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Abstract

High-elevation ecosystems, such as those on Mount Kenya are undergoing significant

changes, with accelerated glacial ice losses over the twentieth century creating new space

for alpine plants to establish. These ecosystems respond rapidly to climatic variability and

within decades of glacial retreat, Afroalpine pioneering taxa stabilize barren land and facili-

tate soil development, promoting complex patches of alpine vegetation. Periglacial lake sed-

iment records can be used to examine centennial and millennial scale variations in alpine

and montane vegetation compositions. Here we present a 5300-year composite pollen

record from an alpine tarn (4370 m asl) in the Hausberg Valley of Mount Kenya. Overall, the

record shows little apparent variation in the pollen assemblage through time with abundant

montane forest taxa derived and transported from mid elevations, notably high abundances

of aerophilous Podocarpus pollen. Afroalpine taxa included Alchemilla, Helichrysum and

Dendrosenecio-type, reflecting local vegetation cover. Pollen from the ericaceous zone was

present throughout the record and Poaceae percentages were high, similar to other high

elevation pollen records from eastern Africa. The Oblong Tarn record pollen assemblage

composition and abundances of Podocarpus and Poaceae since the late Holocene (~4000

cal yr BP-present) are similar to pollen records from mid-to-high elevation sites of nearby

high mountains such as Mount Elgon and Kilimanjaro. These results suggest a significant

amount of uphill pollen transport with only minor apparent variation in local taxa. Slight

decreasing trends in alpine and ericaceous taxonomic groups show a long-term response to

global late Holocene cooling and a step decrease in rate of change estimated from the pol-

len assemblages at 3100 cal yr BP in response to regional hydroclimatic variability. Changes

in the principal component axis scores of the pollen assemblage were coherent with an inde-

pendent mid-elevation temperature reconstruction, which supported the strong influence of

uphill pollen transport from montane forest vegetation and association between tempera-

tures and montane vegetation dynamics. Pollen accumulation rates showed some variability

related to minerogenic sediment input to the lake. The Oblong Tarn pollen record provides

an indication of long term vegetation change atop Mount Kenya showing some decreases

in local alpine and ericaceous taxa from 5300–3100 cal yr BP and minor centennial-scale

variability of montane taxa from mid elevation forests. The record highlights potentials,
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challenges and opportunities for the use of proglacial lacustrine sediment to examine vege-

tation change on prominent mountain massifs.

Introduction

Evidence of glaciation on Mount Kenya (5199 m asl) suggests ice has likely persisted >100,000

years [1–3] and during the Last Glacial Maximum of the Late Pleistocene (~21000 yr BP), cov-

ered up to 200 km2, reaching as low as 3200–3300 m asl down the mountain [4–6]. Glacial

extents varied through the post-glacial period, and glaciers significantly retreated during the

twentieth century [6–8] with accelerated loss in recent decades [9–11]. Easterly regional atmo-

spheric circulation transports moisture from the Indian Ocean to the interior of Kenya and

supplies Mount Kenya, supporting wet montane forests and glacial ice at peak elevations [12–

13]. Precipitation is highest on the southeastern slopes on the windward side with a slight rain

shadow effect on the northwest slopes. The glaciers northwest of the mountain peak are the

least extensive [6, 14–15] due to the orographic rain shadow caused by the predominant south-

easterly winds over the mountain and equilibrium line altitude varies with aspect [16].

Glacier retreat in the current century could potentially induce novel hydroseral transitions

in the numerous proglacial tarn lakes [17] and change the alpine vegetation. These are the

headwaters for many montane streams flowing into lowland springs and river systems crucial

to human populations, wildlife and socio-ecological resilience [18–20] although the glaciers

themselves are not significant regional water reservoirs [21]. Mount Kenya glaciers are con-

trolled by a complex interaction between temperature, precipitation, and radiation, with cloud

cover being an important influence [22]. The impact of these environmental changes on to the

unique vegetation assemblages of the alpine and ericaceous zone is little understood, and there

is little data about the long-term response of these systems to Holocene climate variability.

Given the strong spatial constraints on the vegetation zones around the mountain, under-

standing the long-term response of these plant assemblages, which contain many endemic

taxa, to climate changes is a crucial question.

In recent decades, the changing thermal regime of the high elevation region on the moun-

tain has led to shifts in alpine vegetation distributions [23–25]. Stabilization of soils through

reduced frost action and establishment of finer grained organic soils by microbial communi-

ties and pioneer species leads to persistent plant communities >50 years after ice retreat [24–

28]. Soil formation is slow and phosphorus and potentially pH limitations maintain low soil

microflora in the high alpine valleys [27, 29]. The continued ablation of alpine ice caused by

thermal and hydroclimatic changes associated with global climate change will lead to contin-

ued changes in vegetation distributions and increase ecological sensitivity to accidental intro-

ductions as seen on other isolated mountains in eastern Africa [30].

Vegetation records from cold regions are often sensitive to climatic change, and a number

of studies have examined the vegetation change and vegetation histories on Mount Kenya

(Table 1). Since the early botanical surveys of Mount Kenya, the alpine zone has been recog-

nized as a center of high species endemism [31–33]. Studies range from repeated surveys of air

photographs [34] or permanent vegetation plots [24–26, 28] to sediment-based studies that

examine change since the Pleistocene [35–41]. To date, there is one published pollen record

(Hobley Valley mire [42]) from the alpine zone (~4000–5000 m asl [43]) located in an ungla-

ciated valley on the windward mountainside; however this site has few geochronological age

determinations. High-elevation lake sediment studies of Mount Kenya have focused on glacier

histories [8, 44–45], sediment isotopes [46–48] and carbon cycling [40]. Here we present new
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results from a pollen analysis of radiocarbon-dated sediment cores collected from Oblong

Tarn, a proglacial lake on Mount Kenya. These data provide information on vegetation

changes in the alpine and ericaceous zones as well as documenting the uphill transport of pol-

len from lower Afromontane elevations. This new high-elevation pollen record is compared to

reconstructed temperature variability on Mount Kenya and other paleoenvironmental data

from neighbouring highlands in eastern Africa to examine montane vegetation changes since

the termination of the African Humid Period to present.

Study site

Mount Kenya (5199 m asl, Fig 1 inset) is an isolated massif of an extinct volcano of Tertiary

age that has been largely inactive during the Quaternary [49–50] and has maintained an

Table 1. Published studies of vegetation change on Mount Kenya.

Location Distance from

peak (km)

Elevation

(m asl)

Study Time interval

(cal yr BP)

Focus References

Tyndall and Lewis

Valleys

0.5 4500 botanical

surveys

CE 1958–1984 vegetation cover Spence 1989 [34]

Tyndall Valley 0.5 4500 repeat botanical

plots

CE 1992–2002 vegetation cover Mizuno 2005a, 2005b [25–

26]

0.5 4500 repeat botanical

plots

CE 1996, 2011 vegetation cover Mizuno & Fujita 2014 [28]

Simba Tarn 1.5 4595 lake sediments 8500-present diatoms, O isotopes Barker et al. 2001 [47]

Oblong Tarn 1.2 4370 lake sediments 5300-present pollen, LOI This study

Hausberg Tarn 1.3 4360 lake sediments 4000–1000 O isotopes Barker et al. 2001 [47]

Teleki Valley 2 4300 pedology 1980s CE soil microflora Mahaney & Boyer 1987

[99]

Hobley Valley mire 2.5 4265 mire peat

sediments

5500-present pollen Perrott 1982 [63]

Small Hall Tarn 4.5 4070 lake sediments 14000-present O isotopes, diatoms, pollen Barker et al. 2001 [47]

lake sediments 14000-present C isotopes, biomarkers Street-Perrott et al. 2004,

2007 [40, 48]

Rutundu Lake 22 3081 lake sediments pollen Coetzee 1967 [61]

lake sediments diatoms Barker et al. 2000 [98]

lake sediments >35000-present pollen, biomarkers, grass cuticles Ficken et al. 2002 [100]

lake sediments 38300-present pollen, grass cuticles, C isotopes Wooller et al. 2003 [39]

lake sediments >35000-present C isotopes, biomarkers Street-Perrott et al. 2004,

2007 [40, 48]

lake sediments 18500-present biogenic Si Barão et al. 2015 [101]

Rumuiku swamp 28 2160 lake sediments 27000-present pollen, microscopic charcoal Rucina et al. 2009 [41, 67]

Sacred Lake 33 2350 lake sediments >40000-present pollen Coetzee 1964, 1967 [35,

61]

lake sediments 40000-present C isotopes, biomarkers Huang et al. 1999 [37]

lake sediments 2000-present leaf waxes Konecky et al. 2014 [102]

Quarry near

Chogoria

35 ~1700 geobotany Not known charred wood encased in lightly

welded felsic tuff

Collection in Geology, NMK

Lake Nkunga 43 1830 lake sediments 42000-present C isotopes, biomarkers Ficken et al. 1998 [36]

lake sediments 42000-present pollen Olago et al. 1999 [90]

Kiluli swamp 58 1390 lake sediments 4000-present plant macrofossils Olago et al. 2003 [38]

Studies of Late Pleistocene and Holocene vegetation changes on Mount Kenya, ordered by distance from Batian peak (5199 m asl). Acronyms: CE,

Common Era; NMK, National Museums of Kenya, Nairobi; yr BP, calibrated radiocarbon years before present (CE 1950).

https://doi.org/10.1371/journal.pone.0184925.t001
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Afroalpine floristic zone since the Late Pliocene [3, 51]. Bedrock consists of basalts, phonolite,

kenyte, agglomerates, trachyte and syenite [49–51].

Oblong Tarn (0.145306˚S, 37.301707˚E; 4370 m asl) is a high elevation proglacial lake on

the northwestern (lee) side of Mount Kenya located near recessional till deposits from César

and Josef Glaciers at the upper reach of the Hausburg Valley (Figs 1 and 2). The head of the

valley has steep slopes within the deglaciated valley and is characterized by bunchgrasses and

barren patches of gravel, cobbles and boulders and some mosses (Fig 2). Poaceae, Asteraceae

(including large Dendrosenecio), Cyperaceae, Lobelia, Alchemilla, and Helichrysum commonly

occur in patches where shallow soils have developed.

The cold climate has a strong diurnal thermal, radiation, wind and moisture regime. At

night, surface winds flow downhill frequently clearing the night skies and causing cloudiness

in confluence zones down the mountain. Early daytime circulation is uphill and carries mois-

ture upward causing clouds at high elevations [52]. Weather conditions, estimated using a

lapse rate of 0.6˚C per 100 m elevation relative to the Nanyuki meteorological station (0.03˚ N,

37.02˚ E) [28] suggest a minimum annual temperature of -4˚C. Meteorological measurements

at Lewis Glacier from 2009–2012 show a mean temperature of -1˚C (1σ = 1.4˚C) and an aver-

age daily temperature range of approximately -7 to 7˚C, low atmospheric pressure (mean =

570 hPa) [22]. Warmest monthly temperatures occur in March-June and coldest from Decem-

ber-February. Precipitation is more difficult to estimate, but snowy conditions are common

due to convective precipitation, as observed over Lewis Glacier [22].

Oblong tarn is nearly rectangular shaped with a long axis length of 180 m, a short axis of 90

m, and 1.6 ha surface area with a maximum depth of 10.7 m in August 2010 (Dirk Verschuren

Fig 1. Study location and other published studies mentioned in text. Location map in eastern Africa (upper left inset)

and Mount Kenya (lower left inset) showing: 1) Oblong Tarn (this study, red circle), 2) Hobley Valley mire [63], 3) Small Hall

Tarn [47], 4) Rumuiku swamp [41], 5) Lake Rutundu [61], 6) Sacred Lake [35, 61], 7) Lake Nkunga [36], 8) Kiluli Swamp [38].

Lower left inset: Landsat true colour image showing Mount Kenya (scene LC81680602014258LGN00; 15 September, 2014;

Data available from the U.S. Geological Survey) with 400 m elevation contours (black lines) and summarised vegetation

zones: mixed savanna, mixed cultivations and lower montane forest (LMF), moist montane forest (MMF), upper montane

forest (UMF), ericaceous zone (Er) and alpine (vegetation zone boundaries are diffuse and not delimited here). Main figure

showing headwater lakes (white outlines) of the Hausburg Valley with Oblong Tarn study site near the recessional tills

(dashed outlines) of Josef and César Glaciers. (Image date 14 January 2015; Google Earth/DigitalGlobe, 2015).

https://doi.org/10.1371/journal.pone.0184925.g001
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et al., Ghent University, unpublished data). Sediments deposited into the lake during the late

Holocene were fine-grained minerogenic sediments from glacial meltwaters and till deposits,

as well as authigenic and soil-derived organic matter. The proximity of the glacier to the tarn

has fluctuated between 150 m in 1899 to 17 m in 1919, and it has since retreated considerably

[45] indicating a rapid local response to global warming. Thus, the lake receives a large input

of meltwater and fine inorganic sediments from the glacier and has done so throughout the

Holocene. The sediment record of Oblong Tarn was collected on two excursions to the site

and was previously studied to examine past glacial fluctuations by analyzing the first sediment

core for x-ray density, sediment water content and organic/inorganic variations (loss-on-igni-

tion) [44]. The second core was used to further examine glacier history [45] and oxygen iso-

topes derived from biogenic silica, primarily diatoms [46].

Methods

Field methods

Fieldwork permission, acknowledged in previous publications [44, 45], was granted by the

Office of the Vice President of Kenya and local agreement by Kenya Wildlife Service at Mount

Fig 2. Study site. Photograph of Oblong Tarn from the west shore facing east to till deposits from the retreat of Josef Glacier and showing the local patchy

alpine vegetation. Photograph credit: Hilde Eggermont (Ghent University) taken 25 August 2010.

https://doi.org/10.1371/journal.pone.0184925.g002
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Kenya National Park. The subsamples analysed for this study were not subject to further per-

missions. The authors affirm that the fieldwork did not involve endangered or protected spe-

cies. In 1983, a raft built on two inflatable rubber boats was floated onto the lake and a wire-

operated Livingstone piston corer (90 mm internal diameter) was used to collect a sediment

core from 9.5 m water depth. The core was collected in two drives that overlapped to create a

245 cm stratigraphy, which did not reach the base of the soft sediments in the lake [44]. A sec-

ond core was extracted in three overlapping drives in February 1986 using a 75 mm internal

diameter Livingstone piston corer that reached the firm sediment base at ~550 cm [45]. An

illustration of the core collection is presented in Supporting information S1 Fig. The two cores

were independently radiocarbon dated and the temporal overlap of these cores was used to

create a composite palynostratigraphy.

Age-depth models

For the 1983 core, four conventional radiocarbon dates derived from bulk sediment were

obtained from the Radioactive Dating Laboratory, Stockholm, Sweden. In the 1986 core, five

conventional radiocarbon dates were collected from bulk sediments. These age determinations

were used to build new age-depth models using BACON version 2.2 in the statistical program-

ming language R version 3.0.2 [53–54]. Radiocarbon ages (14C year BP) were calibrated using

the IntCal13 calibration curve [55]. Ages were interpolated using the weighted mean within a

95% confidence envelope of the densities of ~8 million Markov Chain Monte Carlo random

walk iterations through the probability densities of the calibrated radiocarbon dates.

Pollen analysis

Twenty eight subsamples of 0.5 cm3 of wet sediment were taken from 1-cm-thick levels spaced

at 5 to 10 cm intervals down the 1983 core and twenty two subsamples were taken from the

1986 core. Pollen preparations followed standard sequential chemical digestions with HCl,

KOH, HF, and acetolysis to remove organic, carbonate, and siliceous compounds and to pre-

pare the pollen for microscopy, with rinses of deionized water, glacial acetic acid, or ethanol

between digestions [56]. Tablets of Eucalyptus counter grains (batch 903722: 16,180 ± 1460

grains per table) were added to permit pollen concentration calculations for the 1983 core only

[57]. Pollen grains were enumerated under an optical microscope at 400-1000x magnification

and achieved terrestrial pollen grain counts of 520–1004 grains (mean = 630, σ = 122). Pollen

identifications were aided by using a pollen reference collection at the Laboratoire de palynolo-

gie in Montpellier, France, a collection of photographs created at the laboratory, and published

references [58–64]. Relative abundances were calculated from the total pollen sum. Pollen tax-

onomy was organized into plant functional groups for presentation using published pollen

and vegetation assemblage records [63, 65–72]. Pollen data were analysed using C2 version

1.7.2 [73] and R [54] and plotted in C2. A principal components analysis of square-root trans-

formed pollen percentages was done using C2 and the change function of the PaleoMAS pack-

age [74] was used for a rate of change (RoC) analysis of the dissimilarities between the pollen

assemblage samples.

The sediment organic content were estimated by loss-on-ignition (LOI) analysis for the

1983 core and the values were digitized from the original published graph (from figure number

2 in [44]) using Data Thief III software [75].

Results

Data for this study are available through the Harvard Dataverse data archive [76].
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Stratigraphy and age-depth model

Oblong Tarn sediments were diffusely banded, containing organic-rich (10–15%) and fine-

grained glaciofluvial clastic-rich (<10% organic) sediments [44]. The loss-on-ignition (LOI)

organic values ranged between 5–15% sediment dry weight and changes were dominantly

influenced by variations in inorganic clastic input from glacial meltwater [44]. The age-depth

model presented here (Fig 3) is comparable to both the original published model that used lin-

ear interpolation between the midpoint calibrated dates [44] and the independent age-depth

model developed from the second core collected February 1986 [45]. This second coring expe-

dition collected deeper soft sediments to a depth of 550 cm below the water-sediment interface;

below this depth was either till or other hard sediments [45]. This new age-depth model

included the radiocarbon date at 90–110 cm depth (St-9204) in the 1983 core that was rejected

from the original age-depth model because that model relied on linear interpolation through

the calibrated radiocarbon date midpoints (Table 2) [44, 77]. The BACON model made full

use of the calibrated radiocarbon age probabilities and strongly suggested a continuous accu-

mulation of sediments through time. The chronostratigraphic composite was built with the

ages for each pollen sample using the separate age-depth model for each independent core to

create the palynostratigraphy. Although the two cores were collected from the central area of

the lake with slightly different sediment accumulation rates, the independent age-depth mod-

els permit compositing the samples.

Pollen record

Pollen sampling intervals in the core averaged 133 years (range 47–200 years). Thirty six pollen

taxa were identified in the record of which thirteen occurred with<1% relative abundance

(Table 3, Fig 4). Pollen assemblage zones, defined by CONISS [78], were found to be not sig-

nificant using a broken stick test [79] but a visible transition at 1500 cal yr BP occurred due to

changes in the abundances of the dominant taxa (Fig 4). The pollen assemblage was predomi-

nantly derived from extra-local and regional pollen source areas.

Podocarpus was consistently the most abundant taxon, varying between 47–62% and Poa-

ceae relative abundances varied from 7–28%. The predominant montane forest pollen taxa,

other than Podocarpus, were Olea, which varied between 3–6%, Juniperus (1–6%) and Macar-
anga (�2%). Ericaceae abundances varied between 3–4% while all other taxa were below 2%.

After 1500 cal yr BP, there was little change in Podocarpus and Artemisia pollen, and increased

Olea, Juniperus, Myrica, Urticaceae, Hagenia, Acalypha and Dendrosenecio-type. Myrsine,

Macaranga and pteridophyte-type pollen abundances decreased through the record. Juniperus
and Hagenia both peaked centered between 1500–1100 cal yr BP, concomitant with slight

increases in Myrica, Acalpypha, and Chenopdiaceae. Throughout the record, unidentified pol-

len averaged 5% (15–65 grains) of the total sum per sample.

Alpine taxa included Alchemilla, Helichrysum, and Dendrosenecio-type [63] and their

abundance varied between 1–3%, while Ericaceae abundance varied from 4 to 8% (Fig 5). The

dominant pollen were montane forest taxa that varied from 63–85% (14–24% excluding Podo-
carpus). Woodland and savannah taxa were<1%. The cosmopolitan taxa ranged from 10–

30% of the total sum, primarily comprised of Poaceae. Total pollen accumulation rates (PAR)

were calculated for the 1983 core and showed a general decrease in PAR from 3500 cal yr BP

to present (Fig 5).

The first principal component explained 19.5% of the variance and scores showed little vari-

ability, with a tendency towards more negative values prior to 4100 cal yr BP and between

1000–500 cal yr BP (Fig 5). The rate of change analysis of the pollen assemblage shows a slight

tendency for higher values from the beginning of the record until 3100 cal yr BP (mean = 0.11,
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excluding extreme values) and lower values from 3100 cal yr BP to present (mean = 0.06).

Peak values were observed prior to 5000 and at 3100 cal yr BP (Fig 5).

Discussion

Glacial advances in the Hausburg Valley occurred 6000–5000 years ago [8, 42] and Oblong

Tarn likely formed after regression of the local glacier [42]. The basal age of the Oblong Tarn

basin, dated to 5300 yr BP, fits well with the glacial history of Mount Kenya and the assemblage

of mid-Holocene-aged morainal deposits [3, 5, 80]. The pollen assemblages of Oblong Tarn

since 5300 cal yr BP were rather unresponsive to broad-scale environmental changes that have

been documented for the Afrotropical region [81]. The apparent low degree of variation limits

a comparison with the lacustrine inorganic sediment influx from the glacier to infer local-scale

relationships between environmental and alpine vegetation changes [44–45]. The slight vari-

ability in the overall pollen assemblages expressed as PCA axis 1 scores, does show a negative

relationship to temperatures reconstructed from a mid-elevations site (Rutundu Lake [82], Fig

5) even given the centennial-scale uncertainties in the age-depth, and this may reflect the

effects of temperature changes on montane forest composition. The long term decrease in rela-

tive abundances of alpine and ericaceous pollen since the mid-Holocene may reflect decreased

pollen production by the cold ecosystem taxa due to late Holocene cooling at upper elevations

[82]. There was also no conspicuous evidence of significant anthropogenic environmental

modifications, notably taxa associated with disturbance from deforestation [72] around the

mountain and on the lower elevations of Mount Kenya. It is difficult to disentangle the

Fig 3. Radiocarbon dates and age-depth models for Oblong Tarn sediment cores. Age-depth models (red dotted line), random walks (greyscale), and

95% CI (dotted grey lines) of IntCal13 [55] calibrated radiocarbon dates (distributions in blue) with parameter settings (top right red font) for each of the Oblong

Tarn sediment cores (Table 2; [53–54]). Ages reported as calibrated year BP (before present, 1950 CE). Pollen samples were taken from both the 1983 core

[44] and the 1986 core [45] to create a composite stratigraphy.

https://doi.org/10.1371/journal.pone.0184925.g003

Table 2. Radiocarbon dates from Oblong Tarn sediment core.

Reference Depth (cm) Radiocarbon age (14C yr) Error 2σ
(± yr)

1983 core (–33 cal yr BP)

core top 0

St-9204* 90–110 2115 140

St-9073 160–170 2995 135

St-9309 195–215 3000 275

St-9045 235–245 3275 135

core base 245

1986 core (–36 cal yr BP)

core top 0

St-10647 150–160 2320 320

St-10648 210–230 1930 245

St-10863 220–240 2100 190

St-10682 310–340 3105 245

St-10683 360–390 4030 155

sediment base ~550

Age determinations of bulk sediment samples used for conventional radiocarbon dating of the Oblong Tarn cores collected in 1983 [44] and 1986 [45].

*Date was not used in the original age-depth model [44]. Data are also available in the CARD database [76, 103].

https://doi.org/10.1371/journal.pone.0184925.t002
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climatic, fire regime variability, and anthropogenic contributions to the Podocarpus pollen

record; although changes to all of these mechanisms could have influenced or varied in relative

importance since the mid-Holocene.

The upwind transport to the site and channeling of winds at the top of the mountain [83]

homogenizes the pollen from a large area of the windward mountain, spanning multiple

Table 3. Pollen taxa observed in Oblong Tarn sediments.

Family Pollen type [104] Alp Er MF LF W-S Wet Group

Cyperaceae Cyperaceae x x x X all

Trilete x x x x x x all

Pteridophyte x x x x x x all

Poaceae Poaceae x x x x X x all

Polygonaceae Polygonaceae x x x x x x all

Umbelliferae Umbelliferae x x x x x all

Rosaceae Alchemilla x Alp

Asteraceae Helichrysum X (x) (x) (x) (x) Alp

Asteraceae Dendrosenecio-type X (x) Alp

Asteraceae Stoebe x Er

Asteraceae Artemisia X Er

Ericaceae Ericaceae X x Er

Primulaceae Myrsine X x Er

Rosaceae Cliffortia X x Er

Rubiaceae Anthospermum X x Er

Aquifoliaceae Ilex X MF

Cornaceae Afrocrania x x MF

Cupressaceae Juniperus X x MF

Euphorbiaceae Macaranga X MF

Euphorbiaceae Neoboutonia x MF

Euphorbiaceae Croton x X MF

Rutaceae Zanthoxylum x x MF

Euphorbiaceae Acalypha X x x MF

Euphorbiaceae Alchornea X MF

Myricaceae Myrica X MF

Oleaceae Olea X MF

Podocarpaceae Podocarpus X MF

Rosaceae Hagenia X MF

Rosaceae Prunus x x MF

Ulmaceae Celtis X x MF

Urticaceae/

Moraceae

Urticaceae/

Moraceae

X x x MF

Proteaceae Faurea x x LF

Acanthaceae Acanthaceae x x X W-S

Amaranthaceae/

Chenopodiaceae

Amaranthaceae/

Chenopodiaceae

X W-S

Combretaceae Combretum X x W-S

Euphorbiaceae Euphorbia (x) x W-S

Pollen taxa assignments to biomes for vegetation interpretation through harmonizing published pollen records in the area [41, 63, 65–72, 92, 104]. Pollen

groups are listed and the classification used in this study. Alp, alpine; Er, ericaceous; MF, montane forest; LF, lower forest; W-Sav, woody savannah; Wet,

wetlands. Symbols: X, dominantly occurs; x, present; (x), occasionally present.

https://doi.org/10.1371/journal.pone.0184925.t003
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vegetation zones [84–86]. The record may be further confounded by secondary pollen input

through meltwaters from the ablation of César and Josef Glacier at the head of valley causing

some temporal aggregation in the pollen signal; although the influx of minerogenic material

seems to dilute pollen accumulation rates (PAR, Fig 5). Pollen transported from long distances

has been observed in snow and ice and taphonomic studies would be useful for quantifying

secondary pollen influxes and estimating temporal aggregation or lag effects in pollen records

from proglacial lake sediment. The high abundance of montane forest taxa and low abun-

dances of alpine and ericaceous taxa could be due to the low pollen production of higher eleva-

tion plants and the large source area of the montane taxa, and other factors such as changes in

transportation of aerophilous pollen types [87–88]. An interesting feature is illustrated by the

increased pollen abundances of Juniperus, Hagenica, Myrica, Acalypha motane forest taxa at

1500–1100 cal yr BP, as an example of minor short-termed vegetation changes that span multi-

ple samples. This centennial-scale minor increase in these taxa occurred during a period of

increased reconstructed temperatures at Lake Rutundu (Fig 5). These results indicate a need

for modern pollen-vegetation cover studies in upper elevations.

Oblong Tarn pollen record

The most frequent alpine pollen taxa were Alchemilla, Helichrysum and Dendrosenecio-type, of

which many species are endemic to Mount Kenya and neighbouring alpine elevations [65].

The abundance of pollen from alpine taxa was relatively constant over the past 3500 years,

although Dendrosenecio-type pollen were found in higher abundance before 5000 cal yr BP

and from 1500–1300 cal yr BP, potentially indicative of local glacial retreat and soil stabiliza-

tion [28] following the mid-Holocene glacial maximum. This occurred during a period of a

prolonged (1500–550 cal yr BP) reduction in glacier activity on Mount Kenya, with higher

Fig 4. Pollen assemblages from the Oblong Tarn sediment cores. Pollen diagram of Oblong Tarn, Mount Kenya. Black circles show taxa with <1%

relative abundances. LOI organic content (% dry sediment weight) estimated from the 1983 core [44]. At right, open black circles designate pollen samples

from the 1983 core and open grey circles designate 1985 core subsamples. CONISS dendrogram shows that the entire record is contained within a single

pollen assemblage zone with no statistically significant assemblage changes.

https://doi.org/10.1371/journal.pone.0184925.g004
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organic content (10–12%) that generally decreased to a seemingly abrupt onset of minerogenic

sediments at 550 cal yr BP [44]. High-resolution loss-on-ignition analysis of the uppermost

sediments showed that organic content was <10% from 500–150 cal yr BP and increased from

3–18% from 150 to present (Figs 4 and 5).

When interpreted by aggregating the pollen taxa into pollen taxa groups (Fig 5), changes in

the record were more apparent, including an overall decreasing trend in alpine (3–1.5%) and

ericaceous taxa (8 to 4%) and an early increase, followed by a sustained high abundance of

Podocarpus pollen. Montane forest pollen percentages increased between 5000–4000 cal yr BP,

then leveled with little variation until they decreased by 1000–500 cal yr BP, and finally again

increased between 500 cal yr BP to present. Woodland and savannah taxa were very low

throughout the record and were absent from 4200–3000 cal yr BP. It is difficult to link to dis-

crete mechanisms, but these variations could be related to climatic influences on low- and

mid-elevation vegetation cover or wind circulation across the mountain. Generally, rates of

change are slightly higher prior to 3100 cal yr BP and lower subsequently. This decrease is

associated with a stabilization of the percentages of pollen taxa from the alpine and ericaceous

zones at this time. The RoC analysis assumes linear accumulation rates, thus, peaks in the RoC

values could be related to high-frequency variability in sedimentationthat is not resolved by

the age-depth model. For example, the peak around 3100 cal yr BP is associated with some var-

iation in LOI values Temperature reconstructions from Mount Kenya suggest that tempera-

tures have generally decreased from 5000 cal yr BP to recent, but temperatures at higher

elevations decreased much more and had much higher multi-centennial variability [82].

Fig 5. Pollen taxa groups and other palaeoenvironmental records for comparison. Taxonomic grouping of pollen relative abundances by biome. Alpine,

ericaceous and woodland-savannah taxa groups shown with 10x exaggeration (dark black line). LOI and PAR derived from the 1983 core [44]. Rate of

Change (RoC) analysis index values [74] and principal component axis one scores (19.5% variance explained) of square-root transformed pollen

percentages. PCA scores are reversed for comparison with temperature reconstructions of mean annual air temperatures (MAAT) [103] from Rutundu Lake

(in the lower ericaceous vegetation) [82] and Sacred Lake (within montane forest) [82, 105, 106] on Mount Kenya (elevation of the lake sites shown in m asl;

shaded grey envelope shows 95% confidence interval).

https://doi.org/10.1371/journal.pone.0184925.g005
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From 1100–400 cal yr BP, Podocarpus abundance decreased and Poaceae increased, which

could be due to several processes, including an increase in local grasses, decreased Podocarpus
abundance in the montane forests, or changes in the dominant wind direction carrying pollen

from the bamboo zone or montane forest. Podocarpus is likely overrepresented due to the high

production and long-distance transport from lower on the mountain [35, 89]. Other taxa that

are potentially overrepresented in pollen records relative to surrounding vegetation include

Ericaceae, Rosaceae (Hagenia), Euphorbiaceae (Macaranga) and Araliaceae [71, 89].

Comparison with late Holocene records on Mount Kenya

One of the more conspicuous aspects of the Oblong Tarn pollen record is the high relative

abundances of Poaceae and Podocarpus. A late Holocene increase in Podocarpus abundances

has been found in multiple pollen records from Mount Kenya, including Hobley Valley mire

[42]; Rumuiku Swamp [41]; Sacred Lake [61]; Lake Rutundu [39] and Lake Nkunga at the base

of mountain [90]. Similarly, a sediment record from Hobley Valley mire contained high rela-

tive abundances of Poacaeae (10–50%) and Podocarpus pollen during the past ~3270 years BP

[42]. This high elevation mire also contained similar abundances as the Oblong Tarn record

for Alchemilla, Helichrysum, Dendrosenecio and taxa from the ericaceous zone. At Rumuiku

Swamp (2150 m asl), Podocarpus relative abundances were very low at the beginning of the

Holocene, but increased to 20% by the late Holocene [41]. Oxygen isotope values derived from

diatom frustules in the sediments on Small Hall and Simba Tarns both abruptly increased at

3000 yr BP suggesting drier conditions than previously, and the values at Hausberg Tarn

increased around 2500 cal yr BP [47]. This association between hydroclimate and vegetation

change in the Oblong Tarn pollen record suggest an important link between moisture regimes

and vegetation at mid to high elevations at centennial and longer timescales.

Comparison to other East African mountain records

The pollen record from Oblong Tarn is similar in composition and abundances to many late

Holocene pollen diagrams from high elevation sites in equatorial east Africa. Pollen records

from Lake Kimilili, Mount Elgon (from 4150 m asl, [63]) and as far as Lake Mahoma, Ruwen-

zori Mountains, Uganda [91] all show evidence of increased Podocarpus in the late Holocene.

Alpine, ericaceous and montane forest taxa dominated the Lake Kimilili record. This record

showed the dominance of Poaceae and Podocarpus (20–50%) over the past 4000 years, with

Poaceae decreasing and Podocarpus increasing since the beginning of the Holocene. The

Oblong Tarn record is also similar to late Holocene records from Koitoboss Bog (3940 m asl)

and Laboot Swamp (2880 m asl), Mount Elgon, and to an undated, high-elevation pollen

record from Scout Hut Mire (3380 m asl), Mount Elgon [63]. The pollen record from a soil pit

WeruWeru26 (2650 m asl), on the southern slopes of Kilimanjaro, is located in the montane

forest vegetation zone but also contained abundant Poaceae (10%) and high Podocarpus (10–

40%) abundances during the late Holocene [92].

Abundant Poacaeae and Podocarpus is a common feature to high elevation pollen records

in the region unless there are ericaceous and montane forest taxa locally to increase the pollen

representation from these taxa. The abundant Poaceae and Podocarpus pollen at Oblong Tarn

may be reinforced by secondary deposition of these grains from the melting seasonal snow

and glacier into the lake, resulting in dilution of the original wind-deposited pollen. Other

high elevation records, such as Lake Kimilili, in a non-glaciated catchment do show significant

variation in taxa during the mid-Holocene but variability is dampened during the late Holo-

cene rise in Podocarpus [63, 91]. Sites such as Koitoboss Bog show stronger variability in mon-

tane forest and Afroalpine taxa before and following the Podocarpus increase [63].
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Modern pollen deposition in eastern Africa has shown the signature of vegetation associa-

tions along altitudinal gradients [71, 93–94] and climate [95–96]. Additional high- and mid-

elevation records and modern pollen rain calibration studies [71, 97] are necessary to further

examine the impact of Podocarpus expansion on montane forest ecology and representivity in

the available pollen sites across equatorial eastern Africa.

Conclusions

The Oblong Tarn pollen record consists primarily of montane forest and ericaceous pollen trans-

ported from lower elevations. The late Holocene record is dominated by Poaceae and Podocarpus
grains, in agreement with previously published records from Mount Kenya and neighbouring

high-elevation sites. The pollen assemblages showed little variation over the late Holocene with

statistically insignificant changes in abundance variations prior to 4000 cal yr BP and between

1500–1300 cal yr BP during a prolonged period of glacial inactivity in the valley. These minor

changes could relate to climatic variability and suggest some sensitivity in the record to montane

forest vegetation changes. When aggregated into functional groupings, changes are seen in the

pollen record that can be interpreted in the context of other studies in the region. In particular, a

long-term cooling over the past 5000 years is seen in slight decreases in pollen of local taxa and

increases in pollen transport from lower elevations that stabilize by 3100 cal yr BP to present.

Supporting information

S1 Fig. Sediment core collection from Oblong Tarn, Mount Kenya. Sediment cores recov-

ered during two fieldwork expeditions in 1983 and 1986.

(PDF)
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