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Abstract: A series of amino acid ester derivatives containing 5-fluorouracil were 
synthesized using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 
(EDC·HCl) and N-hydroxybenzotriazole (HOBt) as a coupling agent. The structures of the 
products were assigned by NMR, MS, IR etc. The in vitro antitumor activity tests against 
leukaemia HL-60 and liver cancer BEL-7402 indicated that (R)-ethyl 2-(2-(5-fluoro-2,4-
dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-(4-hydroxyphenyl) propanoate showed 
more inhibitory effect against BEL-7402 than 5-FU. 
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1. Introduction 

5-Fluorouracil (5-FU) is an antimetabolite of the pyrimidine analogue type, which is frequently 
used for treating solid tumors, such as colorectal, gastric tract, and liver carcinomas [1-3]. However, 
the clinical applications of 5-FU are greatly limited by its short plasma half-life, poor tumor affinity, 
myelosuppression, and strong intestinal toxicity. Consequently, numerous research efforts have 
focused on the discovery of suitable carrier-linked prodrugs, in which 5-FU is conjugated with a wide 
spectrum of low- or high- molecular-weight carriers including glucose, peptides, and biodegradable 
polymers such as polysaccharides, liposomes, etc [4-10]. In general prodrug systems the drug is bound 
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to the carrier through a spacer that incorporates a predetermined breaking point that allows the bound 
drug to be released at the cellular target site. Therefore, the optimization physicochemical properties of 
a carrier, the modification of the carrier with 5-FU to preserve the targeting properties of the carrier 
and ensure a controlled release of 5-FU inside or outside the tumor cells are the critical aspects of 5-
FU prodrug design [3,11]. 

Peptides play an important role in human metabolism. Some peptide derivatives of 5-FU have been 
reported as an approach to develop chemotherapeutic agents with improved physicochemical and 
biological characteristics [4,12,13], and we also have previously reported some peptide derivatives of 
5-FU [14-16]. In continuation of the research, we now describe our studies on the synthesis and 
assessment of some amino acid ester derivatives containing 5-FU with the aim of finding appropriate 
biodegradable linkages. 

2. Results and Discussion  

2.1. Chemistry 

The synthetic route to the target compounds 2a-o is shown in Scheme 1 and Figure 1. The starting 
material 2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl) acetic acid (or 5-fluorouracil-1-yl 
acetic acid) (1) could be easily prepared by carboxymethylation of 5-fluorouracil according to the 
literature [17]. Treatment of compound 1 with a series of amino acid esters using 1-ethyl-3-(3-
dimethylamino-propyl)carbodiimide hydrochloride (EDC·HCl) and N-hydroxybenzotriazole (HOBt) 
as a coupling agent yielded a series of 2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-aceto 
amino acid ester derivatives 2. HOBt was reported as a racemisation suppressant in peptide coupling 
reactions with carbodiimide coupling reagents [18-20]. 

Scheme 1. Synthesis of 2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-aceto 
amino acid ester derivatives 2. 
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Figure 1. Structural formulae of compounds 2. 

 
 

The purity and structures of compounds 2a-o were established on the basis of their melting points, 
specific rotations and spectral data, which were in full agreement with the proposed molecular 
structures. The 1H-NMR spectra of all compounds showed doublets at 7.93-8.02 ppm, which 
corresponded to the coupling of fluorine and hydrogen  signals in the FC=CH moieties. Compounds 
2e-1 and 2e-2, for example, almost have the same melting point (139-140 ºC), the same spectral data, 
but opposite specfic rotations of [ ] 1.18

Dα -10.4 and [ ] 1.18
Dα +10.4, respectively. In the 1H-NMR their 

CH2SCH3 fragment methylene protons were observed as multiplets at δ 2.50-2.41 ppm, which 
overlapped with the signal of the solvent DMSO-d6. The 13C-NMR of 2c and 2d displayed signals at δ 
39.7 ppm from the methylene carbon from the CH2CH(CH3)2 moiety which overlapped as well with 
that of the solvent DMSO-d6,. The assignment of the above four compounds were further proven by 
13C-1H COSY spectra. 

2.2. In vitro antitumor activity 

All target compounds 2a-o were evaluated for their in vitro antitumor activity against the HL-60 
leukaemia and BEL-7402 liver cancer cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazoliumbromide (MTT) [21] and Sulforhodamine B (SRB) assay methods [22], respectively, with 
5-FU and the prodrug FT-207 being used for comparisons (Tables 1 and 2). 



Molecules 2009, 14                            
 

 

3145

As shown in Table 1, all compounds’ in vitro inhibition rates against HL-60 were significantly 
lower than that of 5-FU, except for the R-type compounds 2h, 2j, 2k-2 and 2m, which exhibited 
equivalent inhibitory effect as 5-FU at 10-4 mol/L concentration, but the activity decreased rapidly 
when the concentration declined. The results indicate that these compounds were less sensitive to HL-
60 at lower concentrations when the N-1 position of 5-FU was occupied. 

Table 1. Inhibitory rates (%) against HL-60. 

Compounds Concentration (mol/L) 
10-4 10-5 10-6 10-7 10-8 

2a 2.0 8.0 9,6 6.9 8.3 
2b 3.7 5.2 6.2 9.7 2.8 
2c  33.1 0.1 9.9 9.8 0 
2d  27.3 0 1.7 0 10.0 

2e-1 22.4 11.2 7.1 4.2 1.2 
2e-2 18.5 15.3 3.4 10.5 0 
2f-1 3.3 10.8 6.6 12.3 0 
2f-2  31.8 9.2 3.7 6.2 0 
2g  36.1 10.0 5.7 5.0 2.5 
2h  55.7 19.6 23.1 2.3 8.6 
2i 2.8 6.7 1.5 8.3 0.6 
2j 55.8 12.8 2.7 5.4 5.9 

2k-1 29.2 0 3.8 8.2 2.4 
2k-2 51.2 15.5 9.8 12.7 8.9 

2l 42.4 7.9 5.2 9.9 5.7 
2m 65.1 0 12.6 13.0 0.3 
2n 11.4 0 0 0 0 
2o 22.4 11.2 7.1 4.2 1.2 

5-FU 57.4 33.5 0 7.0 10.4 
FT-207 0 0 0 0 0 

Table 2. Inhibitory rates (%) against BEL-7402. 

Compounds Concentration (mol/L) 
10-4 10-5 10-6 10-7 10-8 

2a 0 0 0 0 0 
2b 9.0 8.1 0 0 1.8 
2c 50.0 13.2 5.7 5.2 0 
2d 13.2 0 0 0 0 

2e-1 41.2 9.7 8.8 8.2 9.1 
2e-2 38.4 9.1 8.8 0 5.3 
2f-1 17.4 10.5 16.6 14.0 4.6 
2f-2 41.2 9.8 0 0 0 
2g 36.1 11.1 7.0 7.4 2.4 
2h 52.6 15.9 2.4 0.7 0 
2i 14.5 8.7 8.0 4.6 11.7 
2j 34.0 9.2 4.1 3.5 5.9 

2k-1 35.9 0 6.9 3.0 0.7 
2k-2 22.4 11.9 7.1 4.2 1.2 

2l 36.2 10.2 4.9 0.5 0 
2m 71.7 68.3 60.4 43.1 24.3 
2n 8.2 4.5 5.2 0 0 
2o 9.7 0 8.8 8.2 9.1 

5-FU 72.6 53.8 35.0 23.8 16.6 
FT-207 58.0 8.1 0 0 0 
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In Table 2, almost all the compounds showed less sensitivity to BEL-7402, except 2m, which 
showed more potent inhibitory effect than 5-FU. The reason maybe was the R-conformation of 2m 
with a moderately rigid stereo structure, being composed of the pyrimidine ring and the phenyl ring, so 
it could release 5-FU sufficiently, while other compounds showed either more flexible configurations 
(such as 2a-e), or a more rigid structure such as the case of 2k [23]. The different inhibition against 
HL-60 and BEL-7402 between R-type and S-type compounds suggested the complexity of the 
antitumor mechanism. 

3. Experimental  

3.1. General 

Melting points of synthesized compounds were determined on a Digital Melting Point Appatatus X-
4 and were uncorrected. Mass spectra were obtained on a DECAX-30000 LCQ DecaXP Plus 
instrument. IR spectra were recorded (in KBr) on a Bruker EQUINOX 55. 1H-NMR and 13C-NMR 
were recorded on Bruker AVANCE-300 at 300 and 75 MHz, respectively in DMSO-d6 solutions with 
TMS as internal standard. 

3.2. General procedure for the synthesis of compounds 2a-o 

Synthesis of compounds 2a-o was accomplished as shown in Scheme 1. 2-(5-Fluoro-2,4-dioxo-3,4-
dihydropyrimidin-1(2H)-yl) acetic acid (10 mmol), HOBt (10 mmol) and DMF (50 mL) were added to 
a round-bottom flask, then EDC·HCl (13 mmol), L- or D-amino acid ester hydrochloride (10 mmol), 
and triethylamine (20 mmol) were added to the above mixture. After 10 h reaction at room temperature 
with thin layer chromatography (TLC) monitoring, the white solid 5-fluorouracil-1-yl-aceto amino 
acid esters 2a-o were obtained after filtration, reduced pressure distillation of DMF, and silica gel 
column chromatography separation.  
 
(S)-Methyl 2-(2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-methylbutanoate 
(2a). Yield: 68%; m.p. 109-110ºC; 1H-NMR δ: 11.80 (s, 1H, NH of 5-FU), 8.54 (d, 1H, NH,  
J = 8.1 Hz), 8.01 (d, 1H, FC=CH, 3JFH = 6.9 Hz), 4.39 (d, 2H, NCH2, J = 16.8 Hz), 4.22 (t, 1H, NCH, J 
= 7.2 Hz), 3.65 (s, 3H, OCH3), 2.09-1.98 (m, 1H, CCH, J = 6.6 Hz), 0.89 (d, 3H, CH3, J = 6.6 Hz), 
0.87 (d, 3H, CH3, J = 6.6 Hz); 13C-NMR δ: 171.9, 167.1, 157.7(d, 2JFC = 25.6 Hz), 149.8, 139.3 (d, 
1JFC = 226.7 Hz), 131.3 (d, 2JFC = 33.6 Hz), 57.7, 51.9, 49.5, 30.4, 19.0, 18.3; IR (cm-1) ν: 3456, 3280, 
2969, 1722, 1666, 1560, 1467, 1379, 1227, 1146, 783; MS (ESI) m/z: 300 (M-); [ ] 0.10

Dα  -22.0 (c 1.0, 
DMF).  
 
(R)-Ethyl 2-(2-(5-fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-methylbutanoate (2b). 
Yield: 65%; m.p. 136-137 ºC; 1H-NMR δ: 11.83(s, 1H, NH of 5-FU), 8.53 (d, 1H, NH, J = 8.1 Hz), 
8.02 (d, 1H, FC=CH, 3JFH = 6.6 Hz), 4.38 (d, 2H, NCH2, J = 16.8 Hz), 4.19 (dd, 1H, NCH, J = 8.1,  
6.3 Hz), 4.16-4.05 (m, 2H, COOCH2, J = 7.2 Hz), 2.11-1.98 (m, 1H, CCH), 1.19 (t, 3H, OCH2CH3,  
J = 7.2 Hz), 0.89 (d, 3H, CH3, J = 6.9 Hz), 0.88 (d, 3H, CH3, J = 6.6 Hz); 13C-NMR δ: 174.0, 169.6, 
160.5 (d, 2JFC = 25.3 Hz), 151.6, 141.2 (d, 1JFC = 228.1 Hz), 132.8 (d, 2JFC = 33.5 Hz), 63.3, 59.9, 51.6; 
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31.6, 20.0, 19.2, 15.2; IR (cm-1) ν: 3295, 3253, 2977, 1707, 1552, 1467, 1377, 1225, 1148; MS (ESI) 
m/z: 314(M-); [ ] 0.18

Dα +14.0 (c 0.1, DMF). 

(S)-Methyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-4-methylpentanoate 
(2c). Yield: 75%; m.p. 144-145ºC; 1H-NMR δ: 11.83 (d, 1H, NH of 5-FU, 4JFH = 5.4 Hz), 8.60 (d, 1H, 
NH, J = 7.8 Hz), 8.02 (d, 1H, FC=CH, 3JFH = 6.9 Hz), 4.32 (s, 2H, NCH2), 4.35-4.27 (m, 1H, NCH), 
3.62 (s, 3H, OCH3), 1.66-1.59 (m, 1H, CCH), 1.54-1.46 (m, 2H, CCH2), 0.88 (d, 3H, CH3, J = 6.3 Hz), 
0.83 (d, 3H, CH3, J = 6.3 Hz); 13C-NMR δ 172.9, 167.0, 157.8 (d, 2JFC = 25.5 Hz), 149.8, 139.4 (d, 
1JFC = 226.6 Hz), 131.3 (d, 2JFC = 33.8 Hz), 52.2, 50.5, 49.6, 39.7, 24.3, 22.9, 21.6; IR (cm-1) ν: 3323, 
3046, 2959, 1666, 1543, 1472, 1384, 1244, 1155; MS (ESI) m/z: 314(M-); [ ] 1.16

Dα -19.2 (c 1.0, DMF). 
 
(R)-Ethyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-4-methylpentanoate 
(2d). Yield: 72%; m.p. 146-147ºC; 1H-NMR δ: 11.81(d, 1H, NH of 5-FU, 4JFH = 5.1 Hz), 8.57(d, 1H, 
NH, J =7.8 Hz), 8.01(d, 1H, FC=CH, 3JFH = 6.9 Hz), 4.32(s, 2H, NCH2), 4.30-4.24(m, 1H, NCH), 
4.08(q, 2H, OCH2, J = 7.2 Hz), 1.67-1.58(m, 1H, CCH), 1.56-1.48(m, 2H, CCH2), 1.17(t, 3H, 
OCH2CH3, J = 7.2 Hz), 0.89(d, 3H, CH3, J = 6.3 Hz), 0.84(d, 3H, CH3, J = 6.3 Hz); 13C-NMR(75 MHz)   
δ: 172.3, 166.8, 157.7(d, 2J FC = 25.2 Hz), 149.7, 139.3(d, 1JFC = 226.4 Hz), 131.2 (d, 2JFC = 33.9 Hz), 
60.7, 50.6, 49.5, 39.7, 24.3, 22.8, 21.5, 14.1; IR(KBr, cm-1) ν: 3328, 2963, 2818, 1690, 1637, 1555, 
1473, 1377, 1238, 1196, 1150; MS(ESI) m/z: 328(M-); [ ] 7.17

Dα +11.6(c 1.0, DMF). 
 
(S)-methyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-4-(methylthio)butanoate 
(2e-1). Yield: 62%; m.p. 139-140ºC; 1H-NMR(300 MHz) δ: 11.84(s, 1H, NH of 5-FU), 8.64(d, 1H, 
NH, J = 7.5 Hz), 8.02(d, 1H, FC=CH, 3J = 6.9 Hz), 4.46-4.39(m, 1H, NCH), 4.33(s, 2H, NCH2), 3.63(s, 
3H, OCH3), 2.50-2.48(m, 2H, CH2S), 2.02(s,3H, SCH3), 1.97-1.79(m, 2H, CCH2); 13C-NMR(75 MHz) 
δ: 172.2, 167.1, 157.8(d, 2JFC = 25.7 Hz), 149.9, 139.5(d, 1JFC = 226.5 Hz), 131.2(d, 2JFC = 33.8 Hz), 
52.3, 51.1, 49.7, 30.9, 29.5, 14.8; IR(KBr, cm-1) ν: 3345, 3042, 2983, 1687, 1662, 1542, 1474, 1428, 
1386, 1233; MS(ESI) m/z: 332(M-); [ ] 1.18

Dα -10.4(c 1.0, DMF). 
 
(R)-methyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-4-(methylthio)butanoate 
(2e-2). Yield: 59%; m.p. 138-140 ºC; 1H-NMR(300 MHz) δ: 11.83(s, 1H, NH of 5-FU), 8.63(d, NH,  
J = 7.6 Hz), 8.02(d, 1H, FC=CH, 3JFH = 6.0 Hz), 4.43-4.38(m, 1H, NCH), 4.33(s, 2H, NCH2), 3.64(s, 
3H, OCH3), 2.47-2.43(m, 2H, CH2S), 2.03(s, 3H, SCH3), 1.95-1.87(m, 2H, CCH2); 13C-NMR(75 MHz) 
δ: 172.1, 167.1, 157.8(d, 2JFC = 25.7 Hz), 149.8, 139.5(d, 1JFC = 226.7 Hz), 131.2 (d, 2JFC = 33.7 Hz), 
52.3, 51.1, 49.6, 30.9, 29.5, 14.7; IR(KBr, cm-1) ν: 3348, 3237, 2962, 1725, 1660, 1569, 1478, 1425, 
1381, 1345, 1305, 1246, 1162, 794; MS(ESI) m/z: 332(M-); [ ] 1.18

Dα +10.4(c 1.0, DMF). 
 
(S)-methyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-hydroxypropanoate 
(2f-1). Yield: 54%; m.p. 190-191ºC; 1H-NMR(300 MHz) δ: 11.83(d, 1H, NH of 5-FU, 4JHH = 4.5 Hz), 
8.63(d, 1H, NH, J = 8.1 Hz), 8.01(d, 1H, FC=CH, 3JFH = 6.9 Hz), 5.11(t, 1H, OH, J = 5.4 Hz), 4.38(s, 
2H, NCH2), 4.42-4.36(m, 1H, NCH), 3.65(s, 3H, OCH3), 3.75-3.58(m, 2H, CH2OH, J = 5.4, 10.8 Hz); 

13C-NMR(75 MHz) δ: 170.9, 167.0, 157.6(d, 2JFC = 25.7 Hz), 149.8, 139.3(d, 1JFC = 226.7 Hz), 
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131.2(d, 2JFC = 33.7 Hz), 61.4, 54.8, 52.0, 49.4; IR(KBr, cm-1) ν: 3459, 3295, 2850, 1713, 1692, 1563, 
1467, 1416, 1382, 1277, 1251, 1185, 1071; MS(ESI) m/z: 288(M-). [ ] 7.10

Dα -10.0 (c 1.0, DMF). 

(R)-methyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-hydroxypropanoate 
(2f-2). Yield: 55%; m.p. 190-192ºC; 1H-NMR(300 MHz) δ: 11.81(s, 1H, NH of 5-FU), 8.62(d, 1H, 
NH, J = 7.5 Hz), 8.00(d, 1H, FC=CH, 3JFH = 6.9 Hz), 5.12(t, 1H, OH, J = 5.4 Hz), 4.37(s, 2H, NCH2), 
4.41-4.35(m, 1H, NCH), 3.63(s, 3H, OCH3), 3.74-3.56(m, 2H, CH2OH, J = 5.4, 10.8 Hz); 13C-
NMR(75 MHz)   δ: 171.0, 167.0, 157.7(d, 2JFC = 25.6 Hz), 149.8, 139.3(d, 1JFC = 226.6 Hz), 131.4(d, 
2JFC = 33.5 Hz), 61.5, 54.9, 52.1, 49.5; IR(KBr, cm-1) ν: 3459, 3295, 2850, 1713, 1692, 1563, 1467, 
1416, 1382, 1277, 1251, 1185, 1071; MS(ESI) m/z: 288(M-). [ ] 0.11

Dα +10.0 (c 1.0, DMF). 
 
(S)-dimethyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)succinate (2g). Yield: 
65%; m.p. 145-147 ºC; 1H-NMR(300 MHz) δ: 11.85(d, 1H, NH of 5-FU, 4JFH = 5.1 Hz), 8.76(d, 1H, 
NH, J =7.8 Hz), 8.01(d, 1H, FC=CH, 3JFH = 6.6 Hz), 4.68(dd, 1H, NCH, J =7.5, 6.6 Hz), 4.33(s, 2H, 
NCH2), 3.64(s, 3H, OCH3), 3.62(s, 3H, OCH3), 2.85-2.70(m, 2H, CCH2, J = 6.6, 7.5, 16.8 Hz); 13C-
NMR(75 MHz) δ: 170.9, 170.5, 166.9, 157.7(d, 2JFC = 25.7 Hz), 149.8, 139.4(d, 1JFC = 228.0 Hz), 
131.1 (d, 2JFC = 33.9 Hz), 52.4, 51.9, 49.5, 48.7, 35.9; IR(KBr, cm-1) ν: 3348, 3191, 2850, 1755, 1697, 
1526, 1430, 1380, 1337, 1216, 1047, 980; MS(ESI) m/z: 330(M-); [ ] 0.11

Dα -14.4(c 1.0, DMF). 
 
(R)-diethyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)succinate (2h). Yield: 
68%; m.p. 116-118 ºC; 1H-NMR(300 MHz) δ: 11.82(d, 1H, NH of 5-FU, 4JFH = 4.8 Hz), 8.71(d, 1H, 
NH, J = 7.8 Hz), 7.99(d, 1H, FC=CH, 3JFH = 6.8 Hz), 4.63(dd, 1H, NCH, J = 6.6, 7.5 Hz), 4.33(s, 2H, 
NCH2), 4.12-4.03(m, 4H, OCH2, J = 6.9 Hz), 2.81-2.65(m, 2H, CCH2, J = 6.6, 16.5 Hz), 1.17(t, 3H, 
CH3, J = 6.9 Hz), 1.16(t, 3H, CH3, J = 6.9 Hz); 13C-NMR(75 MHz)   δ: 170.4, 170.0, 166.9, 157.7(d, 
2JFC = 25.7 Hz), 149.8, 139.4(d, 1JFC = 228.3 Hz), 131.2 (d, 2JFC = 33.8 Hz), 61.2, 60.6, 49.5, 48.9, 
36.1, 14.2, 14.1; IR(KBr, cm-1) ν: 3314, 3217, 2990, 1721, 1691, 1549, 1467, 1378, 1339, 1240, 1167, 
1021, 792; MS(ESI) m/z: 358(M-); [ ] 7.9

Dα +16.0 (c 1.0, DMF). 
 
(S)-dimethyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)pentanedioate (2i). 
Yield: 42%; m.p. 147-148 ºC; 1H-NMR(300 MHz) δ: 11.85(s, 1H, NH of 5-FU), 8.63(d, 1H, NH,  

J =7.8 Hz), 8.02(d, 1H, FC=CH, 3JFH = 6.9 Hz), 4.32(s, 2H, NCH2), 4.37-4.34(m, 1H, NCH), 3.63(s, 
3H, OCH3), 3.58(s, 3H, OCH3), 2.37(t, 2H, CH2CH2CO, J = 7.5 Hz), 2.06-1.76(m, 2H, CH2CH2CO); 

13C-NMR(75 MHz) δ: 172.7, 171.9, 168.0, 157.7(d, 2JFC = 25.7 Hz), 149.8, 139.4(d, 1JFC = 226.7 Hz), 
131.1(d, 2JFC = 33.7 Hz), 52.2, 51.5, 51.3, 49.6, 29.6, 26.4; IR(KBr, cm-1) ν: 3328, 2964, 1716, 1660, 
1541, 1449, 1348, 1261, 800; MS(ESI) m/z: 344(M-); [ ] 8.17

Dα -8.39 (c 0.5, DMF). 
 
(R)-diethyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)pentanedioate (2j). 
Yield: 45%; m.p. 108-109 ºC; 1H-NMR(300 MHz) δ: 11.84(s, 1H, NH of 5-FU), 8.61(d, 1H, NH,  

J = 7.8 Hz), 8.01(d, 1H, FC=CH, 3JFH = 6.9 Hz), 4.33(s, 2H, NCH2), 4.30-4.26(m, 1H, NCH), 4.08(q, 
2H, OCH2CH3, J = 6.9 Hz), 4.04(q, 2H, OCH2CH3, J = 7.2 Hz), 2.36(t, 2H, CH2CH2CO, J = 7.5 Hz), 
2.03-1.78(m, 2H, CH2CH2CO), 1.17(t, 3H, OCH2CH3, J = 6.9 Hz), 1.16(t, 3H, OCH2CH3, J = 7.2 Hz); 
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13C-NMR(75 MHz) δ: 172.2, 171.4, 167.0, 157.7(d, 2JFC = 25.7 Hz), 149.8, 139.4(d, 1JFC = 226.9 Hz), 
131.2(d, 2JFC = 33.7 Hz), 60.9, 60.1, 51.5, 49.6, 29.9, 26.5, 14.2, 14.1; IR(KBr, cm-1) ν: 3304, 3213, 
2924, 1725, 1675, 1546, 1468, 1416, 1379, 1250, 1176, 1023; MS(ESI) m/z: 372 (M-); [ ] 7.8

Dα +12.40 (c 
1.0, DMF). 

(S)-methyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-(1H-indol-3-yl)pro-
panoate (2k-1). Yield: 50%; m.p. 205-206 ºC; 1H-NMR(300 MHz) δ: 11.84(s, 1H, NH of 5-FU), 
10.90(s, 1H, NH of indole), 8.72(d, 1H, NH, J = 7.2 Hz), 7.93(d, 1H, FC=CH, 3JFH = 6.8 Hz), 7.48(d, 
1H, Ar-H, J = 7.5 Hz), 7.33(d, 1H, Ar-H, J = 8.1 Hz), 7.16(d, 1H, =CHN, J = 2.2 Hz), 7.07(t, 1H, Ar-
H, J = 8.1, 6.9 Hz), 6.99(t, 1H, Ar-H, J = 7.5, 6.9 Hz), 4.54(dd, 1H, NCH, J = 7.2, 6.6 Hz), 4.33(d, 2H, 
NCH2, J = 16.5 Hz), 3.56(s, 3H, OCH3), 3.19-3.03(m, 2H, CCH2, J = 7.5, 6.0, 14.4 Hz); 13C-NMR(75 
MHz) δ: 172.2, 166.9, 157.8(d, 2JFC = 25.7 Hz), 149.9, 139.4(d, 1JFC = 228.1 Hz), 136.3, 131.3(d, 2JFC 
= 33.8 Hz), 127.3, 124.1, 121.2, 118.7, 118.2, 111.7, 109.2, 53.6, 52.1, 49.5, 27.4; IR(KBr, cm-1) ν: 
3386, 3312, 3069, 2977, 1702, 1545, 1381, 1233, 1062; MS(ESI) m/z: 387(M-); [ ] 9.17

Dα +36.4 (c 1.0, 
DMF). 
 
(R)-methyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-(1H-indol-3-yl)pro-
panoate (2k-2). Yield: 53%; m.p. 205-206 ºC; 1H-NMR(300 MHz) δ: 11.84(d, 1H, NH of 5-FU,  
4JFH = 5.1 Hz), 10.90(s, 1H, NH of indole), 8.72(d, 1H, NH, J = 7.5 Hz), 7.93(d, 1H, FC=CH,  
3JFH = 6.9 Hz), 7.48(d, 1H, Ar-H, J = 7.8 Hz), 7.34(d,1H, Ar-H, J = 8.1 Hz), 7.16(s, 1H, =CHN), 
7.07(t, 1H, Ar-H, J = 7.2, 7.8 Hz), 6.99(t, 1H, Ar-H, J = 7.2 Hz), 4.55(dd, 1H, NCH, J = 6.9, 6.6 Hz), 
4.33(d, 2H, NCH2, J = 16.5 Hz), 3.57(s, 3H, OCH3), 3.20-3.03(m, 2H, CCH2, J = 7.5, 6.0, 14.8 Hz); 

13C-NMR(75 MHz) δ: 172.2, 166.9, 157.8 (d, 2JFC = 25.7 Hz), 149.9, 139.4(d, 1JFC = 228.2 Hz), 136.3, 
131.3(d, 2JFC = 33.8 Hz), 127.3, 124.1, 121.2, 118.7, 118.2, 111.7, 109.2, 53.5, 52.1, 49.5, 27.4; 
IR(KBr, cm-1) ν: 3392, 3320, 3075, 1732, 1648, 1542, 1446, 1385, 1355, 1248, 1219,1099, 744; 
MS(ESI) m/z: 387(M-); [ ] 8.17

Dα -36.4 (c 1.0, DMF). 
 
(S)-methyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-(4-hydroxyphenyl) 
propanoate (2l). Yield: 72%; m.p. 192-193 ºC; 1H-NMR(300 MHz) δ: 11.85(s, 1H, NH of 5-FU), 
9.28(s, 1H, OH), 8.68(d, 1H, NH, J = 7.5 Hz), 7.94(d, 1H, FC=CH, 3JFH = 6.9 Hz), 6.99 (d, 2H, Ar-H, 
J = 8.4 Hz), 6.66 (d, 2H, Ar-H, J = 8.4 Hz), 4.39(dd, 1H, NCH, J = 6.3, 7.5 Hz), 4.31(d, 2H, NCH2,  
J = 16.8 Hz), 3.59(s, 3H, OCH3), 2.93-2.77(m, 2H, CH2Ar, J = 6.3, 8.1, 13.8 Hz); 13C-NMR(75 MHz) 
δ: 171.9, 166.9, 157.7(d, 2JFC = 25.7 Hz), 156.3, 149.8, 139.4(d, 1JFC = 226.9 Hz), 131.2(d, 2JFC = 33.8 
Hz), 130.3, 127.0, 115.3, 54.4, 52.0, 49.5, 36.3; IR(KBr, cm-1) ν: 3271, 1739, 1712, 1661, 1552, 1516, 
1451, 1386, 1231, 1164, 778; MS(ESI) m/z: 364(M+); [ ] 8.17

Dα +16.6 (c 1.0, DMF). 
 
(R)-ethyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-(4-hydroxyphenyl) 
propanoate (2m). Yield: 70%; m.p. 156-158 ºC; 1H-NMR(300 MHz) δ: 11.82(s, 1H, NH of 5-FU), 
9.23(s, 1H, OH), 8.63(d, 1H, NH, J = 7.5 Hz), 7.94(d, 1H, FC=CH, 3JFH = 6.6 Hz), 6.99(d, 2H, Ar-H,  
J = 8.4 Hz), 6.65(d, 2H, Ar-H, J = 8.4 Hz), 4.36(dd, 1H, NCH, J = 7.5, 6.9 Hz), 4.31(d, 2H, NCH2,  
J = 16.8 Hz), 4.02(q, 2H, OCH2, J = 7.2 Hz), 2.89-2.77(m, 2H, CH2Ar, J = 7.5, 6.0, 13.8 Hz), 1.10(t, 
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3H, CH3, J = 7.2 Hz); 13C-NMR(75 MHz) δ: 171.4, 166.9, 157.7(d, 2JFC = 25.7 Hz), 156.3, 149.8, 
139.4(d, 1JFC = 228.1 Hz), 131.2(d, 2JFC = 33.9 Hz), 130.3, 127.0, 115.3, 60.7, 54.4, 49.5, 36.4, 14.1; 
IR(KBr, cm-1) ν: 3336, 3065, 2851, 1691, 1532, 1380, 1340, 1220, 801; MS(ESI) m/z: 378(M-); [ ] 7.9

Dα -
24.4 (c 1.0, DMF). 
 
(2S,3S)-methyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-methylpentanoate 
(2n). Yield: 70%; m.p. 152-154 ºC; 1H-NMR(300 MHz) δ: 11.82(d, 1H, NH of 5-FU, 4JFH = 5.1 Hz), 
8.57(d, 1H, NH, J = 8.1 Hz), 8.01(d, 1H, FC=CH, 3JFH = 6.9 Hz), 4.36(d, 2H, NCH2, J = 16.8 Hz), 
4.25(dd, 1H, NCH, J = 8.1, 6.6 Hz), 3.63(s, 3H, OCH3), 1.77-1.72(m, 1H, CCH), 1.43-1.09(m, 2H, 
CCH2), 0.84(t, 3H, CH2CH3, J = 7.2 Hz), 0.83(d, 3H, CHCH3, J = 6.9 Hz); 13C-NMR(75 MHz) δ: 
172.0, 167.1, 157.7(d, 2JFC = 25.7 Hz), 149.8, 139.3(d, 1JFC = 227.9 Hz), 131.4(d, 2JFC = 33.8 Hz), 
56.6, 52.0, 49.5, 36.9, 24.9, 15.6, 11.3; IR(KBr, cm-1) ν: 3275, 3083, 2968, 1712, 1666, 1571, 1460, 
1378, 1340, 1243, 1149, 976, 700; MS(ESI) m/z: 314(M-); [ ] 5.17

Dα -3.0 (c 0.5, DMF). 
 
(2S,3S)-methyl 2-(2-5-(fluoro-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamido)-3-hydroxybutanoate 
(2o). Yield: 47%; m.p. 207-208 ºC; 1H-NMR(300 MHz) δ: 11.79(d, 1H, NH of 5-FU, 4JFH = 5.1 Hz), 
8.44(d, 1H, NH, J = 8.4 Hz), 8.01(d, 1H, FC=CH, 3JFH = 6.6 Hz), 5.03(d, 1H, OH, J = 5.1 Hz), 
4.42(dd, 2H, NCH2, J = 6.6, 16.5 Hz), 4.32(dd, 1H, NCH, J = 8.4, 3.3 Hz), 4.15-4.08(m, 1H, CHOH,  
J = 3.3, 5.1, 6.3 Hz), 1.05(d, 3H, CH3, J = 6.3 Hz); 13C NMR(75 MHz) δ 171.0, 167.4, 157.7(d,  
2JFC = 25.6 Hz), 149.8, 139.3(d, 1JFC = 226.6 Hz), 131.4(d, 2JFC = 33.5 Hz), 66.5, 58.1, 52.0, 49.6, 
20.2; IR(KBr, cm-1) ν: 3484, 3312, 2977, 1718, 1663, 1558, 1376, 1283, 1238, 1140; MS(ESI) m/z: 
302(M-); [ ] 6.17

Dα -2.0 (c 0.1, DMF). 

4. Conclusions  

A serials of amino acid ester derivatives containing 5-fluorouracil were synthesized by EDC/HOBt 
method and characterized. The in vitro antitumor activity tests indicated that the synthesized 
compounds had less inhibition rates against HL-60 and BEL-7402 than 5-FU except compound 2m, 
which showed more potent inhibitory effect against BEL-7402 than 5-FU. This might be explained by 
the R configuration of compound 2m with the moderate rigid framework composed of pyrimidine ring 
and hydroxyphenyl ring, which may be easily to give 5-fluorouracil. 
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