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The tumor microenvironment (TME) affects the biologic malignancy of clear cell renal cell
carcinoma (ccRCC). The influence of the 5-methylcytosine (m5C) epigenetic modification
on the TME is unknown. We comprehensively assessed m5C modification patterns of 860
ccRCC samples (training, testing, and real-world validation cohorts) based on 17m5C
regulators and systematically integrated the modification patterns with TME cell-infiltrating
characterizations. Our results identified distinct m5C modification clusters with gradual
levels of immune cell infiltration. The distinct m5C modification patterns differ in
clinicopathological features, genetic heterogeneity, patient prognosis, and treatment
responses of ccRCC. An elevated m5C score, characterized by malignant biologic
processes of tumor cells and suppression of immunity response, implies an immune-
desert TME phenotype and is associated with dismal prognosis of ccRCC. Activation of
exhausted T cells and effective immune infiltration were observed in the low m5C score
cluster, reflecting a noninflamed and immune-excluded TME phenotype with favorable
survival and better responses to immunotherapy. Together, these findings provide insights
into the regulation mechanisms of DNA m5C methylation modification patterns on the
tumor immunemicroenvironment. Comprehensive assessment of tumor m5Cmodification
patterns may enhance our understanding of TME cell-infiltrating characterizations and help
establish precision immunotherapy strategies for individual ccRCC patients.
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INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignancy of
the urinary system, accounting for approximately 3.8% of all
newly diagnosed cancers. The incidence of RCC is increasing by
1.1% each year (Siegel et al., 2020). Clear cell RCC (ccRCC),
which originates from proximal tubule epithelial cells, is the most
common histology type of RCC, accounting for approximately
80% of all RCC cases (Capitanio and Montorsi, 2016; Linehan
and Ricketts, 2019). The Von Hippel–Lindau (VHL) gene is
frequently mutated in ccRCC, and mutations in BAP1,
PBRM1, SETD2, and PIK3CA are also commonly observed in
ccRCC. Studies show that mutations in these genes influence the
prognosis and treatment response of ccRCC patients (Clark et al.,
2019; Linehan and Ricketts, 2019). The standard first-line
treatment strategy for metastatic or advanced ccRCC mainly
involves tyrosine kinase inhibitors, such as sunitinib and
sorafenib, that target vascular endothelial growth factor
receptors. Over the past few decades, rapid progress has been
made in immunotherapy as a new treatment strategy for cancer
(Xu et al., 2019; Braun et al., 2020; Motzer et al., 2020).

DNA methylation is one of the most researched epigenetic
modifications and is linked to the development of human
malignancies (Qian et al., 2020). The main type of DNA
methylation is the presence of an additional methyl group on
the 5 position of cytosine (5-methylcytosine, m5C) (Choi et al.,
2021). The m5C modification was the first discovered epigenetic
marker and plays an important role in regulating the
transcriptome profiles and carcinogenesis process of solid
tumors, which often harbor aberrant DNA methylation
(Martisova et al., 2021). The m5C modification is frequently
found in large clusters called CpG islands, which are present
in gene-promoter regions and suppress gene transcription (Chen
et al., 2019; Palei et al., 2020). A series of enzymes, called writers,
readers, and erasers, is responsible for adding, recognizing, and
removing the m5C modifications, respectively (Rausch et al.,
2020). Some tumor-suppressor genes are silenced as a
consequence of hypermethylation in the promoter regions.
Therefore, DNA methylation represents a potential signature
and promising treatment target for human malignancies.
Investigation of m5C epigenetic modifications and their
regulation of gene expression may, thus, provide insights into
the mechanisms underlying cancer development.

The 5-methylcytidine modification occurs on both DNA and
RNA. The major epigenetic mark in mammalian DNA is m5C,
which is associated with carcinogenesis and tumorigenesis of
various cancers (Greenberg and Bourc’his, 2019). The phenotype
of tumor microenvironment (TME) is dynamically regulated by
cell signaling transduction and epigenetic drivers, which are
critical factors influencing the efficacy of immunotherapy and
both extrinsic and intrinsic resistance pathways. DNA
methyltransferase enzymes (DNMTs) methylate CpG islands
in gene promoters, and aberrant expression or activity of

DNMTs can lead to tumorigenesis and aggressive progression
(Zhang et al., 2018). Additionally, upregulated DNMT1 is shown
to be necessary for maintaining cancer stemness and is associated
with poor clinical outcome of cancers. DNMT1 is also shown to
regulate the inhibitory function of Foxp3+ T-regulated cells
(Piperi et al., 2008; Wang et al., 2013; Zagorac et al., 2016).
Therefore, comprehensively exploring the biological activities of
epigenetic drivers in tumor phenotypes and TME is important
(Xu et al., 2021a).

In this study, we examine the potential influence of DNAm5C
regulators on the clinical malignant characteristics and TME of
ccRCC. We first constructed m5C clusters using large-scale
samples and algorithms and evaluated the relationship of m5C
clusters with immune cell infiltration, the DNA variation
landscape, and immunotherapy in ccRCC.

MATERIALS AND METHODS

Sample Collection and Data Preprocessing
Gene expression, copy number variants, tumor somatic
mutations, and matched clinical information of ccRCC from
The Cancer Genome Atlas (TCGA) cohort were obtained.
Gene expression data of 93 ccRCC tumors from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) were
obtained at https://proteomics.cancer.gov/programs/cptac.
In addition, RNA-seq and clinical data of 91 ccRCC patients
from the RECA-EU cohort were available from the
International Cancer Genome Consortium (ICGC, https://dcc.
icgc.org/) database and included in this study. Patients without
overall survival information were removed from further analysis.
In addition, 232 ccRCC samples with proteomics sequencing data
with available clinical and pathologic electronic records were
enrolled from our institute, Fudan University Shanghai Cancer
Center (FUSCC, Shanghai, China). In total, 860 ccRCC tumor
samples were included for analysis. Batch effects from
nonbiological technical biases were corrected using the
“ComBat” algorithm of sva package and the fragments per
kilobase of transcript per million values were transformed into
transcripts per kilobase million values.

Unsupervised Clustering for 17m5C
Regulators
A total of 17 m5C regulators were extracted from the integrated
gene expression profiles to identify different m5C modification
patterns. The 17 m5C regulators included three writers (DNMT1,
DNMT3A, and DNMT3B), three erasers (TET1, TET2, and TET3),
one regulating factor (DNMT3L), and 10 readers (MECP2,MBD1,
MBD2, MBD3, MBD4, UHRF1, UHRF2, ZBTB4, ZBTB38, and
ZFP57). The “ConsensusClusterPlus” R package was used to
classify patients for further analysis, and 1000 times repetitions
were conducted to ensure the stability of the classification
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(Wilkerson and Hayes, 2010). Overall survival was compared
between patients with different m5C modification patterns.

Gene Set Variation Analysis (GSVA) and
TME Cell Infiltration Estimation
GSVA, a commonly employed method for estimating the
variation in pathways (Hänzelmann et al., 2013), was used to
evaluate the potential biological differences between the m5C
modification patterns using the “GSVA” R package. To estimate
the TME cell infiltration, we applied the single-sample gene set
enrichment analysis algorithm to evaluate the relative
abundance of immune cells in the ccRCC TME. The
reference gene sets for quantifying the immune cells were
obtained from a previous study (Charoentong et al., 2017),
and the examined immune cells included mast cells, monocyte,
macrophage, activated CD4+ T cells, and other types of
immune cells. Immune cell abundance was compared
between m5C modification patterns, and the prognostic
significance of each immune cell was also evaluated based
on the overall survival information.

Differential Gene Expression Analysis and
Functional Enrichment Analysis
To explore the potential biological differences between m5C
modification patterns, the limma package was used to identify
differentially expressed genes (DEGs), and the threshold value
was set as p < .05, |logFC|≥3 (Ritchie et al., 2015). Functional
enrichment analyses were carried out to explore the potential
functions of the DEGs. The expression profiles of DEGs were
extracted, and unsupervised clustering was applied again to
identify the subgroups; the subgroups were defined as m5C
gene clusters.

Identifying m5C Score as the m5C Gene
Signature
A scoring system was constructed to evaluate the m5C
modification patterns, and we termed it as m5C score.
Univariate Cox regression was used to evaluate the prognostic
value for each gene, and the genes with prognostic significance
were extracted for further analysis. Random forest analysis and
principal component analysis were used to construct the m5C
relevant gene signature. Both principal components 1 and 2 were
enrolled to calculate the signature scores, and the m5C score was
defined as follows: m5C · score � ∑(PC2i+PC2i).

Copy Number Variant Analysis,
Immunotherapy Response Prediction, and
IC50 Evaluation
To explore potential associations between copy number variants
and m5C score, Genomic Identification of Significant Targets in
Cancer (version 2.0) was used to identify significantly amplified
or deleted regions using TCGA copy number data (Beroukhim
et al., 2007; Mermel et al., 2011). Q ≤ 0.05 was defined as

significant, and the confidence interval was set to 0.95. Tumor
immune dysfunction and exclusion (TIDE) was used to estimate
the immunotherapy response based on the expression profiles
(Jiang et al., 2018). Thus, the associations between m5C score and
immunotherapy response were evaluated. The pRRophetic
package was used to predict the half-maximal inhibitory
concentration (IC50) of chemotherapy drugs in the high and
low m5C score groups.

Immunohistochemistry (IHC)
IHC was performed to evaluate the expression levels of Ki-67
(ab15580; Abcam), CD4 (RMA-0620, Maxim, China), CD8
(RMA-0514, Maxim, China), Glut-1 (ab115730; Abcam), PD-
L1 (ab205921; Abcam), CXCL13 (ab246518; Abcam), TGF-β
(ab189778; Abcam), FASN (ab99359; Abcam), CK (Kit-0009,
Maxim, China), and FoxP3 (98,377, CST) following previously
described procedures (Xu et al., 2021a; Xu et al., 2021b). Opal
multispectral was implemented to identify differential immune cell
infiltration and PD-L1 expression in different groups on a
multispectral imaging system (Vectra® Polaris™, Shanghai, China).

Statistical Analysis
A Wilcox test was used to compare differences between two
groups. The Kaplan–Meier method was used to conduct survival
analysis, and the cutoff value was defined via the survminer
package. A log-rank test was used to detect the significance. The
receiver operating characteristic curve (ROC) was drawn to
evaluate the predictive ability for immunotherapy response.

RESULTS

The Overall Depiction of Genetic Variation
of m5C Regulators in ccRCC
A total of 17 m5C regulators including three writers, three erasers,
one regulating factor, and 10 readers were manually identified in
this study. The dynamic reversible process of m5C DNA
methylation mediated by regulators as well as their potential
biological functions for ccRCC are summarized in Figure 1A. We
detected significant differences in the expressions of m5C
regulators between ccRCC and para-cancer tissues (p < .05)
(Figure 1B). Analysis of CNV frequency indicated that CNV
alterations were prevalent in the 17 m5C regulators, and half of
the m5C regulators more frequently showed copy number
amplification compared with copy number loss (Figure 1C).
Besides this, in DNA variation profiles, we found 19
experienced samples of m5C regulators with a frequency of
5.65% among 336 ccRCC samples from TCGA (Figure 1D).
The location of CNV alterations of the m5C regulators on
chromosomes is shown in Figure 1E. Notably, ccRCC samples
could be distinguished from normal samples completely based on
the expression pattern of these m5C regulators (Figure 1F). These
findings suggest a high degree of m5C modification–mediated
intertumoral heterogeneity of genetic and expressional alteration
landscape between ccRCC and adjacent normal samples,
suggesting that the aberrant expression of m5C regulators may
play an essential role in ccRCC malignancy.
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FIGURE 1 | The overall depiction of genetic variations of m5C regulators in ccRCC. (A) The dynamic reversible process of m5C DNA methylation mediated by
regulators as well as their potential biological functions for ccRCC are summarized. (B)Comparison of the expression levels of 17 m5C regulators in 530 ccRCC samples
and >12,000 para-cancer tissues. (C) Copy number variations (CNVs) of the 17 m5C regulators in ccRCC from TCGA cohort. (D) Somatic variant landscape of the
17 m5C regulators in ccRCC from TCGA cohort. (E) The location of CNV alterations of m5C regulators on chromosomes. (F) Principal component analysis of
ccRCC samples from the TCGA cohort based on the expression of the 17 m5C regulators.

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 7724364

Xu et al. 5-Methylcytosine Modification Affects ccRCC Phenotype

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Machine Learning Algorithms Identify m5C
Modification Patterns Mediated by the
Regulators
Three data sets (both proteome and transcriptome) with
available survival and clinicopathological information
(TCGA, CPTAC, and RECA-EU) were included in one meta-
cohort. Figure 2A shows the comprehensive landscape of the
interaction of the 17 m5C regulators, interaction network, and
the prognostic implications for ccRCC patients. The results
identified TET2, MBD1, MBD2, MECP2, ZBTB4, ZBTB38,
and UHRF2 as protumorigenesis indicators for ccRCC, and

MBD3, UHRF1, and DNMT3B were identified as significant
favorable factors for ccRCC. We also found that expression of
the m5C regulators in the same functional category exhibited
remarkable correlations, and a marked association was
displayed among writers, regulators, erasers, and readers. For
instance, whether ccRCC tumors with a high writer gene
expression exhibit a high eraser gene expression normally
depended on the different writer and eraser genes. However,
we found that tumors with high expression of the m5C reader
gene ZFP57 showed low expression of some reader genes
(ZBTB4, UHRF2, MBD3, and MBD2) although the high
expression of other reader genes was not affected. These

FIGURE 2 | Machine learning algorithms identify m5C modification patterns mediated by the regulators. (A) Comprehensive landscape of the interactions of the
17 m5C regulators, interaction network, and the prognostic implications for ccRCC patients. (B) Unsupervised clustering based on expression of 17 m5C regulators. (C)
Overall survival curves of ccRCC patients in the two m5C modification pattern clusters.
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results imply that a cross-talk among the genes encoding m5C
writers, readers, regulators, and erasers could play essential roles
in the malignancy of different m5C modification patterns and
tumor immune microenvironment characterization among
individual ccRCC samples.

We next used the ConsensusClusterPlus R package to identify
ccRCC patients with qualitatively different m5C modification
patterns based on the transcriptional expression of 17 m5C
regulators. Two distinct modification patterns were classified
using unsupervised clustering: m5C cluster A (including 271
cases) and m5C cluster B (354 cases) (Figure 2B). Survival
analysis of patients in the two clusters revealed that patients
with the m5C cluster A modification pattern showed improved
survival compared with patients with the m5C cluster B pattern
(Figure 2C).

Evaluation of TME Characterizations and
Immune Contexture Proportion in Distinct
m5C Modification Patterns
To investigate the clinical differences and biological processes
between the two distinct m5C modification patterns, we
constructed a clustering heat map showing differentially
expressed m5C regulators and clinical information, including
age, sex, stage, and survival status in the two m5C
modification patterns (Supplementary Figure S1). GSVA
enrichment analysis indicated that m5C clusters mainly differ
in heterochromatin, peptidyl modification pathways, and
microRNA post-transcriptional regulation (Figure 3A). The
ccRCC samples in m5C cluster A showed prominent
upregulation in E2F1, miR-147B, miR-3910, miR-4261, miR-

FIGURE 3 | TME characterizations and infiltrating immune cells in the two m5C modification patterns. (A) GSVA results of the two m5C modification patterns. (B)
Estimation of immune cell infiltration in the two m5C modification patterns. (C) Univariate regression analysis of various types of immune cells.
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3689-3p, miR-4719, PBXIP1, and ZNF184 targeted regulation
and downregulation in peptidyl modification processes, such as
histone binding, peptide amino acid modification, protein
autoubiquitination, ubiquitin-like protein ligase, and
transferase activities (Supplementary Figure S2A).

We next examined immune cell infiltration to assess
differences in the immune context of the TME between m5C
modification patterns. m5C cluster A was remarkably rich in
innate immune cell infiltration and the active immune response
process with a high abundance of activated CD4 T cells,
immature B cells, regulatory T cells, Tfh cells, dendritic cells,
eosinophils, macrophages, mast cells, natural killer cells, and
neutrophils (Figure 3B). The results from GSVA analyses
demonstrate that the m5C cluster A modification pattern,
which predicts favorable clinical outcome, was significantly

associated with antitumor immune responses. Therefore, we
hypothesized that the peptidyl modification inactivation in
m5C cluster A may be involved in the antitumor effects of
immune cell infiltration related to this cluster.

We further assessed the prognostic implications of immune
cell infiltration in ccRCC (Figure 3C). Univariate Cox analysis
indicated that T follicular helper cells (p � .022), immature B cells
(p � .013), mast cells (p � .006), type 17 T helper cells (p � .036),
and activated CD8 T cells (p � .036) could serve as independent
prognostic protective factors in ccRCC, andMDSC (p < .001) was
a remarkable risk indicator for 616 ccRCC patients from the
TCGA and CPTAC cohorts (Figure 3C). When
clinicopathological factors were analyzed, we found no
significant differences in the pathology types and genetic
variations between the patients in the two m5C modification

FIGURE 4 | Identification and prognostic implications of m5C genotype signatures. (A) Random forest results for selecting the most important DEGs. (B)
Unsupervised clustering based on the expression of selected DEGs. (C) Overall survival curves of ccRCC cases in the indicated subgroups. (D) Expression levels of
17 m5C regulators in the indicated subgroups.
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FIGURE 5 | Functional annotations of m5C genotype signatures. (A) Functional enrichment results of the DEGs. (B) Integrative heat map including DEG expression,
gender, age, clinical stage, and survival status in the two m5C modification pattern groups.
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pattern groups, which suggests that DNA m5C methylation
modification did not influence clinical and pathologic features
of tumors (Supplementary Figure S2B–G).

Identification and Functional Annotations of
m5C Genotype Signatures
To further explore the biological consequences of the distinct m5C
modification patterns, we then investigated the genetic constitution of
individual m5C clusters patterns and identified 180m5C
phenotype–related DEGs using the Limma package of R software.
Random forest analysis was performed to determine the most
important m5C gene signatures in identifying m5C modification
patterns (Figure 4A). To investigate the regulation mechanism of
DNAm5Cmodifications on ccRCC,we then performed unsupervised
clustering analyses based on the obtained 180m5C phenotype–related
signatures to classify patients into different genotypes. Consistent with
the clustering of m5C modification patterns, the unsupervised
clustering algorithm also revealed two distinct m5C modification
genomic subtypes, named as m5C gene clusters A and B
(Figure 4B). Kaplan–Meier analysis of ccRCC cases in the
combined discovery TCGA and test CPTAC cohorts revealed that
patients in the m5C gene cluster B group (n � 247) showed
significantly poor survival compared with cases in m5C gene
cluster A (n � 369) (Figure 4C). Prominent differences in the
expression of m5C regulators between the distinct m5C gene
clusters were confirmed using unpaired t test, and the results were
in accordance with the results of DNAm5Cmethylationmodification
patterns (Figure 4D). These results revealed the presence of distinct
m5C methylation modification patterns in ccRCC and showed that
these patterns could distinguish aggressiveness in ccRCC.

Next, the clusterProfiler package was used to perform GO and
KEGG functional enrichment analysis for the m5C DEGs. The
biological processes, cellular components, and molecular functions
with significant enrichment are summarized in Figure 5A. Enriched
terms in biological processes were related to m5C modification,
neutrophil activation–related immune response, and response to
hypoxia, which provided a basis that m5C modification may play
an important role in the immune regulation of the ccRCC TME
(Figure 5A). We further found that ccRCC samples in m5C gene
cluster B showed advanced clinical stages and exhibited higher
mortality (Figure 5B). Older patients were concentrated in the
m5C gene cluster B, and the distinct genotype clusters were
characterized by different m5C signature genes.

Generation and Validation of the m5C Score
Model
The above findings demonstrate that the m5C methylation
modification plays a key regulatory role in reshaping different
TME landscapes. Nevertheless, these results were determined on
the patient population and might not provide accurate
information on survivorship based on m5C modification
patterns in individual ccRCC patients. Considering the
individual intratumor heterogeneity of m5C methylation and
using the phenotype-related genes, we establish a scoring
system for easy quantification of the m5C modification

patterns for individual ccRCC patients and named this system
m5C score. The alluvial diagram was applied to visualize the
alterations of individual patients (Figure 6A). The m5C score
clusters prominently classified the patients into two prognostic
groups (good and poor) and enabled stratification of patients in
both the discovery TCGA and validation real-world FUSCC
cohorts. Survival analysis indicated that high m5C score was
significantly correlated with poor overall survival (HR � 0.3 with
95% CI from 0.22 to 0.41, p < .0001) in 516 patients with ccRCC
from TCGA (Figure 6B) and correlated with worse overall
survival in 266 patients with ccRCC from FUSCC (Figure 6C).

Relation of m5C Modification with
Clinicopathological Features and Tumor
Somatic Mutation
We next investigated the relationship of m5C score with clinical
and pathologic characteristics in ccRCC patients from the
training, testing, and validation cohorts. Consistent with its
prognostic value, the m5C score significantly increased with
advancing clinical stages and aggressive ISUP grade and
reached the highest level at stage IV or grade 4 (Figures
7A,B). There was no difference in age between the two
clusters. The proportion of males in the high m5C score group
was markedly higher than that of females, which is consistent
with the result that male patients have a worse prognosis than
female patients with ccRCC (Figures 7C,D).

To reveal the role of the m5C score phenotype in the
comprehensive molecular landscape of ccRCC, we examined
tumor somatic mutation and evaluated DNA variation in the
m5C score clusters. Patients with mutation in PBRM1, a gene
frequently mutated in ccRCC, showed a prominently lower m5C
score compared with patients with wild-type PBRM1 (Figure 7E).
The m5C score did not show a significant association with tumor
mutation burden in patients with ccRCC (Figure 7F).

We next evaluated the differences in the DNA variation
landscape in the two m5C score clusters. The top 20 frequently
mutated genes in them5C score clusters are shown inFigure 7G,H.
VHL (mutation frequency, 40%), BAP1 (13%), SETD2 (13%), TTN
(13%), and MTOR (11%) were the five most frequently mutated
genes in them5C scorehigh group (Figure 7G), whereasVHL (24%),
PBRM1 (19%),TTN (15%), SETD2 (7%), andMTOR (6%) were the
five most frequently mutated genes in the m5C scorelow group
(Figure 7H). Thus, we speculate that the significantly higher
mutation frequency of BAP1 in the high m5C score group may
contribute to the poor prognosis for ccRCC patients and the low
mutation frequency of PBRM1 may reduce immunotherapy
efficiency for ccRCC patients. Copy number variant features are
depicted in Figure 7I,J. In addition to the common mutation site
located in 5q35.3, copy number variant in m5C scorehigh samples
were generally located in 3q25.33, 2q10.53, and 9p12.3 loci.

Characteristics of TME and Immune Cell
Distribution in m5C-Related Phenotypes
To define the role of m5C-related phenotypes in regulation of the
TME, we first investigated cancer-related pathways
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characterizing m5C gene clusters based on training and testing
cohorts. As shown in Figure 8A, TGF-β signaling, oxidative
phosphorylation, and fatty acid metabolism were significantly
downregulated in ccRCC samples in the m5C scorehigh group
compared with the m5C scorelow group, whereas pathways
involved in protumorigenesis responses of the TME, such as
hypoxia, glycolysis, epithelial-mesenchymal translation, and IL6-
JAK/STAT3 signaling, were markedly upregulated in the m5C
scorehigh group. We next evaluated the immune cell infiltration in
the TME inm5C-related phenotype clusters. The results indicated
that CD4+ T cell memory resting, mast cell resting, and monocyte
and NK cell infiltration significantly correlated with a high
m5C score, whereas plasma cell, M0 macrophage, Treg cell,
and neutrophil infiltration were significantly associated with
low m5C score in ccRCC patients (Figure 8B). To evaluate the
regulatory role of m5C score in TME, we explored the
expression of chemokine, cytokine, and immune
checkpoints in m5C score clusters (Figure 8C). We found
the expression levels of immune checkpoint factors were
significantly different in the m5C scorehigh group, suggesting
that the high m5C score cluster may indicate an immune-
suppressive microenvironment.

Influence of m5C Modification Patterns on
Chemotherapy and Immunotherapy
Response
Immunotherapies, including anti-immune checkpoints, are
revolutionizing the field of cancer therapy. RCC is resistant to
traditional cytotoxic chemotherapy but can be responsive to
immunotherapy. Therefore, we investigated whether the m5C
modification signature could predict the responses to
chemotherapy and ICTs in the combined ccRCC cohorts (n �
860, TCGA, CPTAC, and FUSCC). Evaluation of the ICC50 of
cisplatin showed that the low m5C score group was significantly
correlated with a higher IC50 value, which indicates that the low
m5C score group may be less sensitive to cisplatin (Figure 9A).
However, no significant differences were observed in predicting
IC50 values of gemcitabine between the m5Cmodification groups

(Figure 9B). The TIDE algorithm was used to predict
intratumoral heterogeneity and responsiveness to
immunotherapy. The findings indicate that a higher m5C score
was significantly correlated with an elevated TIDE score,
suggesting that the high m5C score group may show a reduced
response to immunotherapy, such as PD-1 and PD-L1 blockade
(Figure 9C). The ROC curve showed a relatively stable ability for
predicting the immunotherapy response of m5C score with an
AUC of 0.676 (Figure 9D).

TME Characterization in the m5C
Modification Phenotypes
To further test the stability of m5C score model, we applied the
m5C score signature established in the real-world FUSCC
proteomics cohort and evaluated TME characteristics by IHC
staining analysis of 30 consecutive ccRCC tissue sections. IHC
staining revealed significantly decreased CD8, PD-L1, and
GLUT-1 expression and elevated FoxP3, CXCL13, and FASN
expression and Ki-67 staining in tumors from the FUSCC cohort
(p < .05) in the m5C scorehigh group (Figure 10), suggesting
immune-suppressive characteristics of the TME. Furthermore,
we found a significantly decreased number of infiltrated CD4+

T cells and CD8+FoxP3+ Treg cells and downregulated PD-L1
expression in the immune-cold m5C scorehigh group using opal
multimarker IHC staining (Figure 10). In general, the data from
multiomics bioinformatics to the real world demonstrate that
lower m5C score predicts better responses to immunotherapy for
ccRCC patients.

DISCUSSION

Increasing evidence demonstrates that malignant biological
behaviors of cancer cells are tightly regulated by the TME and
genetic variations (Mehdi and Rabbani, 2021). DNA methylation
plays an essential role in modulating the transcriptional
regulation of genes and subsequent cell functions, including
the infiltration and functional differentiation of immune cells

FIGURE 6 | Generation and validation of the m5C score model. (A) Sanky diagram of the various clusters. (B) Overall survival curve of ccRCC patients from TCGA
cohort stratified by m5C score. (C) Overall survival curve of 233 ccRCC patients from FUSCC cohort stratified by m5C score.
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FIGURE 7 | Relation of m5C modification with clinicopathological features and tumor somatic mutation. (A–F) Associations of m5C score with stage, grade, age,
gender, PBRM1 mutation status, and TMB in TCGA cohort. (G–H) Landscapes of somatic variants of high and low m5C score groups in TCGA cohort. (I–J) Copy
number variants of high and low m5C score groups in TCGA cohort.
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participating in protumor and antitumor immune responses
(Saleh et al., 2020; Mehdi and Rabbani, 2021; Smiline Girija,
2021). Previous studies mainly focus on tumor-infiltrated

lymphocytes or single signatures, and the influence of DNA
m5C epigenetic regulators on the TME was not
comprehensively elucidated. Therefore, the overall

FIGURE 8 | Characteristics of TME and immune cell distribution in m5C-related phenotypes. (A) GSVA results of high and low m5C score groups based on
expression profiles from CPTAC and TCGA cohorts. (B) Estimation of immune cell infiltration in high and low m5C score groups. (C) Expression levels of chemokines,
cytokines, and immune checkpoints between high and low m5C score groups.
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characteristics and implications of m5C modification patterns on
the tumor immune microenvironment in ccRCC warrant
further study.

In the current study, we used transcriptome data of 17 DNA
methylation regulators and identified two distinct m5C
methylation modification patterns that are associated with
remarkable differences in molecular and clinical characteristics
of TME in large-scale ccRCC samples in training, testing, and
validation real-world cohorts. The m5C scorehigh cluster was
characterized by poor prognosis and activation of innate
immunity and metabolism, corresponding to the immune-
desert phenotype. The m5C scorelow cluster was characterized
by the activation of antitumor immunity, corresponding to the
immune-excluded phenotype. IHC analysis revealed that the
immune-excluded phenotype showed the presence of
abundant immune cell infiltrations retained in the parenchyma
in ccRCC samples rather than being located in the stroma
(Gajewski et al., 2013). This is consistent with our previous
findings that, even in occasional cases of nested tertiary

lymphatic structures in the immune-excluded phenotype,
tumor-infiltrating lymphocytes rarely appear in the stromal
component of ccRCC samples (Xu et al., 2021a). Moreover,
the immune-desert phenotype, the m5C scorehigh cluster,
prominently correlates with progressive malignancy, immune
tolerance, and lack of T cell–mediated immune responses
(Kim and Chen, 2016), guiding effectiveness of immune
checkpoint therapy strategies for ccRCC patients.

Research has identified molecular features underlying the
initiation and progression of ccRCC. VHL gene inactivation
and copy number variation are shown to be involved in
promoting the initiation and lethality of ccRCC (D’Avella
et al., 2020). The development of sequencing technologies
enables determination of the comprehensive DNA mutation
landscape and intratumor heterogeneity in the carcinogenesis
process (Wettersten et al., 2015; Young et al., 2018; Clark et al.,
2019). These findings are extremely important contributions to
the categorization and treatment guidance of ccRCC. However,
DNA variation, tumor epigenomics, and TME characterizations

FIGURE 9 | Influence of m5Cmodification patterns on chemotherapy and immunotherapy response. (A–B) IC50 value for cisplatin and gemcitabine in low and high
m5C score groups. (C) TIDE prediction score of low and high m5C score groups. (D) ROC curve for evaluating the ability of m5C score to predict immunotherapy
response.
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of ccRCC remain unclear. Here, we find significantly decreased
mutation frequency of VHL (40% vs. 24%) and BAP1 (13% vs.
4%) and an elevated mutation frequency of PBRM1 (11%. vs 19%)
in the high m5C score cluster compared with the low m5C
modification pattern. Currently, screening for germline
mutations in BAP1 and PBRM1 is recommended as these
genes may serve as promising targets to predict clinical
outcomes and ICT treatment responses (Miao et al., 2018;
Gallan et al., 2021; Jonasch et al., 2021). Therefore, we
speculate that the significantly higher proportion of BAP1
mutation in the m5C scorehigh cluster contributes to the poor
prognosis for ccRCC patients, and the low proportion of PBRM1
mutations in the immune-desert phenotype may reflect reduced
immunotherapy efficiency of ccRCC patients.

DNA methylation has an important impact on tumor
initiation and progression because of its critical role in
transcriptional regulation (Bates, 2020). An overall decrease in
methylated CpG content is typically observed in tumors, and this
leads to genome instability and oncogene activation. CpG
hypermethylation in the promoter region of specific genes is a
hallmark of many tumors (Paz et al., 2003; Bai et al., 2021). DNA
methylations have been identified in genes involved in immune
modulation, inflammation, cell differentiation, and metabolic
and development processes (Serena et al., 2020). Here, we
show that m5C methylation modification patterns may
function to reshape different metabolism processes and the
immune TME landscape, and our results suggest that m5C
modification may mediate the therapeutic efficacy of ICTs.
The m5C score together with integrated signatures, including
tumor mutation load, PD-L1 expression, T cell infiltration, and
immune TME based on multiomics large-scale samples data,
may represent an effective predictive treatment strategy. In

clinical practice, the m5C score can be used to comprehensively
assess the m5C methylation modification patterns as well as
distinct immune cell infiltration of the TME within
individuals, allowing for determination of the genetic
landscape and immunophenotypes and effective clinical
treatment of ccRCC.

CONCLUSION

In summary, this work reveals the general regulation mechanisms
of DNA m5C methylation modification patterns on the tumor
immunemicroenvironment. Them5Cmodification patterns have
marked influences on intratumoral heterogeneity and the
complexity of the individual TME. Comprehensive assessment
of tumor m5C modification patterns enhances our understanding
of TME cell-infiltrating characterizations and helps establish
precision immunotherapy strategies for individual ccRCC
patients.

MAIN FINDINGS

This work reveals the general regulation mechanisms of DNA
m5C methylation modification patterns on the tumor immune
microenvironment. The different m5C modification patterns
have marked influences on intratumoral heterogeneity and
complexity of the individual TME. Comprehensive assessment
of tumor m5C modification patterns may enhance our
understanding of TME cell-infiltrating characterizations and
help establish precision immunotherapy strategies for
individual ccRCC patients.

FIGURE 10 | TME characterization in the m5Cmodification phenotypes. TME characterization assessment between high and lowm5C score groups based on IHC
staining (CD4, CD8, FoxP3, PD-L1, GLUT-1, CXCL13, TGF-β, FASN, Ki-67) and opal multimarkers IHC staining (DAPI, CK, CD4, CD8, FoxP3, PD-L1).
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