based on its robust

labeling of DFosB, we performed subsequent western blot and

immunohistochemical studies with 5G4.

FosB protein levels in the Dorsal Striatum and Nucleus
Accumbens

We used western blots as an initial approach to investigate

cocaine effects on DFosB protein in the DS and NAc of males and

females. As expected, cocaine treatment significantly increased

DFosB protein in both regions. In the DS, cocaine increased

DFosB levels by ,170% (Fig. 2B, F1,8 = 8.2, p = 0.02). The effect

of cocaine was slightly larger in females (208%) than males (133%),

but there was no statistically significant sex difference (sex:

F1,8 = 0.6, sex6drug: F1,8 = 0.4, both ns). In the NAc, cocaine

increased DFosB levels to a lesser extent than in the DS, by ,80%

(Fig. 2C, F1,8 = 5.4, p = 0.049). As in the DS, the cocaine-induced

increase in the NAc was slightly larger in females (97%) than in

males (69%), but this was not a statistically significant difference

(sex: F1,8 = 0.3, sex6drug: F1,8 = 0.3, both ns). Interestingly, based

on the DFosB to actin ratio in both brain regions, basal DFosB

levels in saline-treated animals were higher in the NAc than in the

DS. This regional difference in basal DFosB levels and the greater

effect of cocaine in the DS, were corroborated by subsequent

immunohistochemical staining (see below).

Fig. 3 shows representative low magnification photomicro-

graphs of brain sections from saline- (Fig. 3A) and cocaine-treated

(Fig. 3B) rats stained for FosB using 5G4. Examples of FosB-

negative cresyl violet-stained cells and FosB-positive cells with

light, medium, or darkly stained nuclei are shown in Fig. 3C. From

images like these, we quantified and mapped FosB-IR in the DS

and NAc as the proportion of all neuron-like cells containing FosB-

IR vs. non-IR nuclei and categorized each labeled nucleus as light,

medium or dark. Overall, this analysis showed that the major

effect of cocaine was to increase the intensity of FosB

immunostaining, with relatively small effects on FosB-IR cell

number.

FosB-IR in the Dorsal Striatum
Cocaine treatment slightly, but significantly, increased the

proportion of neuron-like cells in the DS that contained FosB-IR

(saline: 24.161.1% vs. cocaine: 28.160.8%, F1,31 = 10.1,

p = 0.003; Fig. 4A left). More prominently, cocaine increased the

intensity of FosB-IR, in that cocaine’s effects in the DS were

specific to medium and darkly-stained cells (medium: saline:

1.860.2% vs. cocaine: 3.860.3%, F1,31 = 54.9, p,0.001; dark:

saline: 0.260.1% vs. cocaine: 2.860.3%, F1,31 = 63.8, p,0.001;

Fig. 4A middle and right); cocaine did not significantly affect the

number of lightly stained cells (light: saline: 22.161.0% vs.

cocaine: 21.560.6%, F1,31 = 0.2, ns). The proportions of darkly

stained cells showed the largest change, with over a ten-fold

increase in cocaine-treated rats vs. saline-treated controls.

FosB-IR in the Dorsal Striatum Subregions. To

investigate subregional differences in FosB labeling, we divided

the DS into 4 zones: 3 dorsal and 1 ventral zone (Fig. 4C). This

revealed significant differences between zones and a zone6drug

interaction in all classes of FosB-IR cells (Fig. 4B). Statistically

significant differences are summarized in Fig. 4D, with ‘‘D’’

indicating a drug effect and ‘‘S’’ indicating a sex difference for

each class of cell in each zone. Post-hoc analyses revealed medial-

lateral gradients in FosB-IR and in cocaine’s effects on FosB-IR. In

general, the Medial, Intermediate, and Ventral zones contained

more FosB-IR cells than the Lateral zone, and the effects of

cocaine were greatest in the Lateral and Intermediate zones

(Fig. 4B).

Specifically, in the Medial zone, the relative proportions of

heavily stained (medium+dark) FosB-IR cells increased (+209%)

with cocaine-treatment, and the proportion of lightly-stained

FosB-IR cells decreased (220%). As a result, the overall

proportion of cells that were FosB-IR was unchanged in this

zone. In contrast, in the Lateral zone, the proportions of all

categories, light (+45%), medium (+293%), and dark (+2,262%)

cells, increased with cocaine treatment. Consequently, the overall

Figure 5. Heat maps of FosB-IR in the dorsal striatum. Numbers
in the center indicate AP levels relative to Bregma. The cocaine-induced
increase in FosB-IR is apparent at all levels in both male (left) and female
(right) rats. Greater FosB-IR was seen in the medial, relative to the
lateral, part of the dorsal striatum. Females exhibited higher FosB-IR
than males, which is more apparent in the saline-treated rats. In
addition, the cocaine-induced FosB-IR increase was larger in the more
caudal (1.08 and 0.60) sections than in the rostral (1.56) section. Coc:
cocaine, and Sal: saline.
doi:10.1371/journal.pone.0021783.g005
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proportion of FosB-IR cells in the Lateral zone was significantly

higher in cocaine-treated rats (saline: 12.360.9% vs. cocaine:

19.461.3%, F1,31 = 23.3, p,0.001). In the Intermediate zone, the

pattern of FosB-IR combined features of the Medial and the

Lateral zones. As was the case in the Medial and the Lateral zones,

the proportions of heavily stained cells were significantly higher in

cocaine-treated rats (medium: +517%, dark: +7,582%, relative to

saline-controls). However, the proportion of lightly stained cells

was unchanged. As a result, the total proportion of all cells that

were FosB-IR was only modestly higher in the cocaine-treated

rats. The pattern of FosB-IR and cocaine-induced changes in

FosB-IR in the Ventral zone was similar to the Medial zone; the

proportion of darkly stained cells increased (+410%) significantly

with cocaine treatment, but the total proportion of all cells

containing FosB-IR was unchanged.

In addition to these subregional differences in FosB-IR, we

observed an anterior-posterior level x drug interaction in the

proportion of heavily stained (medium+dark) cells (F2,62 = 5.5,

Figure 6. Cocaine selectively increased the proportions of neurons darkly stained for FosB in the nucleus accumbens (NAc) Core of
male and female rats. A) Bar graphs showing the percentage of all neurons in saline- (Sal) and cocaine- (Coc) treated male (M) and female (F) rats
that were FosB-IR. Each bar shows the percentage of all neurons in each treatment group that were light, medium, or darkly stained (middle left, NAc
Core), and darkly stained cells only (middle right, Dark). The partitioning scheme used to define dorsal-ventral (DV) and medial-lateral (ML) zones for
anterior (left) and posterior (right) NAc Core are also shown. B and C) Bar graphs showing the proportion of FosB-IR cells in each anatomical zone of
the anterior (B) and posterior (C) NAc Core. Each bar shows the percentage of all neurons in each treatment group that were light, medium, or darkly
stained. The tables summarize statistically significant differences (p,0.05) for the NAc Core as a whole (A), and in the anterior (B) and posterior (C)
anatomical zones. ‘‘D’’ indicates a statistically significant drug effect, and ‘‘S’’ indicates a significant sex difference (See text).
doi:10.1371/journal.pone.0021783.g006
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p = 0.006). The cocaine-induced increase in heavily stained cells

was more prominent in posterior DS sections. In the cocaine-

treated rats, the proportion of heavily stained cells was significantly

higher in the posterior sections, while such a difference was not

seen in the saline-treated rats (saline: F2,30 = 0.1, ns; cocaine:

F2.30 = 5.1, p = 0.01).

Sex Differences in the Dorsal Striatum Subregions. The

proportion of neuron-like cells containing FosB-IR in the DS was

slightly higher overall in females than in males (Fig. 4A, males:

24.761.1% vs. females: 27.461.0%, F1,31 = 4.7, p = 0.04). Broken

down by staining intensity, this trend was observed in all 3 classes

(light, medium, and dark) of FosB-IR cells, but statistically

significant only in the medium stained cells (males: 2.360.3%

vs. females: 3.260.4%, F1,31 = 10.1, p = 0.003). These sex dif-

ferences were much smaller than cocaine-induced changes,

however. For example, cocaine increased the proportion of

darkly-stained cells by ,1,000% overall compared to only a

,20% difference between sexes. No significant sex differences

were observed in subregional patterns of FosB-IR.

Dorsal Striatum Heat Maps. Most of the quantitative

differences described above are visible in heat maps of FosB-IR in

the DS (Fig. 5), which summarize patterns of labeling in each

group. The significantly higher FosB-IR in cocaine-treated rats

and the medial-lateral gradient in FosB-IR are visible in the heat

maps. While not as prominent as cocaine-saline or medial-lateral

differences, higher FosB-IR in females, especially in saline-treated

rats, is also evident. Finally, the greater effect of cocaine on FosB-

IR in the posterior sections is evident in the heat maps.

FosB and Locomotor Sensitization: Dorsal Striatum. Com-

parison of FosB-IR in sensitizing vs. nonsensitizing cocaine-treated

rats showed only minor differences. Specifically, the proportion of

lightly stained cells differed depending on sex and sensitization

classification (sex6sensitization: F1,13 = 6.5, p = 0.02). Among

nonsensitizing rats, the proportion of lightly stained cells was higher

in females than males (males: 17.661.4%, and females: 25.061.2%,

F1,4 = 14.4, p = 0.02), whereas there was no sex difference in

sensitizing rats (males: 21.560.8%, and females: 21.260.9%,

F1,8 = 0.1, ns).

FosB-IR in the Nucleus Accumbens Core
Overall, proportion of cells that were FosB-IR was higher in the

NAc Core (30-50%) than the DS (15–35%). In contrast to the

clear effects of cocaine in the DS, however, the effects of cocaine

on FosB-IR were smaller in the NAc, including the Core, and were

Figure 7. Cocaine selectively increased the proportions of neurons darkly stained for FosB in the nucleus accumbens (NAc) Shell of
male and female rats. A) A Bar graphs showing the percentage of all neurons in saline- (Sal) and cocaine- (Coc) treated male (M) and female (F) rats
that were FosB-IR. Each bar shows the percentage of all neurons in each treatment group that were light, medium, or darkly stained (middle left, NAc
Shell), and darkly stained cells only (middle right, Dark). The partitioning scheme used to define dorsomedial (DM) and ventrolateral (VL) zones for
anterior (left) and posterior (right) NAc Shell are also shown. B and C) Bar graphs showing the proportion of FosB-IR cells in each anatomical zone of
the anterior (B) and posterior (C) NAc Shell. Each bar shows the percentage of all neurons in each treatment group that were light, medium, or darkly
stained. The tables summarize statistically significant differences (p,0.05) for the NAc Shell as a whole (A), in the anterior (B) and the posterior (C)
anatomical zones. ‘‘D’’ indicates a statistically significant drug effect, and ‘‘S’’ indicates a significant sex difference (See text).
doi:10.1371/journal.pone.0021783.g007
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limited to darkly stained cells (Fig. 6A). The proportion of darkly

stained cells was 93% higher in cocaine-treated rats than in the

saline-treated rats (saline: 2.060.2% vs. cocaine: 3.860.4%,

F1,55 = 25.6, p,0.001). There were no drug-induced changes in

light or medium stained cells, nor in the proportion of all neuron-

like cells that contained FosB-IR. All statistically significant

differences in the NAc Core are indicated in the tables in

Fig. 6.

FosB-IR in the Nucleus Accumbens Core Subregions. The

zones used for subregional analyses within the NAc Core are shown

in Fig 6A (left: anterior NAc, and right: posterior NAc). The

proportions of all neuron-like cells containing FosB-IR in each zone

are shown in Fig. 6B (anterior NAc Core) and Fig. 6C (posterior

NAc Core). Statistically significant differences in FosB-IR within

individual zones of the NAc Core are summarized in Fig. 6B

(anterior) and Fig. 6C (posterior). Subregional analyses revealed

that, in both the anterior and the posterior NAc Core, cocaine

increased the proportion of darkly stained cells in all zones, except

for anterior ventrolateral and posterior ventromedial (p = 0.052 and

p = 0.15, respectively).

As observed in the DS, we found a significant medial-lateral and

anterior-posterior gradients in FosB-IR the NAc Core. The

proportion of darkly stained cells was higher in the medial than

lateral NAc Core (medial: 3.360.3% vs. lateral: 1.960.2%,

F1,55 = 7.0, p = 0.011), and the proportion of darkly stained cells

was higher in the posterior than anterior NAc Core (anterior:

2.160.2% vs. posterior: 3.260.2%, F3,165 = 6.3, p,0.001). In

addition, there was a dorsal-ventral gradient; the proportion of

medium stained cells was higher in the dorsal NAc Core than

ventral NAc Core (dorsal: 3.260.3% vs. ventral: 2.160.3%,

F1,55 = 4.43, p = 0.04).

Sex Differences in Nucleus Accumbens Core FosB-

IR. Whereas cocaine-induced differences in FosB-IR were

found in the proportions of darkly stained cells, sex differences

were found in the proportions of light and medium stained cells,

and in the dorsal but not ventral NAc Core (see tables in

Fig.6B and 6C). Unlike the DS where females exhibited higher

FosB-IR, males exhibited slightly higher FosB-IR in the NAc Core

overall, but this was not statistically significant (males: 41.761.5%

vs. females: 39.061.3%, F1,55 = 2.0, ns). Considering zones

separately, we saw significantly higher proportions of medium

(in the anterior dorsolateral, F1,55 = 6.6, p = 0.01) and light (in the

posterior dorsomedial, F1,55 = 4.1, p = 0.048) cells in males than in

females. Furthermore, the total proportion of FosB-IR cells was

higher in males than in females in anterior dorsal medial zone

(F1,55 = 4.7, p = 0.03). These sex differences were quite small in

magnitude, however, and there were no sex6drug interactions

among any of the zones in the Core.

Locomotor Sensitization and FosB: Nucleus Accumbens

Core. Comparison of FosB-IR in the Core of sensitizing vs.

nonensitizing cocaine-treated rats showed a 3-way interaction in

the proportion of darkly stained cells (DV x ML x sensitization:

F1,255.2, p0.03), but no post-hoc test was statistically significant.

FosB-IR in the Nucleus Accumbens Shell
The pattern of FosB-IR in the NAc Shell was similar to that in

the NAc Core. Namely, there was a cocaine-induced increase in

darkly-stained cells (saline: 1.660.3% vs. cocaine: 2.660.3%,

Fig. 7A) and the magnitude of this increase was smaller than in the

DS. The proportions of medium or lightly stained cells were not

significantly different between groups. All statistically significant

differences in the NAc Shell are indicated in the tables in Fig. 7.

FosB-IR in the Nucleus Accumbens Shell Subregions. The

zones used for subregional analyses are shown in Fig. 7A (left:

anterior NAc; right: posterior NAc). The proportions of FosB-IR in

each zone are shown in Fig. 7B (anterior NAc Shell) and Fig. 7C

(posterior NAc Shell). As was the case in NAc Core, cocaine-

induced increases in the proportions of darkly stained cells were

found in most zones, but in the shell, these were statistically

significant only in the anterior sections (Fig. 7B).

Sex Differences in Nucleus Accumbens Shell FosB-IR. As

in the NAc Core, males exhibited slightly higher FosB-IR in the

NAc shell than females did. This sex difference was significant only

in medium stained cells and was apparent only in the posterior

sections (Fig. 7C). Males showed significantly higher proportions of

medium stained cells in the posterior ventrolateral zone (F1,558.6,

p0.005) and a strong trend in the posterior dorsomedial zone

(p0.059). In the NAc Shell as a whole, males exhibited higher

proportions of FosB-IR cells overall (Fig. 7A; medium, dark, total

FosB), but the difference was not statistically significant (medium:

F1,55 = 0.9, dark: F1,55 = 0.9, total FosB: F1,55 = 0.8, all ns).

Locomotor Sensitization and FosB: Nucleus Accumbens

Shell. Similar to analysis in the Core, comparing FosB-IR the

Shell of in sensitizing vs. nonsensitizing rats showed a 4-way

interaction (AP x zone x sex x sensitization: dark: F3,75 = 15.2,

p = 0.04 and total FosB: F3,75 = 209.9, p = 0.02), but no post-hoc

test was statistically significant.

Nucleus Accumbens Heat Maps. Heat maps displaying

FosB-IR in the NAc of saline- vs. cocaine-treated rats (Fig. 8) show

few differences overall, consistent with the relatively small effects of

cocaine and sex differences in FosB-IR in the NAc. Nonetheless,

medial-lateral and dorsal-ventral gradients in FosB-IR are visible.

The heat maps also show subregional variation in FosB-IR, with

Figure 8. Heat maps of FosB-IR in the nucleus accumbens.
Numbers in the center indicate AP levels relative to Bregma. Unlike the
dorsal striatum, the cocaine-induced increase in FosB-IR is relatively
small for both males (left) and females (right). Particularly high FosB-IR
near the lateral ventricle is evident in most maps. Males exhibited
higher FosB-IR, which is more apparent in the saline-treated rats. In
addition, medial-lateral, as well as dorsal-ventral gradients in FosB-IR are
visible at most levels. Coc: cocaine, and Sal: saline.
doi:10.1371/journal.pone.0021783.g008

Sex- and Region-Specific DFosB in Rat Striatum

PLoS ONE | www.plosone.org 9 July 2011 | Volume 6 | Issue 7 | e21783



the greatest proportion of FosB-IR cells in the dorsomedial core,

adjacent to the lateral ventricle. Additionally, the generally higher

level of FosB-IR in the NAc compared to the DS is apparent,

particularly in the controls (compare Fig. 5 and Fig. 8).

Discussion

Repeated exposure to psychostimulants causes long-term

changes in the brain. Previous studies have demonstrated the

importance of DFosB in these changes [reviewed in 1]. In the

current study, we provide a detailed quantitative analysis of

cocaine-induced DFosB accumulation in subregions of the dorsal

striatum and nucleus accumbens in behaviorally characterized

male and female rats. As others have found [44,45], females

showed significantly greater locomotor activity in response to

cocaine than males. Interestingly, however, breaking down the

data by sensitizing and nonsensitizing rats showed that this

was due largely to sex differences among nonsensitizing rats.

Nonsensitizing males showed a low initial response to cocaine that

stayed low throughout treatment, whereas nonsensitizing females

showed a high initial response that stayed high. The behavior of

sensitizing males and females was quite similar except that

maximal locomotor activity was higher in females.

We identified 5G4 anti-FosB as being slightly better than sc-48

and much better than H-75 for recognizing DFosB isoforms. Using

5G4, we found that cocaine clearly increased total DFosB levels in

the DS and NAc, as assessed by western blot. The cocaine-induced

increase was greater in the DS than in the NAc, as previously

shown [46]. Mapping DFosB positive cells showed that basal

DFosB levels were highest in the medial DS and the dorsomedial

NAc, areas adjacent to the lateral ventricles, but that the largest

cocaine-induced changes were in the lateral DS, where basal

DFosB levels were low. Overall, DFosB was expressed in up to half

of the neurons in the striatum (10–20% in low areas vs. ,50% in

high areas), consistent with the proportion of striatonigral cells in

which DFosB is preferentially expressed [13,14]. The effect of

cocaine was primarily to increase the intensity of DFosB

immunostaining rather than to increase the proportion of cells

with DFosB positive nuclei. Namely, the overall proportions of

cells containing any FosB-IR did not change in most areas, while

the proportion of heavily stained cells increased with cocaine-

treatment. Sex differences in DFosB accumulation were small and

regionally specific; DS levels were higher in females whereas NAc

levels were higher in males. Cocaine-induced increases in DFosB

and these small sex differences were additive, as no interactions

were observed.

Sex differences in psychostimulant-induced locomotion
One interesting finding from our behavioral analysis was that

the wide range of initial responses to cocaine in females was closely

linked to subsequent development of sensitization. Understanding

the factors that lead to locomotor sensitization is important

because there is evidence that the changes underlying locomotor

sensitization also mediate potentiation of drug taking following

prior drug exposure [see 47 for review]. The multiple drug

treatments typically used to assess sensitization are known to

disrupt the estrous cycle [reviewed in 48] and likely cause brain

changes on their own, masking pre-existing differences. Thus

being able to differentiate between females that would go on to

show sensitization (or not) using a single drug treatment could be

useful to identify pre-existing differences that predict sensitization

or the lack of sensitization.

One factor uncontrolled in the current study that may have

significant influence is the hormonal status of females, as estrogens

have been shown to enhance the locomotor-activating effects of

psychostimulants [reviewed in 16,17,29] and the rate of sensiti-

zation in females [49]. However, it is unlikely that the wider range

of initial responses in females that we saw was due solely to their

estrous phase, as Walker et al., [45] have shown that even

ovariectomized females show a much wider range of initial

responses than males. In addition, that sensitization was similar

between males and females in our study argues against a major

role for estrogens in modulating sensitization of locomotor

behavior. Others have also suggested that individual differences

in vulnerability to sensitization and hormonal influences are

independent and can be dissociated [19,50]. It remains possible,

however, that hormonal modulation of behavioral responses to

psychostimulants depends on what type of behavior is assayed

(e.g., locomotor behavior vs. rotational behavior).

In contrast to the wide range of behavioral responses observed

upon the initial injection in females, males showed a wider spread

of behavior during the second week. This pattern is reminiscent of

the bimodal distribution of behavior and associated differences in

dopaminergic activity observed only in males following repeated

psychostimulant injections [19]. Thus, perhaps females have a

wider range of pre-existing differences that affect initial responses

to psychostimulants, while males have more diverse psychostim-

ulant-induced responses to repeated treatment.

While there were significant differences in DFosB accumulation

between saline- and cocaine-treated animals, we found no clear

relationship between locomotor sensitization and DFosB accumu-

lation in the DS or NAc within the animals treated with cocaine.

This observation is consistent with Kelz, et al., [2] in which

overexpression of DFosB potentiated cocaine-induced locomotion

but did not affect locomotor sensitization. It is possible that the

design of the current study, with a single cocaine dose, did not

produce a sufficient range of behavior or DFosB accumulation to

detect such a relationship. Alternatively, it could be that

accumulation of DFosB beyond a certain threshold level is

necessary to trigger changes associated with locomotor sensitiza-

tion. Because there likely are multiple steps between DFosB

accumulation and behavioral output, other intervening factors

may be more closely associated with locomotor sensitization. For

example, we have recently reported a correlation between

locomotor behavior and MSN spine density in the NAc [51].

Sex differences in DFosB accumulation
We found that sex differences in DFosB accumulation are small

and largely independent of cocaine-treatment, likely reflecting pre-

existing differences rather than differential responses to cocaine. In

the DS, sex differences were consistent with the behavioral

differences: females showed greater locomotor activation and

higher DFosB levels than males. In contrast, in the NAc, males

showed higher DFosB levels. Within the subregions of the DS and

NAc, sex differences were generally small and non-significant in

most cases. The sex differences in DFosB levels independent of

cocaine-treatment are consistent with sex differences in locomo-

tion upon the initial exposure to psychostimulants in the current

and previous studies [22,44,45].

Subregional variation in DFosB expression
The NAc is strongly implicated in locomotion, while the DS is

more closely associated with stereotypy [52]. As previously

mentioned, we saw no clear relationship between locomotor

sensitization and DFosB in either region, at least within cocaine

treated animals. Further studies are required to determine if

individual variations in cocaine-induced DFosB accumulation in

specific striatal subregions are associated with other cocaine-induced
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behaviors, including stereotypy. Additionally, cocaine was experi-

menter administered in this study, thus it is unknown how regional

specificity of DFosB may be influenced by self-administered cocaine.

Nonetheless, the regionally specific patterns of DFosB accumulation

that we observed parallel known differences in afferents to striatal

subregions [53]. Because DFosB expression in MSNs requires both

dopaminergic and glutamatergic stimulation [2,31,54,55], differences

in one or both types of input could correspond to variation in basal

DFosB levels and accumulation in response to cocaine. In turn, such

differences in connectivity are related to the involvement of striatal

subregions in different aspects of behavior.

Striatal regions with high basal DFosB-IR, the NAc Core and

the medial DS, receive dopaminergic inputs mainly from the

lateral ventral tegmental area and the medial substantia nigra pars

compacta (SNc) [56, reviewed in 57]. Glutamatergic inputs come

from medial prefrontal cortex (prelimbic and infralimbic areas)

[58], subiculum [59], basolateral amygdala [60,61], as well as

midline and medial intralaminar thalamic nuclei [62]. In contrast,

the lateral DS, which had low basal DFosB-IR but showed the

greatest effects of cocaine, receives dopaminergic inputs from the

lateral SNc [56, reviewed in 57] and glutamatergic inputs from

somatosensory cortex [58] and lateral intralaminar thalamic nuclei

[62]. The medial DS has been implicated in goal-directed

behaviors, while the lateral DS is involved in habit formation

[see 63 for review,64].

In the context of drug abuse, functional differences between

striatal subregions have been linked to acquisition of operant self-

administration (medial DS) and its eventual transition to habitual

responding that is resistant to reward devaluation (lateral DS) [65].

Effects in the goal-directed circuit observed in the current study

likely contribute to the potentiation of drug taking by prior drug

exposure [reviewed in 47]. The even larger changes we found in

the habit circuit suggest that the potentiation of habit formation by

prior exposure to drug [see 66 for example] may be more

pronounced than the potentiation of drug taking, which could

facilitate transition to habitual drug taking.

DFosB, MAPK, and structural plasticity of MSNs
DFosB is closely linked to psychostimulant-induced changes in

MSN dendritic spine density [14], which is thought to reflect rewiring

of reward circuitry related to addiction. Psychostimulant-induced

structural plasticity of MSN dendrites also requires activation of the

MAPK signaling pathway [67,68,69] and MAPK is important in the

development of behavioral sensitization to psychostimulants [70,71].

Indeed, the pattern of DFosB accumulation we observed corresponds

closely with other studies of cocaine-induced MAPK activation

[30,70], as demonstrated by ERK phosphorylation.

Given the relationship between DFosB and downstream

consequences of psychostimulant exposure, striatal subregions

with more pronounced cocaine-induced DFosB accumulation

might be expected to show more robust drug-induced structural

changes. Interestingly, Jedynak, et al. [72] found that repeated

methamphetamine injections increase MSN spine density in the

lateral DS, where we saw the greatest cocaine effect on DFosB,

while decreasing spine density in the medial DS, where we saw the

smallest effect on DFosB. Thus our findings may reflect

subregional variation in the underlying processes leading to

psychostimulant-induced rewiring of neural circuits.

Conclusion
Our results suggest that sex differences in psychostimulant-

induced locomotion and DFosB accumulation are more likely

due to pre-existing differences between males and females rather

than to sex-specific responses to repeated psychostimulant

exposure. Additionally, our behavioral analyses indicate that,

especially in females, the locomotor response upon initial

exposure to psychostimulants may be useful as a proxy for

subsequent development of sensitization. It has been argued that

locomotor sensitization shares underlying mechanisms with other

behavioral changes related to drug addiction [47,73]. As such,

responses to an initial cocaine exposure may help to identify pre-

existing individual differences associated with susceptibility to

addiction.

The regionally specific patterns of DFosB accumulation

observed in this study add to the existing literature on the

heterogeneous nature of striatal responses to psychostimulants.

The medial and the lateral DS exhibited a striking difference in

DFosB accumulation, which is consistent with functional and

anatomical differences between these subregions. Thus, distin-

guishing between medial and lateral DS in future studies, rather

than treating them as a single structure, should benefit further

elucidation of the how the DS is involved in drug abuse, especially

in the transition to habitual drug taking.
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