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1  | INTRODUC TION

Cholangiocarcinoma (CCA) constitutes a heterogeneous group of 
malignancies arising from the biliary tract, characterized by late di-
agnosis and rapid progression.1,2 According to the anatomic location, 
CCA is categorized into distal CCA (dCCA), perihilar CCA (pCCA) and 

intrahepatic CCA (iCCA), which accounts for 25% of CCA.3,4 iCCA 
is the second most common primary liver cancer after hepatocel-
lular carcinoma, comprising approximately 15% of all primary he-
patic malignancies.1 In general, the age- standardized incidence for 
iCCA worldwide has been steadily increasing over the past few de-
cades.1 iCCA is a highly aggressive malignancy whose 1-  and 5- year 
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Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive malignancy with increasing 
incidence. It has been suggested that DNA methylation drives cancer development. 
However, the molecular mechanisms underlying iCCA progression and the roles of 
DNA methylation still remain elusive. In this study, weighted correlation networks 
were constructed to identify gene modules and hub genes associated with the tumour 
stage. We identified 12 gene modules, two of which were significantly positively or 
negatively related to the tumour stage， respectively. Key hub genes SLC2A1, CDH3 
and EFHD2 showed increased expression across the tumour stage and were corre-
lated with poor survival, whereas decrease of FAM171A1, ONECUT1 and PHYHIPL 
was correlated with better survival. Pathway analysis revealed hedgehog pathway 
was activated in CDH3 up- regulated tumours, and chromosome separation was el-
evated in tumours expressing high EFHD2. JAK- STAT pathway was overrepresented 
in ONECUT1 down- regulated tumours, whereas Rho GTPases- formins signalling was 
activated in PHYHIPL down- regulated tumours. Finally, significant negative associa-
tions between expression of EFHD2, PHYHIPL and promoter DNA methylation were 
detected, and alterations of DNA methylation were correlated with tumour survival. 
In summary, we identified key genes and pathways that may participate in progres-
sion of iCCA and proposed putative roles of DNA methylation in iCCA.
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overall survival rates are approximately 30% and 18%, respectively.4 
Complete surgical resection serves as the best treatment for long- 
term survival for iCCA patients.4 For the patients to whom surgical 
resection is unamenable, the benefit of conventional chemotherapy 
and targeted therapy is limited.5 As a consequence, the mortality 
rates of iCCA are universally increasing.6 Despite recent applica-
tions of high- throughput methods in the study of iCCA, the molecu-
lar pathogenesis and progression of the tumour still remain elusive.7 
Therefore, it is urgent to advance our understanding of the molecu-
lar mechanisms driving progression of iCCA to improve patient wel-
fare and outcome.

Weighted correlated network analysis, also known as weighted 
gene co- expression analysis (WGCNA), functions as a biological 
meaningful data reduction approach.8 By relating modules to clinical 
traits, one can discover important gene modules with respect to clin-
ical values. Intramodular genes with highest connectivity are consid-
ered critical hub genes, as they play central roles within the module. 
This method provides great opportunities to reveal important genes 
which drive the development of cancers.

DNA methylation is an epigenetic mechanism related to gene 
expression. DNA methylation of CpG islands (CGIs), which are 
DNA sequences enriched in CpG dinucleotides located at the pro-
moter region, is associated with stable gene repression.9 In can-
cer, many tumour suppressor genes (TSGs) are silenced by DNA 
methylation.10 CCA displays many aberrant alterations of stereo-
typical cancer DNA methylome. Multi- omics studies found that 
DNA methylation landscape underwent pervasive dysregulation 
with concomitant transcriptome alterations in iCCA.11,12 DNA de-
methylation is compromised by IDH1 and IDH2 mutations at low 
to intermediate frequencies in iCCA, which are rarely detected in 
other subtypes of CCA.2 This leads to epigenome- wide conse-
quences, including increased 5- methylcytosine (5mC) and decreased 
5- hydroxymethylcytosine (5hmC). Frequent genetic mutations of the 
key DNA methylation modulators indicate a significant impact of this 
epigenetic modification on iCCA. Notably, promoter hypermethyla-
tion and transcriptional silencing of TSGs are commonly described in 
CCA. The perturbed pathways include WNT, transforming growth 
factor (TGF)- β, phosphoinositide 3- kinase (PI3K) and NOTCH path-
ways.2,13 More recently, transcriptional silencing of SOX17 by pro-
moter hypermethylation was observed in CCA, resulting in inhibition 
of cholangiocyte differentiation and induction of oncogenes.14 Thus, 
hub genes for the iCCA development may be regulated by promoter 
DNA methylation.

Most transcriptome and DNA methylome analyses were per-
formed on mixed CCA samples, which may not clarify the spe-
cific molecular profiles and underlying mechanisms of iCCA. 
That is because the molecular landscapes, particularly somatic 
mutations, largely differ between iCCA and other subtypes of 
CCA (dCCA and pCCA).15 In the current study, we constructed 
weighted correlated networks to identify key hub genes relevant 
to progression of iCCA. As a result, we identified CDH3, EFHD2 
as tumour- promoting genes, and ONECUT1, PHYHIPL as tumour 
suppressing genes. We indicated their prognostic values in clinical 

practice. In addition, underlying signalling pathways, including 
hedgehog pathway, O- glycan biosynthesis, JAK- STAT pathway 
and Rho GTPases activating formins, were uncovered. Lastly, as-
sociations of key hub genes with promoter DNA hypermethyla-
tion were revealed.

2  | MATERIAL S AND METHODS

2.1 | Data collection

The cholangiocarcinoma microarray data set was obtained from 
Gene Expression Omnibus (GEO) of the National Center for 
Biotechnology Information database (https://www.ncbi.nlm.nih.
gov) with the accession code GSE89749. This data set was produced 
by the Illumina HumanHT- 12 V4.0 expression beadchip platform and 
included 118 cholangiocarcinoma samples and 2 normal samples. 
The corresponding DNA methylation data set GSE89803, which 
used the Illumina HumanMethylation450 BeadChip platform to pro-
file DNA methylation in 138 tumour samples and 4 normal samples 
across approximately 450 000 CpGs genome- wide, and associated 
array annotation data (accessible at https://suppo rt.illum ina.com/) 
were obtained as well. For validation purpose, we also downloaded 
the GSE10 7943 data set, which profiled iCCA gene expression using 
next- generation sequencing technique under the Illumina NextSeq 
500 platform and contained 30 tumour samples and 27 adjacent 
normal liver samples.

2.2 | Data pre- processing

Different workflows were implemented to process two gene expres-
sion data sets. The limma R package16 released from the Bioconductor 
software project (https://bioco nduct or.org/) was used to process 
the raw data from GSE89749 as suggested. Specifically, background 
correction using negative controls, quantile normalization, log2 
transformation and filtering out probes with detection P- values of 
larger than 0.05 was performed consecutively. Probes were aggre-
gated into genes by median for genes with multiple probes to obtain 
the gene- level expression values. As the data set consisted of two 
batches, the combat function of the sva R package was used to cor-
rect for batch effect after processing data from two batches sepa-
rately. Samples other than iCCA were removed, resulting in a sample 
of 83 tumours. For weighted correlation network construction, 43 
samples from tumour stages I and IV were selected. Underexpressed 
genes were filtered out by variance and only the top 1/5 variable 
genes (5502 in total) were kept. Sample hierarchical clustering tree, 
which implemented the average linkage method, was constructed to 
identify outlier and finally 1 sample was found and removed. For the 
GSE10 7943 data set, gene filtering by variance was used to select 
the top 1/5 variable genes as previously mentioned. Subsequently, 
normalization was implemented with variance- stabilizing transfor-
mation, using the DESeq2 R package.17 Finally, outlier detection by 

https://www.ncbi.nlm.nih.gov
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hierarchical clustering and outlier filtering was carried out, resulting 
in an expression matrix containing 11 555 genes and 30 samples.

2.3 | Weighted correlation network construction

Weighted correlation network was constructed with the WGCNA 
R package to identify significant modules and hub genes related to 
iCCA progression as previously described.18 Firstly, the adjacency 
matrix ai,j which measured the connection strength between two 
genes was calculated as follows:

where xi and xj were vectors of gene expression values for genes 
i and j, respectively; β, also called power, was the soft threshold pa-
rameter, and Pearson correlation coefficient was used. The optimal β 
that resulted in approximate scale- free topology as measured by the 
scale- free topology fitting index R2 was selected. In the present study, 
β = 16 was selected since this was the local optimum where the corre-
sponding R2 reached 0.9. To better define gene co- expression modules, 
topological overlap measure (TOM) was calculated on the basis of ad-
jacency matrix as follows:

where a denoted adjacency matrix as previously calculated and k de-
noted connectivity, that is, row sum of adjacencies.19 Subsequently, 
TOM- based dissimilarity measure DistTOMij was obtained as 1- TOMij 
and used for average linkage hierarchical clustering with the cutreeDy-
namic algorithm, where minimal module size was set at 30. Close mod-
ules as measured by correlation of module eigengenes were merged 
with a dissimilarity threshold of 0.3.

2.4 | Identification of clinically significant 
modules and hub genes

Three key statistics were calculated for the identification of im-
portant modules and genes. First, module eigengene (ME) was de-
fined as the first principal component of each module and served 
as an optimal summary of the gene expression profiles within a 
given module. The Pearson correlation coefficients between MEs 
and tumour stage were calculated to identify tumour progression– 
associated modules. Second, a quantitative measure of module 
membership (MM), also known as eigengene- based connectivity 
(kME), was defined as the correlation between the ME of a given 
module and the expression profile of a gene. Finally, gene signifi-
cance (GS) was calculated as the correlation between the gene 
expression and the clinical traits. Presumably, genes with higher 
GS and kME play more important roles in the given module and 
tumour progression. Therefore, genes with the absolute value of 

GS > 0.4 and kME > 0.4 in the modules were referred to as in-
tramodular hub genes.

2.5 | Gene ontology (GO) enrichment analysis

Gene ontology enrichment analysis was carried out in select mod-
ules using the EnrichGO function in the clusterProfiler R package as 
suggested.20 Three GO categories, including biological process (BP), 
cellular component (CC) and molecular function (MF), were involved 
in the analyses. The Benjamini- Hochberg (BH) method was imple-
mented to adjust for multiple comparisons and the resulting adjusted 
P- values of < 0.05 represented statistically significant. For each cat-
egory, the top 8 GO terms were retrieved.

2.6 | Network visualization

The gene co- expression networks of key modules were visualized 
with Cyotoscape 3.7.2. Network topological statistics were obtained 
using the Network Analyzer tool, and genes with the top 80 degree 
were selected for visualization. Hub genes were labelled in red, 
whereas other genes were labelled in module colours.

2.7 | Gene set enrichment analysis (GSEA)

Gene set enrichment analysis was performed to investigate the 
mechanisms mediated by the hub genes in progression of tumour 
using the software GSEA 4.0.3 as suggested. For each hub gene, 82 
valid tumours samples from GSE89749 were assigned to high ex-
pression (top 2/5 samples), low expression (bottom 2/5 samples) 
and median (median 1/5 samples) groups by expression of the speci-
fied gene. The KEGG and REACTOME canonical pathways of cu-
rated gene sets (C2), BP, MF and CC GO gene sets (C5) were used 
for GSEA. Parameters were set as default values. A nominal P- value 
of < 0.05 was considered as statistically significant.

2.8 | Identification of key DNA methylation 
alterations

The HumanMethylation450 BeadChip probes associated with hub 
genes were obtained according to the beadchip annotation. Gene 
expression profiles and beta values of DNA methylation were scaled, 
after which a permutation approach to linear regression was per-
formed to study the relationship between gene expression and DNA 
methylation of the loci associated with the specified genes using the 
lmPerm R package with default parameters. The BH method was em-
ployed to correct for multiple comparisons and an adjusted P- value 
of < 0.05 represented statistically significant. Probes with an absolute 
value of coefficient of > 0.3 and an adjusted P- value of < 0.05 were 
retrieved.

ai,j =
|
|
|
0.5 + 0.5 × cor

(
xi, xj

)|
|
|
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uai,uau,j + ai,j
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+ 1 − ai,j
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2.9 | Survival and other statistical analysis

Survival analysis of GSE89803 and GSE10 7943 data sets was per-
formed using the Kaplan- Meier method, and the statistical significance 
was determined by the log- rank test, all of which were implemented 

with the survival and survminer packages. To characterize the ex-
pression changes of hub genes across the tumour stages (I, II, III and 
IV), the first principal component (PC1) of the identified hub genes 
was calculated and scaled. Subsequently, the differences among four 
stages were tested using the approximative k- sample Fisher- Pitman 

F I G U R E  1   Weighted correlation 
network analysis identified 
twelve modules in intrahepatic 
cholangiocarcinoma. A, Sample cluster 
tree of intrahepatic cholangiocarcinoma 
samples. The colour bands underneath 
the tree represented whether the samples 
are outliers (in red), sex, tumour stage and 
vital state of the patients, respectively. 
B- D, Scale- free topology (SFT) criteria for 
choosing the power beta for the weighted 
correlation network. B, The SFT index as 
a function of different powers β. C, The 
mean connectivity as a function of powers 
β. D, Fitting linear model to log10(k) and 
log10(p(k)) when β = 16 was chosen (k 
denotes connectivity, and p(k) denotes 
frequency of k). E, Hierarchical cluster 
tree of the genes for analysis. The bands 
underneath the dendrogram show the 
gene modules detected with the dynamic 
tree cut algorithm and the merging 
procedure afterwards (each colour 
denotes one module). 12 gene modules 
were identified

F I G U R E  2   Identification of modules associated with progression of intrahepatic cholangiocarcinoma. A, Heatmap of the correlation 
between module eigengenes and select clinical traits of intrahepatic cholangiocarcinoma. B, Dendrogram and heatmap illustrating eigengene 
network representing the correlations among module eigengenes (MEs) and tumour stage. Hierarchical clustering was performed to group 
MEs of different modules and tumour stage, as is shown in the first row. The heatmap below shows the correlations among MEs and 
tumour stage. C and D, Gene ontology (GO) enrichment analysis of the turquoise module genes. Enriched biological process (BP) and cellular 
component (CC) terms are shown in (C and D), respectively. E and F, GO enrichment analysis of the green module genes. Enriched BP and CC 
terms are shown in (E and F), respectively. Top 8 GO terms with FDR < 0.05 are shown

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89803
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107943
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permutation test of the coin package. Comparisons of the select hub 
genes across the stages were carried out in a similar approach, that is, 
the gene expression profile was scaled and the k- sample permutation 

test was performed afterwards. A P- value of < 0.05 was considered 
as statistically significant. All the plots in this study except the co- 
expression network plots were generated by R 3.6.2.
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3  | RESULTS

3.1 | Construction of weighted correlation network 
in iCCA by WGCNA

Mircroarray gene expression profiles of normal and malignant bile 
duct samples coded as GSE89803 were obtained from GEO data-
base.21 83 iCCA samples were included for the study, among which 
43 tumours staged I and IV were used for constructing gene co- 
expression network. 5502 genes with the largest variance (top 1/5) 
across samples were kept. One outlying sample was detected with 
sample hierarchical clustering and then removed (Figure 1A). To de-
termine the optimal power β that ensured scale- free topology of the 
resulting network, the relationship between either scale independ-
ence or mean connectivity and power was analysed, respectively, 
and β = 16 was chosen (Figure 1B,C). Scale- free topology of the 
network was supported by the goodness of fitting a linear model 
to log- transformed connectivity k and frequency of k (p(k)), as was 
quantified by the fitting R2 index (Figure 1D). We then constructed 
weighted correlation network by applying average linkage hierarchi-
cal clustering algorithm to dissimilarity measure of TOM and iden-
tified 12 gene modules after combining closely related modules 
(Figure 1E). The allocation of genes to each module is described in 
Table S1.

3.2 | Relating module eigengenes to tumour stage 
identified iCCA progression- associated modules

To identify clinically significant gene modules, especially those 
related to the tumour stage of iCCA, we calculated ME of each 
module as the first principal component by principal component 
analysis (PCA), and correlated MEs to select clinical traits. The 
relationships between modules and clinical traits were illustrated 
by the heatmap, with correlation coefficients and corresponding 
P- values shown (Figure 2A). We identified three modules that were 
significantly related to the tumour stage, including the green, tur-
quoise and red modules. Among them, the green and red modules 
were negatively correlated with tumour stage, and the turquoise 
module was positively correlated with tumour stage and vital state, 
suggesting the underlying pathways of these modules can inhibit 
or promote tumour development. Dendrogram of MEs and corre-
lation heatmap were plotted to describe the module relationship 

(Figure 2B). The turquoise and green modules were chosen for fur-
ther investigation.

To understand the biological functions involved in turquoise 
and green modules, we examined enriched GO categories of them 
(Figure 2C- F). The genes of turquoise module were mainly en-
riched in glycosylation- related processes, epidermis development 
(Figure 2C), plasma membrane and cell- cell junction (Figure 2D), 
whereas the genes of green module were mainly enriched in chro-
mosome assembly– related processes, protein- DNA interaction, in-
nate immune response (Figure 2E), nucleosome and protein- DNA 
complex (Figure 2F).

3.3 | SLC2A1, CDH3 and EFHD2 of turquoise module 
were positively related to progression of iCCA

Focusing the analysis on gene modules and their highly connected 
intramodular hub genes serves as a biologically meaningful data re-
duction scheme.8 Additionally, these hub genes represent a small 
proportion of nodes with maximal information18; hence, we focused 
on hub genes for the network analysis. In the study, intramodular 
hub genes were referred to as those with absolute value of GS with 
respect to tumour stage of > 0.4 and kME of > 0.4. Within the tur-
quoise module, the majority of genes were positively correlated with 
the tumour stage, and genes with higher GS had larger module mem-
bership (Figure 3A). Such significant correlations were also detected 
in the blue, brown, green- yellow, magenta, purple, red, salmon, tan 
and yellow modules, but the magnitude of correlation was much 
smaller (Figure. S1). 45 hub genes were identified in the turquoise 
module (Table S2). Expression of the hub genes, which was repre-
sented as PC1, increased across the tumour stage (Figure 3B). We 
chose the top 80 genes of intramodular connectivity as measured 
in degree for visualization of the turquoise module, with hub genes 
highlighted in red (Figure 3C).

Among the hub genes, SLC2A1, CDH3 and EFHD2 displayed in-
creased expression across the tumour stage (Figure 3D,G,J). Survival 
analysis by the Kaplan- Meier method indicated that overexpression 
of these genes was related to smaller survival rates (Figure 3E,H,K), 
which were further confirmed by the GSE10 7943 iCCA data set 
(Figure 3F,I,L). Thus, these results demonstrate that the turquoise 
module may impact upon iCCA development, and SLC2A1, CDH3 
and EFHD2 are iCCA prognosis relevant and may act as iCCA pro-
moting genes.

F I G U R E  3   Intramodular analysis of the turquoise module. A, Scatter plot illustrating the relationship between gene significance (GS) of 
tumour stage and eigengene- based connectivity (kME) of each gene in the turquoise module. Genes with absolute value of GS > 0.4 and 
kME > 0.4 were chose as hub genes. B, Bar plot shows the scaled first principal component (PC1) of hub genes in the turquoise module 
increased across tumour stage. C, Network of the turquoise module. Top 80 genes with largest connectivity as measured by degree are 
shown. Hub genes are labelled in red, and other genes are labelled in turquoise. D- L, Clinical association of SLC2A1, CDH3 and EFHD2. D and 
G, (J) Relative expression of SLC2A1 (D), CDH3 (G) and EFHD2 (J) across tumour stage. E and H, (K) Kaplan- Meier plots of GSE89749 show 
overall survival rates for the high and low expression groups of SLC2A1 (E), CDH3 (H) and EFHD2 (K), respectively. (F,I and L) Kaplan- Meier 
plots of GSE10 7943 show overall survival rates for the high and low expression groups of SLC2A1 (F), CDH3 (I) and EFHD2 (L), respectively. 
P values in (B,D,G and J) were calculated by the k- sample permutation test. P values shown in the Kaplan- Meier plots were calculated by the 
log- rank test

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89803
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3.4 | FAM171A1, ONECUT1 and PHYHIPL of green 
module were negatively related to progression of iC

Analysis of module- trait relationships recognized the green module 
as an iCCA progression negatively correlated module. By plotting a 
scatterplot of GS for tumour stage against module membership, we 
found most genes of the green module were negatively related to 
the tumour stage and genes with larger absolute value of GS shared 
more module membership (Figure 4A). 52 genes were identified as 
hub genes in this module (Table S2). In contrast to the turquoise mod-
ule, overall expression of the green module hub genes decreased 
across the tumour stage (Figure 4B). Top 80 genes of intramodular 
connectivity were visualized as a network with hub genes labelled in 
red (Figure 4C).

Consistent with the trend of overall expression of hub genes, ex-
pression of FAM171A1, ONECUT1 and PHYHIPL decreased across the 
tumour stage (Figure 4D,G,J). The Kaplan- Meier plots showed that 
patients with down- regulation of these genes had smaller chances of 
survival (Figure 4E,H,K), which was further evidenced by the addi-
tional GSE10 7943 data set (Figure 4F,I,L). These observations imply 
that FAM171A1, ONECUT1 and PHYHIPL are conversely related to 
iCCA progression and may have tumour suppressing effect.

3.5 | Identification of key biological processes and 
pathways of hub genes underlying iCCA progression

To investigate potential mechanism of the hub genes, we performed 
GSEA to examine enriched biological processes and signalling path-
ways for CDH3 and EFHD2 of the turquoise module. We found that 
hedgehog signalling pathway and collagen biosynthesis and modify-
ing enzymes were overrepresented in CDH3 high expression sam-
ples (Figure 5A,B). Indeed, hedgehog pathway was suggested to be 
participated in cancer development and invasiveness.22 For EFHD2, 
chromosome separation and O- glycan biosynthesis were found to 
be enriched in EFHD2 high expression group (Figure 5C,D). It is im-
plicated that O- glycan biosynthesis plays a role in cancer develop-
ment and invasion.23 Taken together, these findings indicate that 
CDH3 and EFHD2 can activate these pathways to promote tumour 
progression.

We applied similar strategies to ONECUT1 and PHYHIPL of 
the green module. Blood vessel endothelial cell migration and 
JAK- STAT signalling pathway were overrepresented in ONECUT1 

down- regulated samples (Figure 6A,B), whereas cell cycle and 
Rho GTPases activating formins were enriched in PHYHIPL down- 
regulated samples (Figure 6C,D). Given that activation of these path-
ways were involved in tumour development,24- 26 these observations 
indicate that down- regulation of ONECUT1 and PHYHIPL can induce 
activation of these key pathways to promote iCCA progression. 
Detailed statistics of GSEA can be found in Table S3.

3.6 | DNA methylation was involved in the 
regulation of key hub genes

We speculated dysregulation of the hub genes may be associated 
with aberrant DNA methylation in promoter regions. Thus, we exam-
ined the relationships between DNA methylation and mRNA expres-
sion and found that hypermethylation of promoter loci cg15026696 
and cg06972969 were associated with decreased expression of 
EFHD2 (Figure 5E) and PHYHIPL (Figure 6E), respectively. To further 
investigate the clinical significance of these loci, we conducted sur-
vival analysis of the DNA methylation loci and found that the hy-
pomethylation of cg15026696 (Figure 5F) showed significant lower 
survival rates, whereas hypermethylation of cg06972969 (Figure 6F) 
was correlated with significant lower survival rates.

4  | DISCUSSION

Intrahepatic cholangiocarcinoma has become a global burden to 
public health because of its increasing incidence and poor progno-
sis.1,4 Currently, there is little treatment option with proven benefit 
for the tumour at advanced stage.5 Thus, it is urgently needed to 
explore the molecular mechanisms of iCCA progression and iden-
tify targets for therapeutics. In the present study, we systematically 
investigated gene co- expression pattern across different stages 
of iCCA using WGCNA and detected 12 gene modules, among 
which two modules (the turquoise and green modules) were posi-
tively or negatively related to tumour development, respectively. 
Intramodular analysis identified CDH3, EFHD2 (turquoise), ONECUT1 
and PHYHIPL (green) as key module hub genes. Additionally, signal-
ling pathways and biological processes including hedgehog pathway, 
O- glycan biosynthesis, JAK- STAT pathway and Rho GTPases activat-
ing formins were revealed to be involved in iCCA development me-
diated by the hub genes. DNA methylation of certain promoter loci 

F I G U R E  4   Intramodular analysis of the green module. A, Scatter plot illustrating the relationship between gene significance (GS) of 
tumour stage and eigengene- based connectivity (kME) of each gene in the green module. Genes with absolute value of GS > 0.4 and 
kME > 0.4 were chose as hub genes. B, Bar plot shows the scaled first principal component (PC1) of hub genes in the green module 
increased across tumour stage. C, Network of the green module. Top 80 genes with largest connectivity as measured by degree are shown. 
Hub genes are labelled in red, and other genes are labelled in green. D- L, Clinical association of FAM171A1, ONECUT1 and PHYHIPL. (D,G and 
J) Relative expression of FAM171A1 (D), ONECUT1 (G) and PHYHIPL (J) across tumour stage. (E,H and K) Kaplan- Meier plots of GSE89749 
show overall survival rates for the high and low expression groups of FAM171A1 (E), ONECUT1 (H) and PHYHIPL (K), respectively. (F,I and 
L) Kaplan- Meier plots of GSE10 7943 show overall survival rates for the high and low expression groups of FAM171A1 (F), ONECUT1 (I) and 
PHYHIPL (L), respectively. P values in (B,D and G) and (J) were calculated by the k- sample permutation test. P values shown in the Kaplan- 
Meier plots were calculated by the log- rank test
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was significantly correlated with expression level of the hub genes 
and had prognostic value for survival of patients, indicative of the 
potential roles of epigenetic impact on iCCA progression.

The turquoise module, enriched in protein glycosylation and epi-
dermis development, was linked to advanced stage of iCCA. Overall 
expression of the hub genes was increased across tumour stages, in-
dicating that the hub genes were related to the tumour progression. 
Among the hub genes, SLC2A1, CDH3 and EFHD2 increased across 
tumour stages and were associated with poorer survival probability, 
suggesting their critical roles in iCCA. In line with our findings, higher 
expression of SLC2A1, which is a protein coding gene for glucose 
transporter protein type 1 (GLUT1), is associated with aggressive be-
haviour of iCCA and poor prognosis.27 Furthermore, up- regulation 
of GLUT1 leads to growth of CCA and cell migration.28 Cadherin 3, 
also known as P- Cadherin and encoded by CDH3, functions as a cell- 
cell adhesion protein. Aberrant expression of Cadherin 3 has been 
described in many carcinoma and sarcoma, including CCA.29 Its role 
in cancer was further supported by the study showing Cadherin 3 in-
creased the mobility of cancer cells.30 EFHD2, whose function in ma-
lignancies remained unexplored, was reported to stimulate tumour 
invasion and metastasis.31 These data indicate that these hub genes 
may participate in invasion and development of iCCA and highlight 
putative novel role of EFHD2 in iCCA, but functional experiment 
was needed to further elucidate their biological significance.

In contrast, the green module was inversely correlated with iCCA 
stage. It was enriched in chromatin and nucleosome organization. 
Dysfunction of the hub genes of the module may stimulate iCCA 
invasion, as was indicated by the finding that overall expression of 
the hub genes decreased across the tumour stage. Among them, 
FAM171A1, ONCUT1 and PHYHIPL were identified as key hub genes. 
FAM171A1, also known as astroprincin (APTN), was reported to 
overexpress in brain astrocytes and involve in regulation of cyto-
skeletal dynamics, hence the cell shape and growth of cancer cells.32 
Intriguingly, expression of FAM171A1 increased in triple- negative 
breast tumour (TNBC) but decreased in non- TNBC compared to 
normal tissue,33 whereas its role and significance in iCCA or CCA 
remains unclear. ONCUT1 is a transcription factor that is enriched in 
the liver and stimulates liver- expressed genes. Previous study sug-
gested that ONCUT1 was down- regulated in HCC and acted as tu-
mour suppressing gene in cell line experiment.34 Likewise, ONCUT1 
expression was lost in pancreatic cancer cells, and its up- regulation 
resulted in a reduction of invasiveness.35 Considering the close re-
lationship of origins of these tumours, ONCUT1 may be involved 
in decrease of iCCA invasiveness. Biological function of PHYHIPL 

remains to be elucidated, probably related to central nervous sys-
tem development. In the present study, down- regulation of these 
hub genes was observed across the tumour stage of iCCA, which 
was accompanied by poor survival probability. Our study identified 
novel iCCA- associated genes FAM171A1, ONCUT1 and PHYHIPL and 
implied their tumour suppressing roles and prognosis values.

Further analysis revealed novel biological processes and signal-
ling pathways mediated by CDH3 and EFHD2 of the turquoise mod-
ule. Hedgehog signalling pathway governs complex developmental 
processes including cell proliferation. Aberrant activation of hedge-
hog pathway drives tumour initiation and maintenance.36 Increasing 
evidence implicated dysfunction of hedgehog signalling in initiation 
and progression of various cancers, including breast, pancreatic and 
hepatocellular cancers. In particular, two inhibitors of hedgehog 
pathway have been approved to treat basal cell carcinoma and me-
dulloblastoma.22 Collagen fibre organization is implicated in cancer 
metastasis. Prior study suggested CDH3 promoted the activation 
of β- Pix/CDC42 axis through collagen fibre orientation to facilitate 
directional collective cell migration, which was crucial for cancer 
metastasis.37 Based on the GSEA results, we postulate that CDH3 
promotes iCCA invasion through activation of hedgehog signalling 
pathway or modulating collagen fibre organization. Our GSEA find-
ings related chromosome separation and O- glycan biosynthesis to 
EFHD2. Chromosomal instability is a hallmark of tumour that results 
from chromosome separation errors during mitosis, and it is cor-
related with poor prognosis, metastasis and therapeutic resistance.38 
More importantly, errors in chromosome separation spills DNA into 
the cytosol, leading to activation of the cGAS- STING cytosolic DNA- 
sensing pathway and therefore promoting tumour invasion and 
metastasis.39 O- glycosylation is a covalent post- translational modi-
fication of protein. The tumour- related O- glycan Tn antigen is highly 
expressed in many tumours, including breast, lung, colon, bladder 
and stomach tumours, and its presence is related to metastasis and 
poor progonosis.40 It was reported that high levels of O- glycan Tn 
and sTn antigen promoted growth and metastasis of breast tumour 
in vivo.41 In addition, T antigen regulated adhesion of tumour cells to 
the endothelium by galectin- 3, driving metastasis.40 We postulate 
that EFHD2 acts as tumour- promoting gene probably through induc-
ing chromosome separation errors or O- glycan modification of key 
adhesion proteins and proteases that are associated with metastasis. 
Collectively, we indicate hedgehog signalling pathway and collagen 
fibre organization are critical pathways for CDH3, whereas aberrant 
chromosome separation and O- glycan biosynthesis serve as mecha-
nisms for EFHD2, regarding driving iCCA progression.

F I G U R E  5   Molecular mechanism associated with CDH3 and EFHD2 of turquoise module underlying progression of intrahepatic 
cholangiocarcinoma. (A and B) Gene set enrichment analysis (GSEA) revealed biological processes and pathways associated with CDH3 
underlying progression of intrahepatic cholangiocarcinoma (iCCA). iCCA samples with high (top 2/5) or low (bottom 2/5) expression of the 
hub gene were assigned to two groups (high or low expression groups) and used for GSEA. Enrichment score (ES) on the y- axis measures the 
degree to which a given gene set is overrepresented in either of the two groups. Gene sets with a nominal P- value of < 0.05 were chose. (C 
and D) Gene set enrichment analysis (GSEA) revealed biological processes and pathways associated with EFHD2 underlying progression of 
iCCA. E, Negative correlation between DNA methylation probe cg15026696 and expression of EFHD2. F, Kaplan- Meier plots of GSE89749 
showed overall survival rates for the high and low DNA methylation groups of cg15026696. For the correlation of gene expression and DNA 
methylation, the BH method was performed to adjust for multiple comparisons

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89749


6384  |     PENG Et al.



     |  6385PENG Et al.

Moreover, our findings revealed key pathways mediated by sup-
pression of ONECUT1 and PHYHIPL for the tumour progression. 
Blood vessel endothelial cell migration is involved in angiogenesis, 
which is required for tumour growth.42 Activation of JAK- STAT sig-
nalling exerts effect on tumour survival, proliferation and invasion 
and has been recognized as drug targets in many cancers, including 
blood, breast, prostate and brain cancers. For instance, STAT3 acti-
vation acts as a crucial regulator of gliomagenesis by inducing angio-
genesis, immunosuppression and tumour invasion.25 We speculate 
that suppression of ONECUT1 promotes growth and invasion of 
iCCA by regulating angiogenesis or JAK- STAT pathway, but the de-
tailed relationship remains to be studied. Cell cycle of human cells is 
governed by essential pathways including cyclin D- CDK4/6- Rb path-
way. Its crucial role in cancer is highlighted by the findings that nearly 
all tumours possess alterations in a component and that changes in 
upstream tumour suppressors and oncoproteins may function by 
influencing cell cycle.43 Invasive cell migration is a critical step for 
tumour metastasis and involves Rho GTPase– regulated reorganiza-
tion of actin cytoskeleton. Rho GTPase functions via downstream 
effectors, one of which is the formins family. Suppression of formin- 
like 2 (FMNL2) inhibits RhoC- dependent invasive cell migration.26 
Our data indicate inhibition of PHYHIPL suppresses iCCA invasion 
through influencing cell cycle activity or Rho GTPase- formins path-
way. This is the first report that establishes the relationships of these 
pathways with ONECUT1 and PHYHIPL in iCCA.

Our study further evaluated the associations of DNA methylation 
with expression of the select hub genes. We detected significantly 
negative correlation between gene expression and DNA methylation 
in promoter regions of EFHD2 and PHYHIPL in iCCA. Remarkably, 
these DNA methylation loci predicted survival of the patients, 
suggesting the impact of DNA methylation on iCCA development. 
Substantial evidence indicates a critical role of DNA methylation 
dysregulation in iCCA. For instance, IDH mutations at hotspots ac-
quire gain- of- function activity and produce 2- hydroxyglutarate (2- 
HG) in CCA, which impairs DNA demethylation mediated by TET2, 
and thus result in evidently aberrant 5mC pattern and concomitant 
down- regulated chromatin modifiers.13,44 Another study revealed 
that CCA patients with high rate of IDH mutation and CpG shore 
hypermethylation had better prognosis.21 Furthermore, transcrip-
tional repression of classic TSGs putatively mediated by promoter 
hypermethylation was reported. Such examples include genes 
involved in WNT, TGF- β and PI3K pathways.2 Relevantly, this in-
hibitory effect was revealed in the context of microRNA in iCCA, 
as was shown by a recent study reporting that aberrant promoter 

hypermethylation- induced suppression of miR- 212- 3p led to overex-
pression of MUC13 in iCCA and metastasis via the EGFR/PI3K/AKT 
pathway.45 Thus, our findings provide meaningful clues for novel ex-
amples of such dependency in iCCA progression. Notably, although 
early studies provided substantial evidence correlating high levels 
of promoter methylation with transcriptional silencing, more and 
more examples identify contexts where this observation does not 
always remain true.46 For instance, high levels of promoter methyla-
tion correlated with active expression of EBF3, MGMT, HOXD12 and 
GATA4 in melanoma, indicating other factors may affect the relations 
of DNA methylation with transcriptional activity.47 Thus, biological 
assays should be performed to investigate if DNA methylation has 
regulatory effect on transcriptional activities in iCCA.

Apart from the limitations discussed, this study did not apply 
multivariate survival model to account for known effects, mainly 
due to insufficient samples in the data set. With the application of 
whole genome DNA methylation profiling techniques, it will become 
feasible in the future. In summary, our report characterized molecu-
lar signature related to iCCA progression identified novel genes that 
may participate in promoting or inhibiting invasion and development 
of the tumour. Putative biological processes, signalling pathways of 
these genes and DNA methylation relations were revealed. These 
findings provide essential insights in understanding the biology of 
iCCA development.
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