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Abstract: Luminescent copper nanoclusters (Cu NCs) have shown great potential in light-emitting
devices (LEDs), chemical sensing, catalysis and biological fields. However, their practical use has
been restricted by poor stability, and study on the stability of Cu NCs solid powder along with
the mechanism is absent. In this study, stablized Cu NCs powder was first obtained by cation
crosslinking method. Compared with the powder synthesized by solvent precipitation method,
the stability of Cu NCs powder crosslinked by ionic inducer Ce3+ was enhanced around 100-fold.
The storage time when the fluorescence intensity decreased to 85% (T85) was improved from 2 h
to 216 h, which is the longest so far. The results of characterizations indicated that the aggregation
structure was formed by the binding of Ce3+ with the capping ligands of Cu NCs, which helped in
obtaining Ce-Cu NCs powder from aggregate precipitation in solution. Furthermore, this compact
structure could avoid the destruction of ambient moisture resulting in long-lasting fluorescence and
almost unchanged physical form. This demonstrated that phosphor, with excellent characteristics of
unsophisticated synthesis, easy preservation and stable fluorescence, showed great potential in light
sources, display technology and especially in latent fingerprints visualization on different substrates
for forensic science.

Keywords: copper nanoclusters powder; cation crosslinking method; stability; latent fingerprints
visualization

1. Introduction

Metal nanoclusters exhibit excellent luminescence properties such as molecular elec-
tronic transitions, bright luminescence and tunable emission wavelength owing to their
ultra-small size and discrete energy levels [1–3]. Comparing with noble metal nanoclus-
ters, copper nanoclusters (Cu NCs) are becoming popular research candidates due to the
abundant raw materials, low biotoxicity and low cost, which have shown great value in ap-
plications of light-emitting devices (LEDs) [4–6], chemical sensing [7–9], catalysis [10] and
biological fields [11–13]. However, the vulnerable oxidation by oxygen in the atmosphere
and the water absorbing property of Cu NCs powder caused luminescence quenching,
greatly limiting their practical application [14].

Some researchers have proposed several methods to improve the stability of the
Cu NCs solution. There are mainly three strategies: inducing thiol-protected Cu NCs
to aggregate [15–18], selecting suitable capping ligands [19–22] and combining Cu NCs
with other materials [11,14,23–25]. The first strategy employs the aggregation-induced
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emission (AIE) effect, which is the simplest method compared with the others and it usually
requires adding inducers or organic solvent to the Cu NCs solution after synthesis. Such
postprocessing would not be affected by the synthesis condition and process of Cu NCs.
The current study improves solution stability and the stablized Cu NCs are mainly applied
in bioimaging, biosensing, ion detection and material determination. However, research on
the stability of Cu NCs powder and their application as phosphor is absent, particularly in
latent fingerprints visualization, which is one of the most technologically and extensively
used method of identification applications [26,27].

Here, we synthesized Cu NCs powder by two methods and investigated their stability.
The stable Cu NCs powder by cation crosslinking method using Ce3+ as the crosslinking
inducer was first obtained, which was about 100-times more stable than Cu NCs powder
synthesized by solvent precipitation method. The time of Ce-Cu NCs powder taken for a
15% drop in luminescence (T85) was improved from 2 h to 216 h when the ambient humidity
and temperature were 75% and 25 ◦C, respectively. By several characterizations, binding
between Ce3+ and carboxyl groups of GSH was verified, which induced the connection of
nearby Cu NCs particles. Such compact structure maintained by crosslinking prevented
the powder from breaking down by ambient moisture, and Cu NCs along with Ce3+ on the
edge protected inner Cu NCs from oxygen. The stabilized phosphor was used as latent
fingerprints marker, and the fine details of fingerprints on different substrates could be
clearly visualized.

2. Materials and Methods
2.1. Materials and Reagents

Copper(II) nitrate trihydrate (Cu(NO3)2·3H2O), sodium hydroxide (NaOH) and iso-
propanol alcohol (IPA) were purchased from Hushi (Shanghai, China). Cerium(III) nitrate
hexahydrate (Ce(NO3)3·6H2O) and glutathione (GSH) were purchased from Aladdin
(Shanghai, China). All chemicals were used without further purification.

2.2. Synthesis of Copper Nanoclusters (Cu NCs)

The glutathione-stabilized copper nanoclusters (the GSH-Cu NCs) were synthesized
via one-pot ultrasonic method using GSH as the reduction reagent and protective ligands.
Briefly, Cu(NO3)2·6H2O solution (1.0 M, 1.2 mL) was added dropwise to GSH solution
(0.2 M, 30.0 mL) under vigorous stirring at room temperature for 10 min. Then, NaOH
solution (2.0 M) was added to the mixed solution until the pH value was adjusted to 5.0.
The obtained solution was treated by ultrasonic waves at a temperature of 25 ◦C for 20 min.
Finally, luminescent Cu NCs were purified with IPA by three centrifugal operations and
dissolved in water. The as-prepared Cu NCs were stored at 4 ◦C for further use.

2.3. Synthesis and Stability Investigation of Cu NCs Powder by Solvent Precipitation Method and
Cation Crosslinking Method

Cu NCs aqueous solution (0.16 M, 0.25 mL) was added to the mixture of water and IPA
(the concentration of IPA was from 0 to 95%). Different quantities of Ce3+ in the range of
0.0–4.0 µmol were introduced into Cu NCs solution (0.002 M, 10.0 mL). Fluorescence inten-
sity was monitored by fluorescence spectroscopy at the excitation wavelength of 365 nm,
and the absorption spectra were recorded. IPA-Cu NCs powder was obtained from the
mixture of Cu NCs and IPA by centrifugation and drying in vacuum oven, and Ce-Cu NCs
powder was obtained from the mixture of Cu NCs and Ce3+ by centrifugation and drying
in vacuum oven. In order to investigate stability, these two phosphors were stored under
the same environmental conditions (the ambient humidity of 75% and the temperature of
25 ◦C), and their PL intensities under the excitation of 365 nm were continuously measured
over time. IPA-Cu NCs powder-1 was obtained by drying IPA-Cu NCs powder, which had
been stored in the environment for 3 days.
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2.4. Latent Fingerprints Visualization Based on Ce-Cu NCs Powder

The hands of the donor were washed by water and dried by a hair dryer in advance.
The fingers were then pressed on glass, paper, foil and plastic. Ce-Cu NCs powder was
carefully sprinkled on four substrates until it covered the fingerprints. Blowball was used
to gently remove the extra phosphor. Then, the four fingerprints detection samples were
investigated under ultraviolet light of 365 nm.

2.5. Characterizations

The transmission electron microscopic (TEM) images were obtained on Tecnai G2 F20 S-
Twin (FEI, Portland, OR, USA). UV-vis spectra were recorded on 759S (Shanghai Lengguang,
China). Fluorescence spectra were recorded on F97XP (Shanghai Lengguang, China) at
the scanning rate of 6000 nm min−1. Zeta potential analysis was performed on Malvern
Zetasizer Nano ZS90 (Thermo Fisher Scientific, Portland, OR, USA). The synthesized IPA-
Cu NCs powder and Ce-Cu NCs powder were characterized by Fourier transform-infrared
spectroscopy (FTIR) on Nicolet iS5 (Thermo Scientific, Portland, OR, USA) and X-ray
photoelectron spectroscopy (XPS) on K-Alpha (Thermo Scientific, Portland, OR, USA).

3. Results and Discussion

In this study, water-soluble copper nanoclusters (Cu NCs) were prepared via the one-
pot ultrasonic method under room temperature using glutathione (GSH) as the reduction
agent and capping ligand. Figure 1a showed the absorption, excitation, and emission
spectrum of the as-synthesized Cu NCs. No peak at 507 nm was found in the absorption
spectrum, indicating that large copper nanoparticles were not generated [28]. PL and
PLE spectrum peaks were located at 395 nm and 605 nm, respectively. The little overlap
between absorption spectrum and PL spectrum of Cu NCs showed a large Stokes shift.
The faint yellow transparent Cu NCs aqueous solution emitted weak orange light under
the excitation of 365 nm light (Inset in Figure 1a). The dispersive spherical particles with
an average size of 2.08 nm were observed in TEM images (Figure 1b). The XPS analysis
was conducted to verify the elemental composition of Cu NCs and the valence state of
Cu. Element components of Cu, O, N, C and S were confirmed by their binding energy
signals (Figure S1a). From the XPS survey spectrum of Cu 2p, two obvious peaks at 932 eV
and 952 eV assigned to 2p1/2 and 2p2/3 electrons of Cu were observed (Figure S1b). The
absence of the signal peak at 942 eV proved that Cu2+ was reduced by GSH. Significantly,
the difference between the typical 2p3/2 peaks of Cu(0) and Cu(I) was only 0.1 eV, indicating
that the valence state of Cu in the obtained Cu NCs was likely to be between 0 (in the
core) and +1 (at the surface) [29–31]. FTIR spectra were employed to figure out the surface
properties of the as-prepared Cu NCs (Figure S2). The peak in the FTIR spectrum of GSH at
2524 cm−1 corresponded to the S-H stretching vibration disappeared in the spectrum of Cu
NCs, indicating that GSH was coated on the surface of Cu NCs through Cu-S bonding [32].
These characterizations proved that the GSH-Cu NCs were successfully prepared.

An organic solvent isopropanol (IPA) and a rare earth cation Ce3+ were introduced
into GSH-Cu NCs. As demonstrated in Figure 1c,d, the fluorescence intensity of Cu NCs
was on increasing trends when Cu NCs were dissolved in different concentrations of IPA or
introduced different amounts of Ce3+. Meanwhile, transparent Cu NCs solutions gradually
became turbid where white suspension emerged and the faint fluorescence turned into
intense orange emission from the insets of Figure 1c,d. From the PL spectra of Cu NCs
solutions in Figures S3 and S4, obvious blue shifts of the emission peaks were observed
with the addition of IPA and Ce3+ due to the increasing average Cu(I) ••• Cu(I) distance
caused by the intermolecular coprophilic attraction between the nearby Cu NCs [33].
Furthermore, the absorption peaks also became broader with the increase in IPA and
Ce3+, revealing the formation and growth of aggregates (Figures S5 and S6) [34]. The
aggregation structure on one hand facilitated the ligand-to-metal charge transfer (LMCT)
and/or ligand-to-metal-metal charge transfer (LMMCT), resulting in a metal-centered
triplet state radiative transition [5] and, on the other hand, suppressed molecule rotation
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and vibration, resulting in the fluorescence enhancement of Cu NCs solution [35]. The
aggregation-induced emission effect (the AIE effect) phenomenon of Cu NCs in solution
induced by the solvent IPA and rare earth cation Ce3+ were consistent with previous
studies [16,36].

We introduced solvent precipitation method and cation crosslinking method to syn-
thesize Cu NCs powder. As Figure 1e showed, the Cu NCs solution was added to a large
amount of IPA in order to obtain precipitation, and they were centrifuged and dried under
vacuum to obtain IPA-Cu NCs powder. Ce-Cu NCs powder was obtained from the sus-
pended precipitate of Cu NCs solution with Ce3+ by centrifugation and vacuum drying. In
order to investigate solid stability, the fluorescence intensities of these two phosphors were
recorded after incubation for different times under the same condition. The fluorescence
intensity of IPA-Cu NCs powder dropped rapidly and fell to 10% of the initial intensity
only 24 h later (Figure 2a). At the same time, the powder partly melted after 6 h and turned
into a gelatinous paste 24 h later (Figure S7). While the fluorescence intensity of Ce-Cu NCs
powder remained more than 85% of its initial intensity after 216 h and the morphology
hardly changed. The time taken for a 15% drop in luminescence (T85) was improved from
2 h to 216 h, showing prominent stability compared with IPA-Cu NCs powder (Figure 2b).
In order to verify the prime factor that caused the fluorescence decline, IPA-Cu NCs pow-
der exposed in the environment for 3 days was redried to determine PL intensity, and
IPA-Cu NCs powder-1 regained 92.3% of its initial fluorescence intensity (Figure 2c). The
well-recovered fluorescence of the aged Cu NCs powder by redrying implied the strong
impact of ambient moisture on the stability of IPA-Cu NCs powder. Pictures of IPA-Cu
NCs powder under different humidity after different times supported the inference are
provided from which more severe water absorption and luminescence quenching of the
powder under higher humidity could be observed in Figure S7. Meanwhile, Ce-Cu NCs
powder exhibited greater stability under different humidity (Figure S7). IPA-Cu NCs
powder was obtained due to the steeply decreasing dissolution of GSH-Cu NCs during
organic solvent-evaporating processes; thus, aggregation structure easily collapsed when
the water-soluble Cu NCs powder absorbed water from an environment with high humid-
ity [16]. In the XPS spectrum of Cu 2p electrons in IPA-Cu NCs powder-1, the signal peaks
at 934.7 eV, 943.3 eV and 954.5 eV represented the signal of the Cu(II) characteristic peak,
which showed that oxidation also affects the fluorescence stability in addition to water
absorption (Figure 2d) [37–40].

Several characterizations were carried out to figure out the interaction mechanism of
cerium (III) and Cu NCs. The microscopic morphology of the mixture of Cu NCs and Ce3+

(Ce-Cu NCs aggregates) was investigated by TEM. There was an intricate network structure
generated after adding Ce3+ into Cu NCs (Figure 3a), which was completely different from
the well-dispersed sphere structure of bare Cu NCs shown in Figure 1b. The EDS elemental
mappings and HADDF TEM were performed to investigate the combination between Ce3+

and Cu NCs (Figures S8 and S9a). Cu, Ce, and other expected elements observed in EDS
mapping images (Figure 3b and Figure S9b–f) were homogeneously distributed in Ce-Cu
NCs aggregates, indicating that Ce3+ and Cu NCs were fully crosslinked together.

From the FTIR spectra of Cu NCs and Ce-Cu NCs aggregates, the broad peaks around
3000–3500 cm−1 represented -NH- and -OH stretching vibration. -COOH stretching vi-
bration at 1525 cm−1 in Cu NCs was absent after adding Ce3+ and a signal at 1381 cm−1

corresponding to Ce-O bond appeared in Ce-Cu NCs aggregates (Figure 3c), which in-
dicated that Ce3+ were likely to anchor themselves to -COOH on the capping ligands of
Cu NCs through Ce-O bonding [41,42]. Moreover, the stretching vibration of -COOH at
1397 cm−1 in Cu NCs shifted to a higher wavenumber in Ce-Cu NCs aggregates [42]. Since
Ce3+ had a low standard electrode potential of −2.32, it could easily become oxidized and
donated electron pairs to form coordinate bonds [43]. Therefore, -COOH groups could
have accepted the external charge, and vibration frequency also increased, resulting in a
shift of the absorption band toward a higher wavenumber. The Zeta potential characteriza-
tion was employed to measure the surface charge of Cu NCs and Ce-Cu NCs aggregates
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(Figure S10). The surface potential of the bare Cu NCs turned from negative to positive
after adding Ce3+. This reversion was caused by the addition of Ce3+, which coordinated
with the carboxyl groups of the surface molecules via electrostatic interaction.
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Figure 1. (a) Absorption spectrum (dotted line) and PLE spectrum (blue line) at the detection
wavelength of 605 nm, PL spectrum (orange line) at the excitation wavelength of 365 nm and (b) TEM
image of the GSH-Cu NCs; PL intensity at the detection wavelength of 605 nm of Cu NCs aqueous
solution (c) with different concentrations of IPA (0–95%) and (d) with different amounts of Ce3+

(0.0–4.0 µmol); (e) experimental diagrams of solvent precipitation method and cation crosslinking
method. Inset in (a) showed the pictures of Cu NCs solution under daylight (the left one) and under
UV light (the right one). Inset in (b) on the left showed the HR-TEM of Cu NCs and inset on the
right showed the particle size distribution of Cu NCs. Insets in (c,d) showed the photographs of
Cu NCs solution under UV light with different concentration of IPA and different quantities of
Ce3+, respectively.
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PL intensity, respectively) of IPA-Cu NCs powder at the detection wavelength of 605 nm (365 nm
excitation); (b) PL intensity ratios (I/I0, I and I0 represented PL intensity after different hours and
initial PL intensity respectively) of Ce-Cu NCs powder at the detection wavelength of 605 nm (365 nm
excitation); (c) initial PL intensity of IPA-Cu NCs powder and PL intensity of IPA-Cu NCs powder-1
at the detection wavelength of 605 nm; (d) XPS spectrum of Cu 2p electrons of IPA-Cu NCs powder-1.
Insets in (a,b) show photographs under UV light of IPA-Cu NCs powder and Ce-Cu NCs powder
stored under the ambient humidity of 75% and temperature of 25 ◦C after 24 h.

The XPS survey of Ce-Cu NCs aggregates is shown in Figure S11a. According to the
XPS survey of Cu in the aggregates, the valence state of Cu remained the same as that of
Cu in Cu NCs, indicating that Ce3+ did not interact with the metal cores (Figure S11b).
Moreover, there were no Cu(II) signal peaks in the Cu 2p XPS spectrum of Ce-Cu NCs
aggregates stored for 3 days, revealing that the powder was much more stable to oxygen
than IPA-Cu NCs powder (Figure S12). The Ce 3d XPS survey spectrum could be divided
into five peaks at 885.66 eV, 903.95 eV, 882.04 eV, 900.25 eV and 906.73 eV (Figure 3d). The
peaks at 885.66 eV and 903.95 eV represented Ce3+ 3d3/2, and the other three peaks stood
for Ce4+ 3d5/2 [41]. The result that the valence state of Ce3+ raised from +3 to +4 partially
in Ce-Cu NCs aggregates was consistent with the shift of -COOH stretch mode from the
FTIR spectra of Cu NCs and Ce-Cu NCs aggregates. We infer that Ce3+ and the carboxyl
groups of the capping ligands could form coordinate bonds, and part of Ce3+ tended to be
oxidized via donating electron pairs to ligand molecules.

According to the results mentioned above, the interaction between Ce3+ and Cu NCs
in the stable Ce-Cu NCs powder was depicted in Scheme 1. Cu NCs were monodisperse
in clarified aqueous solution, which emitted faint orange light excited by 365 nm light.
Electrostatic repulsion caused by carboxyl groups of capping ligands prevented Cu NCs
from aggregating [11]. While after adding a specific amount of Ce3+, it worked as the
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crosslinking inducer in the process that preferred combining with carboxyl groups on Cu
NCs. Bonds between Ce3+ and ligand molecules induced nearby Cu NCs to connect and
aggregate, which induced the aggregates to precipitate. Furthermore, such tight structure
maintained by crosslinking prevented the aggregates from absorbing ambient moisture,
and Cu NCs along with Ce3+ on the edge of the aggregates protected the inner Cu NCs
from oxygen. Hence, Ce-Cu NCs powder exhibited greater stability in both physical form
and luminescence intensity.
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detail of Ce-Cu NCs aggregates TEM image.

Compared with Cu NCs powder obtained by solvent precipitation method, Cu NCs
powder by cation crosslinking method was easier to grind into fine powder and to preserve
for a long time, which enhanced its practical use value as a phosphor. Moreover, the
synthesis of Cu NCs powder by cation crosslinking would not waste a large amount of
antisolvent, which was more suitable and more convenient for mass preparation than sol-
vent precipitation method. Owing to photoluminescence, low-toxicity, stable and low-cost
properties, Ce-Cu NCs powder showed great potential in latent fingerprints visualization
in which Cu NCs were rarely used. Latent fingerprints referring to the prints left on items
by touching of human hands can hardly be seen with naked eyes [44–47]. The visualization
of latent fingerprints is significant in forensic investigation due to the uniqueness of fin-
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gerprints for individual identification [48,49]. Latent fingerprints on glass, paper, foil and
plastic marked by Ce-Cu NCs powder were investigated under UV light (Figure 4a–d). The
legible orange-emitting fingerprints images under UV light demonstrated that Ce-Cu NCs
powder could favorably adhere to the oily sebum of human fingers. Latent fingerprints
on the substrates without phosphor treating (Figure S13) were hard to recognize with the
naked eye, but the ridge termination points, bifurcation points and scar were clearly visible
after the latent fingerprints were labelled by Ce-Cu NCs powder (Figure 4e–h and S14).
Ce-Cu NCs powder showed high fineness and great ability to enhance the contrast of
the fingerprints pattern and different substrates background. Furthermore, the visualized
latent fingerprints on different substrates made it possible to apply phosphor at real crime
scenes with the integrated automated fingerprint identification system (IAFIS) test [50].
The use of Ce-Cu NCs powder on detailed latent fingerprints visualization broadened the
path for the application of Cu NCs and provided strong support for forensic investigation.
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4. Conclusions

We introduced a novel cation crosslinking method to obtain stable Cu NCs powder.
A rare earth metal cation Ce3+ was used as an inducer linked to the carboxyl groups on
surface ligand GSH through electrostatic interaction. Such tight structure restricted the
rotation and vibration of GSH molecules and helped protect Ce-Cu NCs powder against
ambient moisture, contributing to a 100-fold increase in solid stability compared with the
IPA-Cu NCs powder obtained via solvent precipitation method. Fine latent fingerprints
visualization on different substrates was achieved by applying the stabled phosphor
showing great potential in forensic investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11123371/s1, Figure S1. (a) XPS survey of GSH-Cu NCs; (b) XPS spectrum of Cu 2p
electrons in GSH-Cu NCs; Figure S2. FTIR spectrum of GSH and Cu NCs; Figure S3. Emission
spectrum of Cu NCs with different concentration of IPA (from 0 to 95%) under the excitation of 365 nm;
Figure S4. Emission spectrum of Cu NCs with different amount of Ce3+ (from 0 to 4.0 µmol) under
the excitation of 365 nm; Figure S5. Absorption spectrum of Cu NCs with different concentration
of IPA (from 0 to 95%); Figure S6. Absorption spectrum of Cu NCs with different amount of Ce3+

(from 0 to 4.0 µmol); Figure S7. Photographs of IPA-Cu NCs powder and Ce-Cu NCs powder after
different time (0, 6 and 24 h) in the same store condition (temperature of 25 °C) under daylight and
under UV light under different ambient humidity: (a) 11%, (b) 30%, (c) 57% and (d) 75%; Figure S8.
Map sum spectrum of Ce-Cu NCs aggregates; Figure S9. (a) HAADF-STEM image of Ce-Cu NCs
aggregates; EDS elemental mapping of (b) C, (c) N, (d) O, (e) S and (f) overlapped EDS images of
Ce-Cu NCs aggregates; Figure S10. Zeta potential of Cu NCs and Ce-Cu NCs aggregates; Figure
S11. (a) XPS survey of Ce-Cu NCs aggregates; (b) XPS spectrum of Cu 2p electrons in Ce-Cu NCs
aggregates; Figure S12. XPS spectrum of Cu 2p electrons in Ce-Cu NCs aggregates stored for 3 days;
Figure S13. Photos under daylight of latent fingerprints on (a) glass, (b) paper, (c) foil, and (d) plastic;
Figure S14. (a)Photo of finger of the donor under daylight; (b) photo of latent fingerprints detection
using Ce-Cu NCs powder under UV light. Inset in (b) showed the scar of the donor’s finger.
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