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Sprinting performance is critical for a variety of sports and competitive activities. Prior

research has demonstrated correlations between the limits of initial acceleration and

maximum velocity for athletes of different sprinting abilities. Our perspective is that hip

torque is a mechanistic link between these performance limits. A theoretical framework

is presented here that provides estimates of sprint acceleration capability based on thigh

angular acceleration and hip torque during the swing phase while running at maximum

velocity. Performance limits were calculated using basic anthropometric values (body

mass and leg length) and maximum velocity kinematic values (contact time, thigh range

of motion, and stride frequency) from previously published sprint data. The proposed

framework provides a mechanistic link between maximum acceleration and maximum

velocity, and also explains why time constant values (τ , ratio of the velocity limit to

acceleration limit) for sprint performance curves are generally close to one-second even

for athletes with vastly different sprinting abilities. This perspective suggests that specific

training protocols targeted to improve thigh angular acceleration and hip torque capability

will benefit both acceleration and maximum velocity phases of a sprint.

Keywords: bipedal gait, sprinting, force, acceleration, running biomechanics

INTRODUCTION

Linear speed is a key variable determining athletic performance. Sprinting ability may differentiate
athletes of various sports, positions, and playing levels (Cometti et al., 2001; Sierer et al., 2008;
Vescovi, 2012; Cross et al., 2015; Wild et al., 2018; Watkins et al., 2021). The importance of linear
speed has generated numerous studies examining the different phases of a sprint, as indicated by
recent advances in force-velocity profiling. While prior research has demonstrated correlations
between initial acceleration and maximum velocity performance (Vescovi and Mcguigan, 2008;
Mendez-Villanueva et al., 2011; Buchheit et al., 2014; Clark et al., 2019), formal mechanistic
connections linking the acceleration and maximum velocity phases have not been fully established.

As shown in Figure 1A, a runner performing a maximum effort sprint from a stationary start
to maximum velocity consistently produces an exponential velocity-time curve (Furusawa et al.,
1927; Di Prampero et al., 2005; Samozino et al., 2016; Cross et al., 2017; Morin et al., 2019). This
curve is defined by the maximum limits of acceleration (a0) and velocity (v0) with an exponential
time constant (τ = v0/a0) (Chelly and Denis, 2001). During the sprint, the average horizontal force

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://www.frontiersin.org/journals/sports-and-active-living#editorial-board
https://doi.org/10.3389/fspor.2022.945688
http://crossmark.crossref.org/dialog/?doi=10.3389/fspor.2022.945688&domain=pdf&date_stamp=2022-07-12
https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kclark@wcupa.edu
https://doi.org/10.3389/fspor.2022.945688
https://www.frontiersin.org/articles/10.3389/fspor.2022.945688/full


Clark and Ryan Hip Torque During Sprinting

FIGURE 1 | (A) Example graph of the exponential velocity vs. time curve during a maximum effort sprint. The slope at t = 0 is defined by the limit a0 and the velocity

curve approaches the limit v0 according to the time constant τ = v0/a0. (B) The corresponding linear curve for acceleration (m/s2) vs. velocity, or equivalently, force

relative to body mass (N/kg) vs. velocity. The negative slope of the linear acceleration vs. velocity curve Sfv can be defined in terms of the time constant (Sfv = -a0/v0
= −1/τ ). (C) Velocity vs. time curves for all four representative athletes listed in Table 1. (D) Acceleration or force vs. velocity curves for all four representative athletes

listed in Table 1.

for each step decreases linearly as running velocity increases
(Samozino et al., 2016; Morin et al., 2019). As shown in
Figure 1B, since maximum horizontal acceleration (m/s2) is
equivalent to the maximum horizontal force relative to body
mass (N/kg), the resultant acceleration-velocity curve can be
defined by the limits a0 and v0 with a negative linear slope (Sfv
= -a0/v0 = −1/τ ). Mean values for τ and Sfv, either directly
reported or calculated from published maximum velocity and

Abbreviations: a0, maximum propulsive acceleration limit (m/s2); BMI, body

mass index (kg/m2); COM, center of mass; F0, maximum propulsive force limit

(N); fstr , stride frequency (one-half the step frequency) (strides/s or Hz); hb, body

height (m); Icom, moment of inertia of the COM (kg•m2); Ileg , moment of inertia

of the extended leg (kg•m2); Lc, ground-contact length (m); Lleg , leg length (m);

mb, body mass (kg); mleg , leg mass (kg); Sfv , slope of acceleration-velocity curve

(s−1); t, time (s); tc, ground-contact time (s); v0, maximum velocity limit (m/s);

αcom, maximum angular acceleration of COM (rad/s2); αleg , maximum angular

acceleration of extended leg (rad/s2); αmax , maximum angular acceleration of thigh

(rad/s2); θt , total thigh range of motion (rad); ρ, radius of gyration from the

proximal end (m); τ , time constant of acceleration-velocity curve (s).

maximum force data, consistently have a magnitude of around
one (τ ≈ 1 s or Sfv ≈−1 s−1) even for athletes from a variety of
sports with vastly different sprinting abilities (Cross et al., 2015;
Rabita et al., 2015; Slawinski et al., 2017a; Jiménez-Reyes et al.,
2018; Haugen et al., 2019; Healy et al., 2019; Morin et al., 2019;
Watkins et al., 2021; Edwards et al., 2022). This indicates that
the acceleration and velocity performance limits are related and
generally proportional.

One commonality between these distinct performance limits
is that the hip requires torque capability formaximumpropulsion
during ground-contact of initial acceleration and also for rapidly
repositioning the legs during the swing phase as maximum
velocity is attained (Holmlund and von Hertzen, 1997; Nagahara
et al., 2017, 2020). During a maximum effort sprint from a
stationary start, horizontal force accelerates the body forward
(Rabita et al., 2015) as the center of mass (COM) rises slightly
(Nagahara et al., 2014). During the initial steps, the COM has
angular acceleration as it rotates about the fixed contact point
on the ground established by the leg, similar to an inverted
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pendulum (Jacobs and van Ingen Schenau, 1992). After the first
few steps, runners quickly establish a thigh angular range of
motion and stride frequency that is nearly constant (Nagahara
et al., 2014, 2017). Runners with faster maximum sprinting speed
generally exhibit larger values ofmaximum thigh range ofmotion
and frequency (Clark et al., 2020). This is indicative of the rapid
thigh reversal occurring at peak flexion and extension (Mann
et al., 1986; Nagahara et al., 2017; Clark et al., 2020; Kakehata
et al., 2021), and can be quantified by the maximum angular
acceleration value (Clark et al., 2021) and corresponding torque.

The purpose of this perspective is to provide a theoretical
framework that considers the torque capability of the hip as a
mechanistic link between maximum acceleration and maximum
velocity performance. The analysis will show that the maximum
horizontal acceleration limit during ground-contact can be
estimated using the maximum angular acceleration of the leg
during the swing phase. The analysis will also demonstrate that
the time constant τ can be expressed in terms of basic kinematic
variables and maintains a mean value of around one-second
over the normal range of gait values. This perspective suggests
that the a0 and v0 performance limit values are fundamentally
proportional and that specific training protocols targeted to
improve hip torque capability would benefit both the acceleration
phase and maximum velocity phase for an athlete.

THEORETICAL FRAMEWORK

Newton’s second law for a rotating system defines the torque as
the product of the moment of inertia (I) and angular acceleration
(α) about the axis of rotation. We apply Newton’s second law
for two specific conditions of the sprint. The first condition is
during the ground-contact phase of the first few steps of initial
acceleration. Using an inverted pendulum model for general
bipedal locomotion, torque at the hip joint results in a rotation
of the line from the fixed contact point on the ground to
the body’s COM (Raibert et al., 1989; McGeer, 1990; Pratt,
2000). Thus, during acceleration, the body’s COM has forward
translation and angular acceleration as it sweeps through an
angle relative to the ground-contact point of the leg (Jacobs and
van Ingen Schenau, 1992). The second condition is during the
swing phase at maximum velocity. Using a sinusoidal model for
thighmotion, the angular acceleration at the hip joint approaches
maximum values as the thigh reaches peak flexion and extension
(Clark et al., 2021). Our perspective is that the torque limit at
the hip joint is equivalent for the first and second conditions
described above:

Icom αcom = Ileg αleg (1)

where Icom is the moment of inertia of the body COM (kg•m2),
αcom is the maximum angular acceleration of the COM (rad/s2),
Ileg is the moment of inertia of the extended leg (kg•m2), and αleg

is the maximum angular acceleration of the leg (rad/s2).
The linear acceleration of the COM when the leg is in contact

with the ground is:

a0 = αcom Lleg =
Ileg αleg

Icom
Lleg (2)

where a0 is the maximum propulsive acceleration limit (m/s2),
αcom is the maximum angular acceleration of the COM derived
from Equation 1, and Lleg is leg length (m).

The moment of inertia of the body as represented by the point
COM is:

Icom = mb L
2
leg (3)

wheremb is body mass (kg).
While running at or near maximum velocity, each thigh

rotates about the hip axis with sinusoidal motion (Mann et al.,
1986; Clark et al., 2020). The angular motion of the thigh
coincides with the angular motion of the leg when extended
during swing phase. Thus, the maximum angular acceleration of
the leg at peak flexion or extension is (Clark et al., 2021):

αleg = αmax = 2 π2 θt f
2
str (4)

where αmax is the maximum angular acceleration of the thigh
(rad/s2), θt is the total thigh range of motion (rad) and fstr is the
stride frequency which is one-half the step frequency (strides/s
or Hz).

The moment of inertia for the extended leg is:

Ileg = mleg ρ2
= 0.161mb (0.560 Lleg)

2
≈ 0.05mb L

2
leg (5)

where mleg is leg mass (kg) and ρ is the radius of gyration from
the proximal end (m). Standard anthropometric data are used for
ρ = 0.560•Lleg andmleg = 0.161•mb (Winter, 2009, Table 4.1 for
the total leg).

The relationships from Equations 3–5 can then be inserted
into Equation 2 for the maximum propulsive acceleration limit:

a0 =
(0.05mb L

2
leg
)(2 π2 θt f

2
str)

(mb L
2
leg
)

Lleg ≈ Lleg θt f
2
str (6)

Thus, a0 can be calculated from leg length andmaximum velocity
kinematic values of thigh range of motion and stride frequency.
The resultant value for a0 can also be equivalently expressed
in units of normalized force (F0/mb, N/kg) using Newton’s
second law.

Velocity can be defined in terms of basic gait variables using
the relationship (Cavagna et al., 1976):

v0 =
Lc

tc
≈

Lleg

tc
(7)

where v0 is the maximum velocity limit (m/s), Lc is the ground-
contact length (m), tc is the ground-contact time (s), and Lc
≈ Lleg .

The time constant (τ ) for the linear acceleration-velocity
curve and the exponential velocity-time curve (Figure 1) can be
expressed as:

τ =

v0

a0
=

v0

Lleg θt f
2
str

=

Lc

tc Lleg θt f
2
str

=

Lc/Lleg

tc θt f
2
str

≈

1

tc θt f
2
str

(8)
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using Equations 6-7. Thus, τ can be calculated from three basic
kinematic gait variables (tc, θt , and fstr) which are measured
during the maximum velocity phase of the sprint.

PERFORMANCE CALCULATIONS USING
THE THEORETICAL FRAMEWORK

In the first section of Table 1, we evaluated Equation 8 across
an array of input values for tc, θt , and fstr based on previously
published data (Nagahara et al., 2014; Mann and Murphy,
2018; Murphy et al., 2021; Clark et al., 2020) to establish the
general range of τ values under normal sprint conditions. Note
that mathematically, stride frequency is a function of contact
and flight time, and given relatively consistent flight times
across a range of top speeds (Weyand et al., 2000), briefer
tc will be associated with faster fstr . The listed values for θt
represent a maximum thigh range of motion ranging from
1.5 to 1.9 radians (approximately 85 to 110 degrees). Across
the array of input values, the resultant τ values maintained a
relatively narrow range from 0.94 to 1.29 s with a mean value of
1.11 s.

In the second section of Table 1, we calculated outputs for
v0, a0, and τ using inputs hb, mb, Lleg , tc, θt , and fstr for four

athletes with representative data. Anthropometric data for height
(hb) and body mass (mb) were based on a body mass index (BMI
= mb/h

2
b
) of ∼23 kg/m2 and leg length was calculated as Lleg

= 0.53•hb (Winter, 2009, Figure 4.1). Kinematic values for tc,
θt , and fstr were based on previously published data (Nagahara
et al., 2014; Mann and Murphy, 2018; Murphy et al., 2021;
Clark et al., 2020) for fast, intermediate, and slow athletes over
a range of body dimensions. The resultant τ values maintained a
range from 1.15 to 1.25 s across the range of input values. The
different sprint performances from the representative athletes
are illustrated by the velocity-time curves in Figure 1C and the
acceleration-velocity curves in Figure 1D.

The resulting output values in Table 1 are in close agreement
with previously published data. Values for a0 or normalized F0
(N/kg) are similar to those from several recent experimental
investigations (Cross et al., 2015; Rabita et al., 2015; Slawinski
et al., 2017a; Haugen et al., 2019; Morin et al., 2019, 2021;
Watkins et al., 2021). Values for τ are slightly greater than one-
second, agreeing with experimentally determined values (Healy
et al., 2019; Morin et al., 2019), or values calculated from
previously published maximum velocity and maximum force
data (Cross et al., 2015; Rabita et al., 2015; Slawinski et al.,
2017a; Haugen et al., 2019; Watkins et al., 2021; Edwards et al.,
2022).

TABLE 1 | Performance calculations using the theoretical framework.

Evaluation of Equation 8 across a range of fundamental gait parameters

Input variables Output variables

tc(s) θt(rad) fstr (Hz) τ (s)

0.090 1.50 2.40 1.29

0.090 1.70 2.40 1.13

0.090 1.90 2.40 1.02

0.110 1.50 2.20 1.25

0.110 1.70 2.20 1.10

0.110 1.90 2.20 0.99

0.140 1.50 2.00 1.19

0.140 1.70 2.00 1.05

0.140 1.90 2.00 0.94

Calculated performance outputs for four athletes using representative data

Input variables Output variables

Athlete hb(m) mb(kg) Lleg(m) tc(s) θt(rad) fstr (Hz) v0 (m/s) a0 (m/s2) τ (s)

A 1.80 75.0 0.95 0.080 1.8 2.4 11.9 9.9 1.21

B 1.65 63.0 0.87 0.083 1.8 2.4 10.5 9.1 1.16

C 1.80 75.0 0.95 0.106 1.7 2.2 9.0 7.8 1.15

D 1.65 63.0 0.87 0.125 1.6 2.0 7.0 5.6 1.25

Variables: hb = body height, mb = body mass, Lleg = leg length, tc = ground-contact time at maximum velocity, θt = total thigh range of motion at maximum velocity, fstr = stride

frequency at maximum velocity, v0 = maximum velocity limit, a0 = maximum sprint acceleration limit equivalent to F0 normalized to body mass (N/kg), and τ = time constant. Values

for input variables tc, θt, and fstr are based on Nagahara et al. (2014), Mann and Murphy (2018), Clark et al. (2020) and Murphy et al. (2021) to correspond with maximum velocities

ranging from approximately 7.0 to 12.0 m/s.

Output variables are calculated based on input variables using Equations 6–8.
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DISCUSSION

Theoretical Framework Considerations
The linear force-velocity relationship during maximum effort
sprinting (Figure 1B) has been studied and validated for almost
a century (Furusawa et al., 1927). The initial push-off step
in a sprint start utilizes both legs before transitioning to one
leg to generate the propulsive force. Subsequent steps include
both propulsive and braking forces as the runner moves faster
while transitioning into a more upright position. The average
horizontal force during each step decreases linearly until it
approaches zero near maximum velocity. Mathematically, the
limit F0 is the projected y-axis intercept where the initial velocity
is zero (Figure 1B). Our framework estimates this limit and
establishes F0 as the maximum propulsive force that can be
applied by each leg. The corresponding limit of acceleration (a0
= F0/mb) can then be determined.

In a typical field setting, the velocity-time curve is measured
using a timing system, radar or laser gun, robotic tether system,
or similar technology. The limit values for a0, v0, and τ =

v0/a0 are then determined using least-squares regression of the
measured velocity curve (Figure 1A). Several external factors
may cause measured values for a0 to differ from our estimated
limit values. Lower measured values of a0 may occur if there
is insufficient friction between the ground and foot, if the
athlete starts from a standing two-point stance (Slawinski et al.,
2017b), or when testing developmental athletes (Cahill et al.,
2020; Feser et al., 2021) who may have less experience in
starting technique. Additionally, athletes with higher estimated
a0 capability may control the initial horizontal acceleration to
optimize the projection angle of the COM (Kugler and Janshen,
2010), also resulting in lower measured values of a0. Another
important factor is the initiation of the timing system. If the
timing mechanism is triggered from a timing gate or when the
athlete’s base hand lifts off the ground, higher measured values
of a0 may be obtained if force production and initial forward
acceleration of the COM begin prior to the timing trigger (Clark
et al., 2019).

In addition to the above considerations, there were several
simplifications used in this framework that enabled fundamental
gait parameters to evaluate the performance limits: (1) during
the ground-contact phase in initial acceleration, the body
was considered as a point COM sweeping through an angle
established by the line from the fixed contact point on the
ground to the body’s COM; (2) during the swing phase at
maximum velocity, angular acceleration was derived from the
sinusoidal motion of each thigh rotating about the hip axis; (3)
leg length was considered equivalent to Lleg during the peak
propulsive period in the ground-contact phase and during the
regions of maximum angular acceleration in the swing phase;
(4) the distance traveled by the COM during ground-contact was
considered equivalent to Lleg ; and (5) air friction was considered
negligible. These approximations allowed a simple analytical
framework, requiring only inputs of anthropometric values (mb,
Lleg) and maximum velocity kinematic values (tc, θt , fstr), to
establish hip torque as a mechanistic link between maximum
acceleration and maximum velocity performance.

Practical Applications
Prior investigations have established a correlation between
performance in the acceleration and maximum velocity phases,
although the strength of this relationship may depend on
the demographics of the sample population (Vescovi and
Mcguigan, 2008; Mendez-Villanueva et al., 2011; Buchheit et al.,
2014; Clark et al., 2019). While correlational analyses may
be sample-dependent, our framework provides a mechanistic
link between acceleration and maximum velocity phases.
Table 1 demonstrates the relatively narrow range of τ values
calculated from normal maximum velocity kinematic values
based on previously published data. Furthermore, despite the
different sprint performances expected from the representative
athletes as illustrated by the velocity-time curves in Figure 1C,
the acceleration-velocity curves of the representative data
in Figure 1D demonstrate the general proportionality of a0
and v0 with a range of τ values slightly greater than one-
second (Table 1). Therefore, this framework presents a macro-
level explanation for why group mean τ and Sfv values are

usually around one (τ ≈ 1 s or Sfv ≈−1 s−1) agreeing with
experimentally determined values (Healy et al., 2019;Morin et al.,
2019), or values calculated from previously published maximum
velocity and maximum force data (Cross et al., 2015; Rabita et al.,
2015; Slawinski et al., 2017a; Haugen et al., 2019; Watkins et al.,
2021; Edwards et al., 2022).

However, inter-individual differences in force-velocity profiles
certainly exist within athletic populations, and are important
for specific training prescription (Morin and Samozino, 2016).

Our framework could potentially supplement existing force-
velocity profiling methods by determining whether athletes
are performing up to their F0 or a0 capabilities. For an
individual athlete, input parameters can be determined from

anthropometric dimensions and kinematic measurements at
maximum velocity, generating outputs of a0 to estimate limits

of acceleration performance. If the athlete’s measured a0 does
not align with the estimated output value, it may indicate that
acceleration performance can be improved through additional

practice and increased motor skill competency. This may be
especially true for developmental athletes who have the capacity

to produce high values of αmax during maximum velocity

sprinting, but may not have the technical proficiency to translate
this hip torque into high levels of F0 or a0 values during the
sprint start.

Finally, our analysis suggests that both the acceleration and
maximum velocity phases of a sprint will benefit from specific
training protocols targeted to improve hip torque capability.
Classic research has indicated that extensor forces get transmitted
from the hip to the ground in a proximal-to-distal sequence
(Jacobs and van Ingen Schenau, 1992; Jacobs et al., 1996). More
recent investigations have demonstrated that the hip extensor
(hamstring) muscles play an important role in horizontal force
production during sprint accelerations (Morin et al., 2015).
Additionally, both the hip extensors and hip flexors are important
for the rapid thigh reversal that occurs during the swing phase
in maximum velocity sprinting (Dorn et al., 2012; Clark et al.,
2021; Kakehata et al., 2021). Therefore, interventions aimed at
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enhancing an athlete’s αmax via increased hip torque capability
(Deane et al., 2005; Macadam et al., 2020) may be beneficial, and
warrant further investigation.

SUMMARY

An athlete performing a maximum effort sprint from a stationary
start approaches maximum velocity with an exponential velocity
vs. time curve. This curve is defined by the limits of acceleration
and velocity with an exponential time constant expressed as the
ratio of these limits. With nearly a century of observations, the
time constant is consistently around one-second even for athletes
from a variety of sports with vastly different sprinting abilities.
This indicates that the acceleration and velocity limits are related
and generally proportional. No theory has formally defined an
underlying mechanism to account for this proportionality. Our
perspective is that the torque capability of the hip is a mechanistic
link between the acceleration and velocity limits. Drawing on
previously published models and performance data, a theoretical
framework was presented here that derived a simple equation

for the time constant based on fundamental gait variables. We
demonstrated that the time constant maintains a mean value
of around one-second over the physical range of sprinting gait
values. Therefore, our perspective suggests that the limit values
are fundamentally proportional and that training protocols
targeted to improve hip torque capability would benefit both
acceleration and velocity performance for an athlete.
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