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Background: Rhinovirus (RV) infections are a major cause of asthma exacerbations.
Unlike other respiratory viruses, RV causes minimal cytotoxic effects on airway epithelial
cells and cytokines play a critical role in its pathogenesis. However, previous findings on
RV-induced cytokine responses were largely inconsistent. Thus, this study sought to
identify the cytokine/chemokine profiles induced by RV infection and their correlations with
airway inflammatory responses and/or respiratory symptoms using systematic review,
and to determine whether a quantitative difference exists in cytokine levels between
asthmatic and healthy individuals via meta-analysis.

Methods: Relevant articles were obtained from PubMed, Scopus, and ScienceDirect
databases. Studies that compared RV-induced cytokine responses between asthmatic
and healthy individuals were included in the systematic review, and their findings were
categorized based on the study designs, which were ex vivo primary bronchial epithelial
cells (PBECs), ex vivo peripheral blood mononuclear cells (PBMCs), and human
experimental studies. Data on cytokine levels were also extracted and analyzed using
Review Manager 5.4.

Results: Thirty-four articles were included in the systematic review, with 18 of these
further subjected to meta-analysis. Several studies reported the correlations between the
levels of cytokines, such as IL-8, IL-4, IL-5, and IL-13, and respiratory symptoms.
Evidence suggests that IL-25 and IL-33 may be the cytokines that promote type 2
inflammation in asthmatics after RV infection. Besides that, a meta-analysis revealed that
PBECs from children with atopic asthma produced significantly lower levels of IFN-b
[Effect size (ES): -0.84, p = 0.030] and IFN-l (ES: -1.00, p = 0.002), and PBECs from adult
atopic asthmatics produced significantly lower levels of IFN-b (ES: -0.68, p = 0.009),
compared to healthy subjects after RV infection. A trend towards a deficient production of
IFN-g (ES: -0.56, p = 0.060) in PBMCs from adult atopic asthmatics was observed.
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In lower airways, asthmatics also had significantly lower baseline IL-15 (ES: -0.69, p =
0.020) levels.

Conclusion: Overall, RV-induced asthma exacerbations are potentially caused by an
imbalance between Th1 and Th2 cytokines, which may be contributed by defective innate
immune responses at cellular levels. Exogenous IFNs delivery may be beneficial as a
prophylactic approach for RV-induced asthma exacerbations.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.
php?RecordID=184119, identifier CRD42020184119.
Keywords: rhinovirus, asthma, exacerbation, cytokine, chemokine, interferon, systematic review, meta-analysis
INTRODUCTION

Rhinovirus (RV) is a positive sense, single-stranded RNA virus
(+ssRNA) that belongs to the Picornaviridae family. RV can be
classified into three different species based on sequence
homology: RV-A, RV-B, and RV-C, with more than 160
serotypes already identified (1). RV infections account for
more than half of the common colds. They are a major cause
of exacerbations of chronic respiratory diseases such as asthma,
chronic obstructive pulmonary disease (COPD), and cystic
fibrosis (CF). Currently, there are no approved drugs to
prevent or treat RV infections (2). Thus, an increased
understanding of the pathogenesis of RV infection is needed to
develop effective therapeutic approaches.

In epidemiological studies, RV infections were frequently
found to be associated with a majority of exacerbations of
asthma in adults as well as children. A recent meta-analysis by
Feddema and Claassen (3) has shown that RV is the most
commonly detected virus in asthmatics, contributing up to
45.6% and 68.5% of virus-induced acute asthma exacerbations
cases in adults and children, respectively. Besides that, Corne and
colleagues (4) have demonstrated that while asthmatic and
healthy subjects in a longitudinal cohort study had a similar
frequency of upper respiratory RV infections, asthmatic subjects
had more frequent, severe, and longer-lasting lower respiratory
tract symptoms. Several experimental RV infection studies
supported the causal relationship between RV infection and
asthma exacerbations. Experimental RV infection of asthmatics
has been reported to increase bronchial hyperresponsiveness,
airway obstruction, and airway inflammation compared to the
placebo group without RV inoculation (5–7). Furthermore,
asthmatic individuals experienced more significant lower
respiratory tract symptoms, a decline in lung function,
increased bronchial hyperresponsiveness, and eosinophilic
lower airway inflammation compared with healthy individuals.
These symptoms appear to be related to the viral load and an
imbalance between T helper type 1 (Th1) and Th2 cytokine levels
(8). Collectively, these findings indicate that RV is a significant
respiratory pathogen in asthmatic individuals.

Although the pathogenesis of RV-induced asthma
exacerbations is not yet fully elucidated, it is linked to the host
immune responses triggered by RV infections. RV primarily
org 2
targets the airway epithelial cells in the upper and lower
respiratory tracts (9). However, unlike other respiratory
viruses, RV does not cause overt cytotoxicity in vitro or in vivo
(10). It binds to intercellular adhesion molecule-1 (ICAM-1) (for
major group RV), low-density lipoprotein receptor (LDLR)
family members (for minor group RV) or cadherin-related
family member 3 (CDHR3) (for RV-C) to gain entry to the
target cells (11). The detection of the virus by the epithelial
pattern recognition receptors (PRRs) such as toll-like receptor 3
(TLR3), melanoma differentiation-associated gene 5 (MDA5),
and retinoic acid-inducible gene I (RIG-I) triggers the
production of a variety of cytokines by the infected epithelial
cells (12). These include proinflammatory cytokines/
chemokines, such as interleukin (IL)-6, IL-8, interferon
gamma-induced protein 10 (IP-10), regulated upon activation,
normal T Cell expressed and secreted (RANTES), granulocyte-
macrophage colony-stimulating factor (GM-CSF), monocyte
chemoattractant protein-1 (MCP-1), interferon (IFN)-b, and
IFN-l. The proinflammatory cytokines and chemokines
subsequently recruit different inflammatory cells, such as
neutrophils, monocytes, and lymphocytes, which also release
cytokines, chemokines, matrix metalloproteinases (MMPs), and
reactive oxygen species (ROS) upon activation, resulting in an
enhanced inflammatory response within the respiratory
tract (10).

Other than modulating epithelial cell responses, RV has been
shown to alter the immune responses of monocytic cells such as
monocytes, macrophages, T lymphocytes, and mast cells (13–16).
The release of cytokines, such as IL-1, IL-8, TNF-a, IFN-a, and
IFN-g triggered by RV infection, activates the surrounding cells
and induces the expression of adhesion molecules on epithelial
cells as well as immune cells. Given the close proximity of
monocytic cells to the airway epithelium in the respiratory
tract, they could also influence the immune responses to RV
infection in vivo and contribute to asthma exacerbations (17).

Existing literature suggests that the host immune responses,
particularly the cytokine responses induced by RV infections, are
linked to the airway inflammatory responses and potentially the
severity of asthma exacerbations. Previous studies have also
shown that RV infections induce the production of a variety of
proinflammatory cytokines/chemokines including IFNs in
primary bronchial epithelial cells (PBECs) and peripheral
February 2022 | Volume 13 | Article 782936
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blood mononuclear cells (PBMCs) from asthmatic and healthy
individuals. However, these findings were largely inconsistent.
Thus, this study aimed to compare the cytokine/chemokine
profiles induced by RV infection in asthmatic and healthy
individuals and their correlations with viral load, airway
inflammatory responses, and/or respiratory symptoms via
systematic review. Meta-analysis was also performed to
determine whether any quantitative difference exists in the
levels of cytokines between the asthmatic and healthy groups.
METHODS

Search Strategy
Relevant articles were identified from three different databases
(PubMed, Scopus, and ScienceDirect) using keywords:
rhinovirus AND asthma AND (cytokine OR chemokine OR
interferon OR antiviral). All studies that compared rhinovirus-
induced cytokine responses between asthmatic and healthy
individuals were included in this systematic review. There were
three types of study designs for related studies, which were (1)
ex vivo PBECs studies, (2) ex vivo PBMCs studies, and (3) human
experimental studies. There was no restriction on the publication
period, but only articles in English were included in this
systematic review. Filter was applied to include original
research articles only whenever applicable in the databases.
This study was conducted according to the Preferred Reporting
Items for Systematic Reviews and Meta-analysis (PRISMA)
guidelines (18). The methods used here have also been
described in detail in our published protocol in the
International Prospective Register of Systematic Reviews
(PROSPERO) database (Registration: CRD42020184119). The
last search for relevant articles in all databases was performed on
13 August 2021.

Eligibility Criteria
For this systematic review, the inclusion criteria are (1) ex vivo
PBECs studies, (2) ex vivo PBMCs studies, and (3) human
experimental studies that compared RV-induced cytokine
responses between asthmatic and healthy individuals.
Asthmatic and healthy individuals of all ages and sexes were
included. For ex vivo or human experimental infection,
rhinoviruses of all species or serotypes in any dose were
included. On the other hand, the exclusion criteria are
(1) animal studies, (2) studies on other respiratory viruses (e.g.
respiratory syncytial virus, influenza, parainfluenza, etc.), and (3)
studies that did not include a healthy control (without
asthma) group.

Study Appraisal and Selection
All the articles obtained from the databases using the specific
keywords were organized according to their titles, and duplicates
were identified by the same title, authors, and year of publication.
The redundant studies were removed, and the remaining articles
were screened using the pre-defined eligibility criteria. Firstly, the
title and abstract of each article were assessed by two reviewers
Frontiers in Immunology | www.frontiersin.org 3
independently. Those that matched the eligibility criteria were
then subjected to full-text screening to determine their relevance
further. Disagreements between the two reviewers throughout
the screening process were resolved by consensus, and the
reasons for excluding the articles were recorded.

Data Extraction and Analysis
For all studies that met the eligibility criteria after reading the full
texts, study characteristics, such as subjects’ demographics (age
and sex) and medication (corticosteroids), smoking, and allergy
status, sample size (asthmatic vs healthy), rhinovirus used for
infection (species, subtype, and dose), type of sample (culture
supernatant or biological fluid), and method of cytokine
measurement, were extracted and organized into tables
according to their study designs. This was followed by the
extraction of findings related to RV-induced cytokine
responses and their correlations with viral load, airway
inflammatory responses, and/or respiratory symptoms.

To determine whether any quantitative difference exists in the
levels of cytokines between the asthmatic and healthy groups, a
meta-analysis was carried out to analyse the levels of cytokines
between the two groups. Given that three different experimental
designs were included in this systematic review, there must be at
least two different studies that measured the same cytokine under
the same experimental design for the cytokine to be subjected to
meta-analysis. The mean levels of these cytokines (pg/mL) and
their standard error of mean (SEM) or standard deviation (SD)
were extracted from the texts or the graphs using the software
ImageJ version 150. For the studies that reported the levels of
cytokines using the median, range, and/or interquartile range,
estimation of the mean and standard deviation was performed
using a previously described method (19). The data were entered
into the Excel Spreadsheet with formulas provided that estimates
the mean and standard deviation according to three different
scenarios for the reporting values: (1) minimum, median,
maximum, and sample size; (2) minimum, the first quartile,
median, the third quartile, maximum, and sample size; or (3) the
first quartile, median, the third quartile, and sample size (19).

Meta-analysis was performed using the software Review
Manager (RevMan) version 5.4. Input data for each included
study are required to be in the form of mean and SD. If SEM was
extracted instead of SD, the values of SEM were converted into
SD using the built-in function of the software. The standardized
mean difference (SMD) and 95% confidence intervals (CI) of
cytokine levels between the asthmatic and healthy groups were
computed to obtain the effect size (ES) for each cytokine. The
overall effect (p-value) was determined using a fixed-effect or
random-effects model based on the I-squared index (I2) that
indicates the heterogeneity between studies. The fixed-effect
model was used if the heterogeneity between studies was not
significant (I2 less than 75%). By contrast, the random-effects
model was used if the heterogeneity between studies was
significant (I2 more than 75%) (20).

Publication Bias Assessment
Publication bias assessment was performed using Meta-Essentials
(21). Cytokine levels (mean and SD) and sample sizes for each
February 2022 | Volume 13 | Article 782936
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study were inserted into Meta-Essentials, and publication bias was
evaluated based on the Funnel plot and the results of Egger’s test,
Begg’s test, Rosenthal’s Failsafe N, and Trim and Fill method.
RESULTS

Study Selection
Using the specific keywords, we had retrieved 638 articles from
PubMed, 515 articles from Scopus, and 1194 articles from
ScienceDirect (n = 2347). After removing the redundant articles
(n = 553), the number of unique articles screened based on the titles
and abstracts was 1794. Sixty-three articles were subjected to full-
text screening to assess their suitability based on the eligibility
criteria. Twenty-nine articles were excluded due to several reasons,
such as irrelevant viruses (n = 5), no result on cytokine levels
(n = 14), and no comparison between asthma and healthy groups
(n = 10). Finally, 34 articles reporting RV-induced cytokine
responses in asthmatic and healthy individuals were included in
the systematic review. Figure 1 shows the PRISMA flowchart for
study selection.

The included articles were separated according to their
experimental designs into three different categories, which
were (1) ex vivo PBECs studies, (2) ex vivo PBMCs studies,
and (3) human experimental studies. Some articles involved
more than one experimental design (e.g. ex vivo PBECs and
human experimental studies in one article). Taking this into
account, there are 18 ex vivo PBECs studies, 10 ex vivo PBMCs
studies, and 10 human experimental studies reported by the 34
articles. Of these 34 articles, 18 articles were included in the
meta-analysis (Figure 1).

Study Characteristics
All studies were conducted in the adult populations, except 3
PBECs studies and 1 PBMCs study, which compared the
cytokine responses between asthmatic and healthy children
after RV infection (22–25), as well as 1 PBMCs study which
compared RV-induced cytokine responses between asthmatic
and healthy individuals from different age groups (26). For most
of the included studies, the asthmatic subjects were atopic with
positive skin prick test (SPT) or had increased levels of specific
IgE to allergens, whereas the healthy subjects were non-atopic. A
study by Baraldo et al. (22) made comparisons between 4 groups
of subjects (atopic asthma vs non-atopic asthma vs atopic
healthy vs non-atopic healthy), and a study by Moskwa et al.
(27) also made an additional comparison between atopic asthma
and non-atopic asthma. For the studies by Iikura et al. (26), Jurak
et al. (28), and Williams et al. (29), the authors compared RV-
induced cytokine responses between asthmatic and healthy
individuals; however, both asthma and healthy groups included
atopic and non-atopic individuals. Apart from that, the
asthmatic subjects in a study by Hosseini et al. (25) consisted
of both atopic and non-atopic individuals. The atopic status of
both asthmatic and healthy subjects was not determined in 3
studies (30–32). Notably, the atopic status may be a potential
confounding factor of RV-induced cytokine responses (further
discussed in the section below). Asthmatic subjects mainly had
Frontiers in Immunology | www.frontiersin.org 4
mild or moderate asthma, but some studies recruited severe
asthma patients (23, 27, 32–35). Most of the studies also excluded
subjects who had smoking habits, probably due to previously
reported effects of cigarette smoke on RV-induced cytokine
production or innate immune responses (36–38). The subject
characteristics of all included studies are provided in
Supplementary Tables 1–3, whereas the experimental details
are provided in Supplementary Tables 4–6.
Systematic Review
Cytokine/Chemokine Profiles Induced by RV
Infection in Asthmatic and Healthy PBECs
At least two studies have reported significantly increased levels of
proinflammatory cytokines and chemokines in both asthmatic
and healthy PBECs following RV infection. These cytokines/
chemokines include IL-1a (32, 39), IL-6 (24, 32, 34, 39–42), IL-8
(24, 32, 34, 41, 42), TNF-a (32, 41), IP-10 (24, 27, 32, 34, 39, 41),
and RANTES (24, 27, 32, 39–41), and interferons, such as IFN-b
(22, 40, 43, 44) and IFN-l (27, 33, 34, 44) (Table 1). However,
inconsistent results have been described for some of these
cytokines. While most studies observed similar induction of
IL-6 (32, 39–42), IL-8 (32, 41, 42), IP-10 (27, 32, 34, 39, 41),
and RANTES (27, 32, 39–41) in both asthma and healthy groups,
some studies have reported that these cytokines were only
induced in asthmatic PBECs (23, 30). Cakebread et al. (30)
reported that RV-1B only significantly induced IL-6, IP-10,
and RANTES in asthmatic but not healthy PBECs, while
Edwards et al. (23) reported that RV-1B only significantly
induced IL-8 in asthmatic PBECs. By contrast, a few studies
demonstrated that asthmatic PBECs produced significantly
lower levels of cytokines such as IL-6 (34), IL-8 (34), TNF-a
(35), and IP-10 (35) compared to healthy PBECs.

Besides that, contradicting data on IFNs (IFN-b and IFN-l)
production in asthmatic and healthy PBECs have been reported.
Impaired IFNs production in asthmatic PBECs has been
reported by six studies (23, 24, 33, 34, 40, 43), in which RV
infection caused a significantly lower induction of IFN-b (23, 24,
40, 43) and IFN-l (23, 24, 33, 34) protein levels in asthmatic
PBECs in comparison to healthy PBECs; however, such changes
were not observed by three other studies (22, 27, 44).
Nonetheless, it should be noted that some studies were not
able to detect IFN-b and IFN-l in the PBEC cultures of both
asthmatic and healthy individuals (22, 27, 35). Apart from that,
PBECs do not seem to produce a significant amount of IFN-a
protein as three (24, 27, 44) out of four studies (24, 27, 32, 44)
that measured IFN-a did not detect it in the culture supernatants
of asthmatic and healthy PBECs.

Notably, some studies reported a differential response to RV
infection between asthmatic and healthy PBECs for some
relatively less studied cytokines such as IL-25 and TGF-b2.
Asthmatic PBECs were found to produce significantly higher
levels of IL-25 (46) and TGF-b2 (31) after RV infection
compared to healthy PBECs. Collectively, these findings
indicate that PBECs isolated from asthmatic individuals do not
share a similar RV-induced cytokine/chemokine profile with
PBECs isolated from healthy individuals.
February 2022 | Volume 13 | Article 782936
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Cytokine/Chemokine Profiles Induced by RV
Infection in Asthmatic and Healthy PBMCs
Overall, at least two studies have demonstrated that RV infection
significantly induces IL-6 (26, 47), IL-10 (26, 47, 48), IP-10 (49,
50), IFN-g (47, 48, 51), and IFN-a (26, 44, 47, 49, 50) in both
asthmatic and healthy PBMCs (Table 2). Similar to the PBEC
studies, deficient IFNs production in PBMCs from asthmatic
Frontiers in Immunology | www.frontiersin.org 5
individuals has been reported. However, these reports focused on
different types of IFN, namely IFN-g and IFN-a. Impaired IFN-g
production in asthmatic PBMCs compared to healthy PBMCs
has been demonstrated by a few groups of researchers in adult
populations (28, 48, 51) and children (25). By contrast, some
studies reported similar levels of IFN-g between asthma and
healthy groups after RV infection (26, 47). Inconsistent findings
FIGURE 1 | Flowchart showing the selection process of articles according to the PRISMA Statement. From the initial 1794 non-redundant articles, 34 articles reporting
RV-induced cytokine responses in asthmatic and healthy individuals were included in the systematic review, with 18 of these further subjected to meta-analysis.
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were also observed for IFN-a. RV-induced IFN-a levels in
PBMCs were reported to be significantly lower in the asthma
group than in the healthy group (26, 50). In particular, Iikura
et al. (26) found that the significant difference was restricted to
asthmatics between 7 to 19 years old and their age-matched
healthy controls but not for 20 years old and above, indicating
that the age of donors may also be a determinant of RV-induced
cytokine responses. Conversely, other studies did not
significantly differ between asthma and healthy groups on IFN-
a production (49, 52). Besides IFNs, IL-10 is another cytokine
that may be differentially expressed in asthmatic and healthy
PBMCs in response to RV infection. Papadopoulos et al. (48)
showed that RV-16 infection led to a significantly higher level of
IL-10 inPBMCsof asthmatic subjects compared tohealthy subjects.
This finding is in line with another study by Xatzipsalti et al. (51),
which showed that IL-10 protein was only significantly induced in
asthmatic PBMCs. However, other studies have also reported lower
amounts of IL-10 (26) in asthmatic PBMCs than healthy PBMCs or
no difference (47). These findings indicate that differential cellular
responses in terms of cytokine production between asthmatic and
healthy individuals following RV infectionmay not only be limited
to PBECs.

Levels of IFNs Produced by PBECs and PBMCs
Correlate With Symptoms and Disease Severity of
RV Infection and/or RV-Induced Asthma
Exacerbations
Among the cytokines and chemokines induced by RV, as
described in previous sections, some have been shown to play
an essential role in the pathogenesis of RV infection. A study by
Contoli et al. (33) demonstrated that PBECs, as well as
bronchoalveolar lavage (BAL) cells (mainly macrophages), had
a deficient production of IFN-l after RV-16 infection ex vivo,
Frontiers in Immunology | www.frontiersin.org 6
and this was related to disease severity in the donors who were
experimentally infected with RV after the ex vivo study. IFN-l
protein levels in BAL cells were inversely correlated with the cold
score, viral load, IL-8 levels in BAL fluid, sputum eosinophil
counts, and a fall in the forced expiratory volume in one second
(FEV1) (33). These findings suggest an association between low
IFN-l level and increased viral replication and inflammatory
responses in the respiratory tract, cold symptoms, and reduced
lung function. Other than IFN-l, deficient IFN-b production in
PBECs is also linked to RV-induced pathological changes in
airways. A study by Baraldo et al. (22) demonstrated that RV-16-
induced IFN-b levels are inversely correlated with the expression
of IL-4 in bronchial biopsies and the degree of epithelial damage,
which are common characteristics of asthmatic airways.
Furthermore, viral RNA (vRNA) and infectious virus levels in
culture supernatants of RV-infected PBECs were negatively
correlated with the levels of IFN-b and IFN-l, suggesting a
protective role for both cytokines against RV infection by
suppressing the replication rate of RV (22, 33, 35, 43). This is
supported by another study which demonstrated that low levels
of IFN-a and IFN-b in PBMCs are associated with more
significant airway hyperresponsiveness, as indicated by lower
provocative concentration of histamine causing a 20% fall in
FEV1 (PC20) (52).

Influence of Atopic Status on RV-Induced Cytokine
Responses in PBECs
While most of the studies suggest that the presence of asthma may
be the factor contributing to the differential cytokine responses of
PBECs and PBMCs to RV infection, a few studies suggested that
the atopic status of the subjects could influence RV-induced
cytokine responses. Baraldo et al. (22) found that PBECs from
atopic asthma, non-atopic asthma, and healthy atopic children had
TABLE 1 | Findings of ex vivo PBECs studies comparing RV-induced cytokine responses in asthmatic vs healthy individuals.

RV-induced cytokine responses Cytokine/Chemokine References

Significant up-regulation in both asthmatic and healthy PBECs compared to mock-infected control IL-1a (32, 39)
IL-6 (24, 32, 34, 39, 40, 42, 45)
IL-8 (24, 32, 34, 42, 45)
IP-101 (24, 27, 32, 34, 39, 45)
RANTES1 (24, 27, 32, 39, 40, 45)
TNF-a (32, 45)
IFN-b2 (22, 40, 43, 44)
IFN-l (27, 33, 34, 44)

Significantly higher levels in asthmatic PBECs compared to healthy PBECs IL-1b (24)
IL-6 (24)
IL-8 (24)
IP-10 (24)
RANTES (24)
IL-25 (46)
TGF-b2 (31)

Significantly lower levels in asthmatic PBECs compared to healthy PBECs IL-6 (34)
IL-8 (34)
IP-101 (35)
TNF-a (35)
IFN-b1 (23, 24, 40, 43)
IFN-l1,2,3 (23, 24, 33, 34)
February 2022 |
1Cytokine/chemokine correlated with vRNA or infectious virus levels.
2Cytokine/chemokine correlated with airway inflammatory responses (e.g. eosinophil counts, proinflammatory cytokine levels in bronchial biopsies or airway fluids).
3Cytokine/chemokine correlated with respiratory symptoms (e.g. cold score, airway hyperresponsiveness, reduced lung function).
Volume 13 | Article 782936

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liew et al. Rhinovirus-Induced Cytokine Alterations in Asthma
impaired IFN-b and IFN-l induction in response to RV infection
compared to PBECs from non-atopic healthy children. As PBECs
from healthy atopic children also showed defective production of
IFNs, which was similarly observed in asthmatic PBECs, this
suggests that other than the presence of asthma, the atopic status
of the PBECs donors could affect their cytokine responses to RV
infection. In line with this finding, some studies found correlations
between cytokine levels and the number of positive skin prick tests
(SPT). For instance, IL-25 levels inPBECswerepositively correlated
with positive SPT in asthmatics (46). By contrast, IFN-a and IFN-b
levels in PBMCs were negatively correlated with positive SPT in
asthmatics (52). In comparison to PBECs, all PBMCs and human
experimental studies included in this study (Tables 2, 3) compared
RV-induced cytokine responses between atopic asthmatics and
non-atopic healthy individuals only, except for two ex vivo
PBMCs studies that recruited both atopic and non-atopic subjects
in asthma andhealthy groups (26, 27). Thus, no direct comparisons
on the cytokine levels were made between atopic and non-atopic
individuals among asthma and healthy groups (atopic asthma vs
non-atopic asthma vs atopic healthy vs non-atopic healthy) for
these two study designs (ex vivo PBMCs and human experimental
studies). In order to avoid potential confounding effects of atopic
status on RV-induced cytokine responses, allergy tests such as SPT
and tests on allergen-specific IgE should be conducted to allow
stratification of the subjects according to their atopic status.
Furthermore, as ex vivo PBECs studies indicate that atopic status
could influence RV-induced cytokine responses, it would also be
interesting to investigate whether natural or experimental RV
infection will lead to more severe respiratory symptoms in atopic
compared to non-atopic individuals for asthmatic as well as healthy
subjects in the future.

Nasal and Bronchial Cytokine Responses Following
Experimental RV Infection and Their Associations
With Pathophysiological Mechanisms of RV Infection
and/or RV-Induced Asthma Exacerbations
Inoculation of human subjects with RV has been shown to cause
inflammatory changes in both the upper (nasal) and lower
Frontiers in Immunology | www.frontiersin.org 7
(bronchial) airways as indicated by increased levels of
proinflammatory cytokines in the nasal lavage, nasal mucosal
fluid, sputum, BAL fluid, or bronchial mucosal fluid (Table 3).
IL-6 and IL-8 levels were increased in the nasal lavage/fluid,
sputum, and BAL fluid of both asthmatic and healthy subjects
post-RV inoculation (47, 56, 58, 60). Moreover, positive
correlations between nasal IL-8 levels and neutrophil counts
(47, 56), peak viral load (58), as well as cold symptoms (47, 56)
have been previously reported. These findings are consistent with
its role as a chemokine that attracts neutrophils.

Allergic asthma is characterized as type 2 inflammation
associated with Th2 cytokines such as IL-4, IL-5, and IL-13
(61). These cytokines also seem to play a crucial role in the
pathogenesis of RV-induced asthma exacerbations. A human
experimental study by Hansel et al. (54) demonstrated that
experimental RV infection in people with allergic asthma is
accompanied by more intense type 2 inflammatory responses
(IL-5 and IL-13) compared to healthy subjects with varying
degrees of antiviral responses (IFN-g and ITAC). The same study
reported that experimental RV infection caused significantly
greater upper and lower respiratory symptoms and reductions
in peak expiratory flow (PEF) and FEV1 in asthmatic subjects
compared to healthy subjects (55). A causative role for IL-4, IL-5,
and IL-13 in RV-induced respiratory symptoms was proposed as
these cytokines were significantly upregulated in the nasal
mucosal fluid of asthmatics but not healthy subjects (55). Most
importantly, nasal and bronchial IL-5 and IL-13 levels were also
shown to be positively correlated with the severity of upper and
lower respiratory symptoms in asthmatic subjects (55). The same
study also presented strong evidence that highlights a role for IL-
33 in promoting type 2 inflammatory responses in RV-induced
asthma exacerbations. Not only did bronchial IL-33 levels
correlate with the levels of IL-5 and IL-13, nasal and bronchial
IL-33 levels also positively correlate with asthma symptom
severity, suggesting that IL-33 promotes Th2 cytokine
responses that subsequently drive airway inflammation in
asthma. Accordingly, exposure of Th0 cells to supernatants
from RV-infected PBECs, which contained a significantly
TABLE 2 | Findings of ex vivo PBMCs studies comparing RV-induced cytokine responses in asthmatic vs healthy individuals.

RV-induced cytokine responses Cytokine/Chemokine References

Significant up-regulation in both asthmatic and healthy PBMCs compared to mock-infected control IL-6 (26, 47)
IL-10 (26, 47, 48)
IP-10 (49, 50)
IFN-a1 (26, 47, 49, 50, 52)
IFN-g (26, 48, 51)

Significantly higher levels in asthmatic PBMCs compared to healthy PBMCs IL-1b (25)
IL-10 (48)
Fractalkine (53)

Significantly lower levels in asthmatic PBMCs compared to healthy PBMCs IL-6 (26)
IL-10 (26)
IL-12 (48)
TNF-a (26)
IFN-a (26, 50)
IFN-g (25, 28, 48, 51)
February 2022 | Volume
1Cytokine/chemokine correlated with respiratory symptoms (e.g. cold score, airway hyperresponsiveness, reduced lung function). For PBMCs studies, no cytokine/chemokine was
reported to be correlated with vRNA/infectious virus levels and airway inflammatory responses.
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upregulated level of IL-33, induced Th2 responses with increased
IL-4, IL-5, and IL-13 compared to Th0 cells exposed to
supernatants from non-infected PBECs. Blocking the action of
IL-33 using anti-ST2 antibody inhibited IL-4, IL-5, and IL-13
secretion in Th0 cells exposed to supernatants from RV-infected
PBECs, suggesting that RV-induced Th2 responses are IL-33-
dependent (55). In agreement with these findings, a study by
Jurak et al. (28) also demonstrated that IL-33 selectively
enhanced RV-induced IL-5 and IL-13 release in PBMCs of
asthmatic but not healthy individuals. Besides IL-33, IL-25 has
also been claimed to be an essential Th2-promoting cytokine.
Beale et al. (2014) reported that IL-25 is significantly induced by
RV infection in asthmatic PBECs compared to mock-infected
control but not in healthy PBECs (46). However, the same study
further demonstrated that the difference between asthmatic and
healthy individuals in the nasal IL-25 levels was insignificant,
albeit much higher in the asthmatics (46). Other than the
proinflammatory Th2 cytokines (IL-4, IL-5, and IL-13), a
recent study by Williams et al. (29) highlighted the role of
chemokines, C-C motif chemokine 17 (CCL17)/thymus- and
activation-regulated chemokine (TARC) and C-C motif
chemokine 22 (CCL22)/macrophage-derived chemokine
(MDC) in RV-induced asthma exacerbations. The study
reported that peak nasal TARC and MDC levels positively
correlated with peak upper respiratory symptom scores. In
addition, bronchial MDC levels on day 4 post-infection
positively correlated with peak lower respiratory symptom
scores in subjects experimentally infected with RV.

While most studies identified a link between increased levels
of cytokines and RV-induced pathophysiological mechanisms in
asthma, Laza-Stanca et al. (59) has described the possible role of
IL-15 deficiency in RV-induced asthma exacerbations. They
reported that IL-15 levels induced by RV infection were
significantly lower in BAL cells and BAL fluid of asthmatics
compared to healthy subjects (59). Besides that, IL-15 levels in
supernatants of BAL cells inversely correlated with the severity of
lower respiratory symptoms. By contrast, low baseline IL-15
levels in BAL fluids were associated with more significant airway
hyperresponsiveness and higher viral load in nasal lavage,
sputum, and BAL fluid (59). Notably, the authors claimed that
Frontiers in Immunology | www.frontiersin.org 8
IL-15 inducer such as IFN-b may have therapeutic benefits as it
could promote antiviral immunity of airway epithelium and, at
the same time, enhance innate and acquired immunity against
RV infection via induction of IL-15. This is because IL-15
promotes natural killer (NK) cell activation, increases memory
CD8 T cell antiviral immunity, and enhances IFNs production in
various cell types such as macrophages, dendritic cells, NK cells,
and CD8 T cells (59). Overall, the pathophysiological
mechanisms of RV-induced asthma exacerbations involve a
complex interplay of airway epithelium, immune cells, and
their secreted cytokines in response to RV infection.

Viral Load in Asthmatic and Healthy Subjects
Besides cytokine levels, viral load is another factor frequently
associated with the severity of RV infection and/or RV-induced
asthma exacerbations. Message et al. (8) demonstrated that nasal
viral load is significantly correlated with lower respiratory
symptoms in asthmatic subjects. Besides that, a strong inverse
correlation between viral load and airway hyperresponsiveness in
asthma was also observed (8). This is consistent with another
study by Jackson et al. (55), which reported that peak viral load is
correlated with exacerbation severity (indicated by peak
reductions in PEF) in asthmatic subjects. However, there has
been considerable debate on whether RV can replicate at a higher
rate in the airway epithelium of asthmatics compared to healthy
individuals. This observation was first reported by Wark et al.
(40), where RV-16 vRNA and infectious virus levels were
significantly higher in asthmatic PBECs than healthy PBECs.
Similarly, other studies showed that vRNA and infectious virus
levels were significantly higher in asthmatic PBECs after RV-16
or RV-1B infection (22–24). By contrast, several studies reported
no significant difference between the viral load in PBECs isolated
from asthmatic and healthy subjects (30, 32, 35, 39, 42, 44).
Similar levels of viral load in nasal lavage fluid and sputum
between asthmatic and healthy subjects after experimental RV
infection have also been reported (47). However, it may not be
appropriate to compare the viral load at the same time point due
to the possibility of a different kinetic of RV replication in
asthmatic and healthy subjects (55). Jackson and colleagues
(55) have demonstrated that nasal viral load peaked one day
TABLE 3 | Findings of human experimental studies comparing nasal and bronchial cytokine responses in asthmatic vs healthy individuals.

Upper and lower
airway cytokine
responses

Subjects Significantly upregulated cytokine/chemokine

Upper airway (nasal
lavage, nasal
mucosal fluid)

Asthma IL-2* (54), IL-4*,# (55), IL-53,*,# (54, 55), IL-62 (47, 54, 56), IL-8 1,2,3 (47, 57), IL-10 (47, 54), IL-12p40 (54), IL-133,*,# (54, 55), IL-151,*
(54), IL-17 (54), IL-25 (46), IL-331,3 (54, 55), IP-10* (54), RANTES (47, 54), TNF-a (54), MCP-11,* (47, 54), MIP-1a1 (54), MIP-1b1 (54),
MIP-3a (54), ITAC* (54), TARC2,3,*,# (29, 54), MDC*,# (29, 54), eotaxin*,# (54), IFN-a (47), IFN-g* (47, 54), IFN-l* (54)

Healthy IL-6 (47, 56), IL-8 (47, 56), IL-25 (46), RANTES (47), MCP-1 (47), IFN-a (47), IFN-g (47)
Lower airway
(bronchial mucosal
fluid, BAL fluid,
sputum)

Asthma IL-53 (54, 55), IL-6 (56), IL-81,# (58), IL-10 (47, 54), IL-15 (54), IP-10 (54), TNF-a (54), ITAC (54), IFN-g (54)
Healthy IL-6 (56), IL-8 (56), IL-151,3,# (59)
1Cytokine/chemokine correlated with nasal or bronchial viral load.
2Cytokine/chemokine correlated with airway inflammatory responses (e.g. eosinophil or neutrophil counts, proinflammatory cytokine levels in airway fluids).
3Cytokine/chemokine correlated with respiratory symptoms (e.g. upper or lower respiratory symptom score, airway hyperresponsiveness, reduced lung function).
*Cytokine differentially expressed by asthmatic subjects following experimental RV infection compared to healthy subjects.
#Cytokine with significant baseline differences.
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earlier in asthmatics (day 3 post-inoculation) compared to
healthy individuals (day 4 post-inoculation). In contrast to this
finding, Kennedy et al. (62) demonstrated that neither peak nor
cumulative nasal viral loads in asthmatic adults differed
significantly from healthy individuals following experimental
RV infection. The differences in viral loads might be due to the
different levels of cytokines such as IFN-b and IFN-l, which have
been shown to suppress RV replication. Nevertheless, it is also
possible that RV-induced asthma exacerbations are caused by
inflammatory responses triggered by RV rather than a higher
viral load in asthmatic airways (62).

Meta-Analysis
Due to the discrepancies across studies, cytokines with at least
two studies (for each experimental design) were then subjected to
meta-analysis to determine whether asthmatic and healthy
subjects produce different levels of cytokines in response to RV
infection. However, only studies that compared atopic asthmatic
and non-atopic healthy subjects were included to avoid
the potential confounding effects of atopic status on
cytokine responses.

Deficient IFN-b and IFN-l Production in Atopic
Asthmatic PBECs After RV Infection
As shown in Table 4, PBECs from adults with atopic asthma
produced significantly lower levels of IFN-b (ES: -0.68, p = 0.009)
than non-atopic healthy subjects after RV infection (Figure 2A).
However, publication bias assessment revealed that publication
bias potentially existed, as indicated by Egger’s test (p < 0.05) and
the presence of asymmetry of the Funnel plot (Table 4 and
Supplementary Figure 10). The largest effect size was obtained
for IFN-l (ES: -1.13) but it did not reach statistical significance
(p = 0.230) (Figure 2B), probably due to a significant
heterogeneity across studies (I2 = 89%, p < 0.001). As shown in
Table 5, PBECs from children with atopic asthma also produced
significantly lower levels of IFN-b (ES: -0.84, p = 0.030)
(Figure 3A) and IFN-l (ES: -1.00, p = 0.002) (Figure 3B).
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On the other hand, there were no significant differences in the
levels of IL-6, IL-8, IP-10, and RANTES between PBECs isolated
from adult asthmatic and healthy subjects (Table 4 and
Supplementary Figures 1–4), and the levels of IL-8 between
PBECs isolated from children with asthma and healthy children
(Table 5 and Supplementary Figure 5), after RV infection.

Deficient IFN-g Production in Atopic Asthmatic
PBMCs After RV Infection
Meta-analysis of PBMCs studies (Table 6) revealed that PBMCs
from adults with atopic asthma produced lower levels of IFN-g
(ES: -0.56) compared with healthy adults, and it was close to
reaching statistical significance (p = 0.060) (Figure 4). By
contrast, the levels of IL-6, IL-10, IFN-a, and IFN-a2 in
PBMCs of asthmatic and healthy subjects after RV infection
were not significantly different (Table 6 and Supplementary
Figures 6–9). Publication bias was unclear as the low number of
studies did not allow an accurate assessment of publication bias
(e.g. Egger’s test and Begg’s test require a minimum of 3 studies).

Lower Baseline IL-15 Levels in the Lower
Respiratory Tract of Atopic Asthmatics
Experimentally Inoculated With RV
As shown in Table 7, baseline bronchial (bronchial mucosal fluid
and BAL) IL-15 levels were significantly lower in atopic
asthmatics compared to non-atopic healthy individuals (ES: -
0.69, p = 0.020) (Figure 5A). IL-15 levels were also lower in
atopic asthmatics following experimental inoculation with RV
compared to non-atopic healthy individuals (ES: -0.53), but the
levels were not statistically significant (p = 0.640) (Figure 5B).
On the other hand, IL-8 levels detected in the lower respiratory
tract (sputum and BAL) were higher in atopic asthmatics
compared to non-atopic healthy individuals after experimental
RV infection (ES: 0.58) with a p-value (0.060) close to reaching
statistical significance (Figure 6B). At baseline (before
experimental RV infection), there was no significant difference
in bronchial IL-8 levels between asthma and healthy groups
TABLE 4 | Summary of meta-analysis of ex vivo PBECs studies comparing RV-induced cytokine responses in adults with atopic asthma vs non-atopic healthy controls.

Cytokine No. of Studies Asthma/
Healthy

Effect Size Heterogeneity Publication Bias

SMD (95% CI) p-value I2

Statistic
p-value Egger’s

Test
(p-value)

Begg’s
Test

(p-value)

Rosenthal’s
Failsafe-N

Trim and Fill
(Number of
Missing
Studies)

Asymmetry
of Funnel

Plot

IL-6 4 49/41 -0.36 0.610 89% <0.001 0.353 0.174 1 0 Absent
(34, 39, 42, 45) (-1.78, 1.05)

IFN-b 4 36/34 -0.68 0.009 57% 0.070 0.014 0.174 21 0 Present
(40, 43, 44) (-1.20, -0.17)

IL-8 3 31/27 -0.21 0.430 20% 0.290 0.283 0.602 0 0 Absent
(34, 42, 45) (-0.74, 0.31)

IFN-l 3 31/29 -1.13 0.230 89% <0.001 0.225 0.117 10 0 Present
(34, 44, 63) (-2.98, 0.71)

IP-10 3 40/32 -0.19 0.440 40% 0.190 0.205 0.602 0 0 Absent
(34, 39, 45) (-0.66, 0.29)

RANTES 2 28/24 -0.51 0.080 56% 0.130 NA NA 0 0 Absent
(39, 45) (-1.07, 0.05)
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(Figure 6A). Publication bias was unclear due to the low number
of studies (n = 2).
DISCUSSION

RV accounts for most virus-induced asthma exacerbations, and
existing literature suggests that the clinical illness severity is
potentially linked to host immune responses, including the
epithelial-derived cytokines and cytokines/chemokines secreted
by the immune cells. However, there were large variations
between previous reports on RV-induced cytokine responses.
Therefore, the present study aimed to identify cytokines/
chemokines that play an essential role in the pathogenesis of
RV-induced asthma exacerbations and determine whether
differential cytokine responses to RV infection exist between
asthmatic and healthy individuals.

Although RV infections have been regarded as a major cause
of asthma exacerbations, much scientific evidence on RV-
Frontiers in Immunology | www.frontiersin.org 10
induced pathological changes in asthma were obtained from
observational studies. The major drawback of these studies is that
the causal link between RV infection and the clinical findings in
human subjects could not be established. Furthermore, the early
host responses before symptoms manifestation could not be
determined (64). Thus, the best study design to explore the
pathophysiological mechanisms of RV-induced asthma
exacerbations involves inoculation of human volunteers with
RV followed by sampling biological specimens such as nasal
lavage/fluid, bronchial fluid, BAL, and sputum at different time
points. This allows for the elucidation of inflammatory changes
in both the upper (nasal) and lower (bronchial) airways during
the period of RV infection (64). However, RV inoculation did not
always lead to more severe symptoms in asthmatic individuals
(56). Furthermore, in some of these human experimental studies,
no correlation analysis was done, or no correlation was found
between the levels of cytokines and respiratory symptoms (57,
58). Among asthmatic subjects with significantly increased
respiratory symptoms following RV inoculation, type 2
TABLE 5 | Summary of meta-analysis of ex vivo PBECs studies comparing RV-induced cytokine responses in children with atopic asthma vs non-atopic healthy controls.

Cytokine No. of
Studies

Asthma/
Healthy

Effect Size Heterogeneity Publication Bias

SMD
(95% CI)

p-value I2

Statistic
p-value Egger’s

Test
(p-value)

Begg’s
Test (p-
value)

Rosenthal’s
Failsafe-N

Trim and Fill (Number
of Missing Studies)

Asymmetry
of Funnel

Plot

IL-8 2 19/20 -0.39 0.230 0% 0.570 NA NA 0 0 Absent
(22, 23) (-1.03, 0.25)

IFN-b 2 17/16 -0.84 0.030 37% 0.210 NA NA 4 0 Absent
(22, 23) (-1.58, -0.10)

IFN-l 2 22/22 -1.00 0.002 0% 0.730 NA NA 6 0 Absent
(23) (-1.63, -0.36)
Feb
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FIGURE 2 | Forest plots of (A) IFN-b and (B) IFN-l for ex vivo PBECs studies comparing adults with atopic asthma vs non-atopic healthy controls. (A) PBECs from
adults with atopic asthma produced significantly lower levels of IFN-b (ES: -0.68, p = 0.009) than non-atopic healthy subjects after RV infection. (B) PBECs from
adults with atopic asthma also produced lower levels of IFN-l (ES: -1.13) compared to non-atopic healthy subjects after RV infection; however, the difference was
not statistically significant (p = 0.230).
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inflammation is a significant factor contributing to RV-induced
asthma exacerbations (54, 55). Experimental RV infection of
asthmatic subjects resulted in increased IL-4, IL-5, and IL-13
levels. The nasal and bronchial IL-5 and IL-13 levels were also
positively correlated with the severity of upper and lower
respiratory symptoms (54, 55). Evidence suggests that IL-25
and IL-33 are key cytokines driving the type 2 inflammatory
responses in asthmatic airways (46, 55). Besides that, a meta-
analysis of bronchial cytokine levels reveals that baseline IL-15
levels were significantly lower in asthmatics compared to healthy
individuals (Table 7, Figure 5A), suggesting that the difference
in lower airway microenvironment before exposure to RV
infection might influence the severity of asthma exacerbations.
Although IL-4, IL-5, and IL-13 are commonly implicated in the
pathogenesis of allergic asthma, IL-6 and IL-8 may play an
important role in regulating the immune responses to RV
infection as elevated levels of IL-6 and IL-8 were frequently
found in the upper as well as lower airways (47, 56, 58, 60).
Frontiers in Immunology | www.frontiersin.org 11
Evidence has shown that IL-6 can stimulate IL-4 secretion and
promote Th2 and/or Th17 differentiation (65), whereas IL-8 is a
well-known neutrophil chemoattractant that may promote
neutrophilic inflammation in asthmatic airways (66).

Airway epithelial cells are the primary target of RV in the
respiratory tract. As RV-induced colds are generally mild and
self-limiting, RV-induced asthma exacerbations are believed to
be caused by an ineffective antiviral defence mechanism in
airway epithelium that leads to delayed virus clearance. In fact,
earlier studies showed that airway epithelial cells of asthmatics
failed to produce similar levels of IFNs such as IFN-b and IFN-l
compared to that of healthy individuals when infected with RV
ex vivo (33, 40, 43). Asthmatic PBECs were also demonstrated to
have increased susceptibility to RV infection due to deficient
IFNs production as a higher viral load and a more significant
amount of infectious virus particles were detected compared to
healthy PBECs (40). Apart from PBECs, impaired immune
responses against RV infection have also been reported in
TABLE 6 | Summary of meta-analysis of ex vivo PBMCs studies comparing RV-induced cytokine responses in adults with atopic asthma vs non-atopic healthy controls.

Cytokine No. of
Studies

Asthma/
Healthy

Effect Size Heterogeneity Publication Bias

SMD
(95% CI)

p-value I2

Statistic
p-value Egger’s

Test
(p-value)

Begg’s
Test

(p-value)

Rosenthal’s
Failsafe-N

Trim and Fill (Number
of missing studies)

Asymmetry of
Funnel Plot

IFN-a 3 56/52 -0.12 0.540 11% 0.330 0.471 0.602 0 0 Absent
(44, 49) (-0.50, 0.26)

IFN-a2 2 38/36 -0.34 0.150 53% 0.140 NA NA 0 0 Absent
(47, 52) (-0.81, 0.12)

IFN-g 2 23/23 -0.56 0.060 11% 0.290 NA NA 2 0 Absent
(47, 48) (-1.16, 0.03)

IL-6 2 28/28 -0.15 0.580 73% 0.060 NA NA 0 0 Absent
(47, 49) (-0.69, 0.38)

IL-10 2 23/23 0.09 0.750 20% 0.260 NA NA 0 0 Absent
(47, 48) (-0.49, 0.68)
Feb
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FIGURE 3 | Forest plots of (A) IFN-b and (B) IFN-l for ex vivo PBECs studies comparing children with atopic asthma vs non-atopic healthy controls. PBECs from
children with atopic asthma produced significantly lower levels of (A) IFN-b (ES: -0.84, p = 0.030) and (B) IFN-l (ES: -1.00, p = 0.002) compared to non-atopic
healthy children after RV infection.
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PBMCs and BAL cells (mainly alveolar macrophages),
particularly for IFN-a and IFN-g (48, 51). However, more
recent studies could not demonstrate such differences in IFNs
production in PBECs (22, 24, 42) and PBMCs (44, 47) and thus
raised questions on the role of IFNs in asthma exacerbations.
Nevertheless, a meta-analysis conducted in this study confirmed
that PBECs from adults with atopic asthma had impaired
production of IFN-b. By contrast, children with atopic asthma
had impaired production of IFN-b and IFN-l in response to RV
infection compared to non-atopic healthy controls. Besides that,
there was a trend towards a deficient production of IFN-g in
PBMCs from adult asthmatics compared to healthy subjects. The
comparison of cytokine responses in this meta-analysis is limited
to atopic asthmatics and non-atopic healthy individuals to
eliminate any potential influence on RV-induced cytokine
responses due to the atopic status.

The reduced ability of asthmatic airway epithelial cells to
secrete IFNs could profoundly affect the pathogenesis of RV
infection in people with asthma, leading to an increased risk of
asthma exacerbations. There are three classes of IFNs, which are
type I (IFN-a and IFN-b), type II (IFN-g), and type III (IFN-l)
(67). Type I and III IFNs have direct antiviral effects of limiting
virus replication by inducing an antiviral state in virus-infected
and bystander cells through the activation of IFN-stimulated
Frontiers in Immunology | www.frontiersin.org 12
genes (ISGs) (68, 69). On the other hand, type II IFN, or IFN-g, is
mainly produced by natural killer cells in response to RV
infection as an innate defence mechanism (70). IFN-g is also
primarily produced by CD4 T cells with Th1 phenotype (71),
thus a deficient IFN-g production in PBMCs from the asthmatic
individuals might reflect that asthmatic individuals have a lower
percentage of Th1 cells. Although we did not find significant
differences in the levels of other proinflammatory cytokines and
chemokines produced by RV-infected PBECs and PBMCs
between asthmatic and healthy individuals, the intrinsic
differences in their capability to produce certain cytokines such
as IFNs could potentially influence the ultimate outcome in the
airway milieu. Given the immunomodulatory role of IFNs in
promoting the Th1 phenotype of CD4 T cells (68), the defective
innate immune responses in airway epithelium – the primary site
of RV infection and replication – might lead to a skewed Th2
response and an enhanced type 2 inflammation in asthmatic
airways. This may explain why RV infection could cause more
detrimental effects in asthmatics’ lower respiratory tract than
healthy individuals.

While this systematic review/meta-analysis described the
differences in the levels of cytokines between atopic asthmatic
and healthy individuals at cellular levels and in the respiratory
tracts, there are several factors, other than the atopic status of the
TABLE 7 | Summary of meta-analysis of human experimental studies comparing bronchial cytokine responses in adults with atopic asthma vs non-atopic healthy
controls before (baseline) and after (post-infection) experimental RV infection.

Cytokine No. of
Studies

Asthma/
Healthy

Effect Size Heterogeneity Publication Bias

SMD
(95% CI)

p-value I2

Statistic
p-value Egger’s

Test
(p-value)

Begg’s
Test

(p-value)

Rosenthal’s
Failsafe-N

Trim and Fill (Number
of missing studies)

Asymmetry
of Funnel

Plot

IL-15
(Baseline)

2 34/24 -0.69 0.020 11% 0.290 NA NA 3 0 Absent
(54, 59) (-1.26, -0.11)

IL-15
(Post-
infection)

2 32/21 -0.53 0.640 90% 0.001 NA NA 0 0 Absent
(54, 59) (-2.73, 1.67)

IL-8
(Baseline)

2 21/25 0.03 0.970 87% 0.006 NA NA 0 0 Absent
(56, 58) (-1.65, 1.71)

IL-8 (Post-
infection)

2 21/25 0.58 0.060 0% 0.760 NA NA 1 0 Absent
(56, 58) (-0.01, 1.18)
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FIGURE 4 | Forest plot of IFN-g for ex vivo PBMCs studies comparing adults with atopic asthma vs non-atopic healthy controls. PBMCs from adults with atopic
asthma produced lower levels of IFN-g (ES: -0.56) compared with healthy adults after RV infection, and it was close to reaching statistical significance (p = 0.060).
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subjects, that might influence RV-induced cytokine responses.
Since the publication period for the included studies ranges from
2002 to 2021, the detection methods used to measure the levels of
cytokines, including ELISA and other immunoassays, and their
sensitivity varied (Supplementary Table 4–6). Thus, the
detection limits of these assays might be a potential
confounding factor that influences the results, especially for
lowly expressed cytokines. In some studies discussed here,
IFN-b and IFN-l were not detected in the PBEC cultures of
asthmatic and healthy individuals (22, 27, 35). Besides that, most
of the included studies, particularly ex vivo studies, measured the
levels of cytokines for both asthma and healthy groups at the
Frontiers in Immunology | www.frontiersin.org 13
same time points, and the kinetics of cytokine induction was not
investigated. A recent study by Veerati et al. (72) has shown that
IFNs induction in PBECs from asthmatic and COPD donors was
delayed rather than deficient than PBECs from healthy donors.
However, since the asthmatic subjects in the study by Veerati
et al. (72) comprised both atopic and non-atopic individuals, it
remains unclear whether similar results will be obtained if only
atopic asthmatics were recruited. It is also important to note that,
despite a delayed induction of IFNs, IFN-l protein levels were
significantly lower in asthmatic PBECs than healthy PBECs at a
later time-point, i.e. 96hr post-infection. By contrast, no
significant difference was observed for IFN-b protein levels
AA

B

FIGURE 6 | Forest plot of (A) baseline and (B) post-infection IL-8 for adult atopic asthmatics vs non-atopic healthy adults experimentally infected with RV. (A) At
baseline, there was no significant difference in bronchial IL-8 levels between atopic asthmatics and non-atopic healthy adults. (B) After experimental RV infection,
atopic asthmatics had higher levels of bronchial IL-8 (ES: 0.58) compared to non-atopic healthy individuals, and it was close to reaching statistical significance (p = 0.060).
AA

B

FIGURE 5 | Forest plot of (A) baseline and (B) post-infection IL-15 for adult atopic asthmatics vs non-atopic healthy adults experimentally infected with RV.
(A) Atopic asthmatics had significantly lower levels of bronchial IL-15 at baseline compared to non-atopic healthy individuals (ES: - 0.69, p = 0.020). (B) Atopic
asthmatics also had lower levels of bronchial IL-15 following experimental inoculation with RV compared to non-atopic healthy individuals (ES: -0.53), but the
difference was not statistically significant (p = 0.640).
February 2022 | Volume 13 | Article 782936

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liew et al. Rhinovirus-Induced Cytokine Alterations in Asthma
(72). As asthma is increasingly recognised as a heterogeneous
disease, the dysregulated cytokine responses may be linked to
specific molecular phenotypes in asthmatic individuals. A
transcriptomics study by Khoo et al. (73) demonstrated that,
for children presented to the emergency department due to
wheezing or acute exacerbation of asthma, IRF7lo molecular
phenotype, which was characterized by up-regulation of
cytokine and growth factor signalling and down-regulation of
IFN-g, was associated with a higher chance of hospital admission
and recurrence compared to IRF7hi, which was accompanied by
a strong Th1/IFN response. While more studies are required to
uncover the molecular phenotypes or endotypes of asthma
associated with increased susceptibility to RV infection, some
studies suggest that high serum IgE levels in atopic asthma
increase the risk of RV-induced asthma exacerbations. A study
by Zambrano et al. (74) has shown that experimental RV
infection caused more significant lower respiratory symptoms
in young atopic adults with high levels of total serum IgE than
those with low levels of total serum IgE. Consistent with this,
administering omalizumab, an anti-IgE antibody, has been
demonstrated to reduce lower respiratory tract symptoms and
improve lung function in atopic asthmatics challenged with
RV (64).

As discussed above, defective innate immune responses at
cellular levels may contribute to an imbalance in Th1/Th2
cytokines in asthmatic airways. In view of the finding that the
severity of RV-induced asthma exacerbations is potentially
linked to an imbalance in Th1/Th2 cytokines, exogenous IFNs
may offer great therapeutic benefits owing to their antiviral and
immunomodulatory activities. Type I IFNs such as IFN-a and
IFN-b are antiviral cytokines that had been tested for their
efficacy against RV infection in clinical trials. Intranasal IFN-
a2 treatment, however, was shown to be ineffective against
natural occurring colds caused by RV infection (75). On the
other hand, a clinical trial demonstrated that inhaled IFN-b had
no significant effect on the asthma symptoms because viral
infections did not cause significant deteriorations of asthma
among the recruited patients. However, it was found to reduce
asthma symptoms in a subset of patients with difficult-to-treat
asthma (76). Given the critical role of IFN-l in innate and
adaptive immune responses (69), it is also worthwhile to evaluate
the effectiveness of IFN-l treatment in preventing RV- or virus-
induced asthma exacerbations. Currently, IFN-l is being
assessed for its efficacy against chronic hepatitis C virus
infection and coronavirus disease 2019 (COVID-19) in clinical
trials (77, 78). Exogenous IFN-b and IFN-l may have
prophylactic effects against RV-induced asthma exacerbations
as there is increasing evidence showing that the currently used
drugs for asthma management such as inhaled corticosteroids
(ICS) and long-acting-b2 agonists (LABA) can diminish the
antiviral immunity against RV infection (49, 79).

A few limitations of this systematic review/meta-analysis
should be noted. Firstly, the meta-analysis is limited by the
number of studies with the same experimental design, resulting
in a few studies investigating the same cytokine with relatively
small sample size. Thus, additional comparisons/subgroup
Frontiers in Immunology | www.frontiersin.org 14
analyses for different asthma severity or RV serotypes cannot
be performed. Besides that, the human experimental studies
included in the systematic review/meta-analysis are limited to
RV-16 only due to safety and ethical concerns. RV-16 is
specifically used to inoculate human volunteers because it is a
relatively safer RV serotype and known to not cause very severe
exacerbations in asthmatic patients (80). The immune responses
and the clinical outcomes observed in human subjects might
differ when natural infections with other RV serotypes occur.
Considering that there are other more pathogenic serotypes of
RV, the differences in cytokine responses and clinical outcomes
might be more contrasting between asthmatic and healthy
individuals, and this should be further investigated in future
studies. While some epidemiological studies suggest that RV-C is
more likely to be associated with pneumonia (81) and wheezing
(82), as well as severe asthma (83) compared to RV-A and RV-B,
there is no study that compares RV-C-induced cytokine
responses between asthmatic and healthy individuals yet. A
study by Nakagome et al. (84) has shown that RV-A and RV-
C replicated more rapidly and induced higher cytokine levels
than RV-B in differentiated human sinus epithelial cells
(HSECs), suggesting that RV-induced cytokine responses may
be species-dependent. Thus, it would be interesting to investigate
whether RV-C strains induce different levels of cytokines in cells
originating from asthmatic and healthy individuals. As RV-C
targets ciliated airway epithelial cells and can be propagated in
differentiated airway epithelial cells (85), a comparison of
cytokine levels between PBECs from asthmatic and healthy
individuals could be carried out after the cells undergo
differentiation at the air-liquid interface.

To identify the differences between asthmatic and healthy
individuals before and/or after RV infection, which may
contribute to RV-induced asthma exacerbations, the present
study discusses three commonly used experimental models
(PBECs, PBMCs, and human experimental studies). Apart
from that, other relevant experimental models, such as human
airway explant, may improve our understanding of the
pathophysiological mechanisms of RV-induced asthma
exacerbations. Using human airways precision lung cut slices
(PCLS), Kennedy et al. (86) has shown that RV-39 infection
resulted in a more significant constriction in asthmatic airways
than non-asthmatic airways in response to carbachol. Asthmatic
lung explants were also found to have an enhanced gene
expression of IL-25, thymic stromal lymphopoietin (TSLP),
and IL-13 compared to non-asthmatic tissue, suggesting that
airway hyperresponsiveness may be related to these cytokines
(86). Besides that, recent evidence suggests that B cells may also
play an important role in the systemic responses to RV infection.
A study by Wirz et al. (87) demonstrated that experimental RV
infection could induce antiviral responses in peripheral B cells,
and these responses were more broadly elevated and
dysregulated in asthma patients. While in vitro studies on
single-cell types revealed many intrinsic differences between
asthmatic and healthy individuals, they may not represent the
conditions during RV-induced asthma exacerbations due to the
absence of cell-cell interactions. On the other hand, human
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experimental studies allow the assessment of host responses in
vivo. However, as inoculation of human volunteers is restricted
to a particular RV serotype (RV-16), findings from community-
based studies should also be considered to elucidate the
pathophysiological mechanisms of RV-induced asthma
exacerbations, especially for virulent RV strains such as those
of RV-C species.
CONCLUSION

RV-induced asthma exacerbations are potentially caused by
enhanced Th2 responses (IL-4, IL-5, and IL-13), which could
be promoted by IL-25 and IL-33, and IL-15 deficiency before RV
infection. The imbalance between Th1 and Th2 cytokines in the
airways during RV-induced asthma exacerbations may be partly
contributed by defective innate immune responses in airway
epithelial cells and peripheral blood mononuclear cells. Through
meta-analysis, we further confirmed that asthmatic airway
epithelial cells have defective IFNs (IFN-b and IFN-l)
production, and these changes could occur in both adults and
children with atopic asthma. Exogenous IFNs delivery may be
beneficial as a prophylactic approach to prevent RV-induced
asthma exacerbations.
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