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Cell segmentation 
for immunofluorescence 
multiplexed images using 
two‑stage domain adaptation 
and weakly labeled data 
for pre‑training
Wenchao Han1,2*, Alison M. Cheung1, Martin J. Yaffe1,2 & Anne L. Martel1,2

Cellular profiling with multiplexed immunofluorescence (MxIF) images can contribute to a more 
accurate patient stratification for immunotherapy. Accurate cell segmentation of the MxIF images is 
an essential step. We propose a deep learning pipeline to train a Mask R‑CNN model (deep network) 
for cell segmentation using nuclear (DAPI) and membrane  (Na+K+ATPase) stained images. We used 
two‑stage domain adaptation by first using a weakly labeled dataset followed by fine‑tuning with a 
manually annotated dataset. We validated our method against manual annotations on three different 
datasets. Our method yields comparable results to the multi‑observer agreement on an ovarian 
cancer dataset and improves on state‑of‑the‑art performance on a publicly available dataset of mouse 
pancreatic tissues. Our proposed method, using a weakly labeled dataset for pre‑training, showed 
superior performance in all of our experiments. When using smaller training sample sizes for fine‑
tuning, the proposed method provided comparable performance to that obtained using much larger 
training sample sizes. Our results demonstrate that using two‑stage domain adaptation with a weakly 
labeled dataset can effectively boost system performance, especially when using a small training 
sample size. We deployed the model as a plug‑in to CellProfiler, a widely used software platform for 
cellular image analysis.

Immuno-oncology profiling requires a detailed assessment of the tumor  microenvironment1. This includes iden-
tifying and quantifying different immune cell subsets, their spatial arrangement, and the expression of immune 
checkpoint markers on these  cells2. Simultaneously characterizing both immune and tumor-related pathways 
can empower a more accurate patient stratification for  immunotherapy3–5. Advances in imaging and automatic 
analysis (including artificial intelligence) can dramatically impact the ability to perform such  characterization1. 
Immunofluorescent multiplexing, one of several multiplexing technologies that have recently become available, 
allows the labeling of different protein markers with immunofluorescent (IF) conjugated antibodies on the same 
tissue section simultaneously. Accurate cell segmentation on the multiplexed immunofluorescence (MxIF) images 
is an essential step when generating profiling information for downstream analysis.

Meijering6 published a comprehensive review of the literature on methodologies for nuclear/cell segmenta-
tion, covering many conventional algorithms (i.e. non-deep learning), including thresholding, filtering, mor-
phological operations, region accumulation, and model fitting. These methods used alone are seldom able to 
achieve satisfactory results. More commonly, combinations of methods are used for specific nuclear/cell seg-
mentation tasks. For example, Veta et al.7 proposed a pipeline that used maker-controlled watersheds followed 
by postprocessing steps to segment cell nuclei on haematoxylin and eosin (H&E) stained images. They used 
color unmixing, morphological operations followed by a fast radial symmetry  transform8 to extract foreground 
and background markers to perform the marker-controlled watershed  algorithm9. Software platforms have been 
developed to make it easier to adapt existing methods to new  tasks10,11. For example,  CellProfiler11 provides a 
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platform for the user to construct a pipeline by selecting one or more conventional algorithms. Specifically, it 
provides a graphical user interface (GUI), where users can select algorithms and place them in a serial order by 
dragging them into the pipeline. Since those conventional algorithms usually have low computation cost, they 
are easy to deploy, which makes them popular and widely used. However, there are some disadvantages of this 
approach: (1) the use of these methods usually involves manually fine-tuning parameters, which is often labor-
intensive and time-consuming12, (2) methods built from those conventional algorithms often do not general-
ize well for batch processing or processing images from different datasets, (3) they may not be able to achieve 
satisfactory performance for  application6.

Recently, deep learning, specifically fully convolutional networks (FCN)13 based methods, such as U-Net14, 
 DoGnet15, and  DeepCell16 have come into wide use for cell/nuclear segmentation. They demonstrate better 
accuracy in performance for cell nuclear  segmentation14,16,17 with much better generalization capacity and are 
suitable for batch processing. Since the core concept of deep learning is to train a model using labeled samples, 
a large quantity of labeled data that covers an appropriately broad range of sample variation is necessary to 
achieve satisfactory results.

The above-mentioned methods utilize semantic segmentation, i.e. a label is assigned to each pixel and the 
object-level information is not necessarily preserved. For example, the neighbouring cells may not be separated, 
and they may be considered as one unit. In contrast, instance segmentation identifies each instance (i.e. cell) 
and provides a  partitioning18. Semantic segmentation followed by various post processing steps can be used to 
achieve instance segmentation. In the cellular image segmentation task, for example, instance segmentation can 
be accomplished by classifying each pixel as either nuclear/cell interior, edge, or background and then using 
a connected region growing method to label each interior instance. It is often the case that there are crowded, 
touching cells/nuclei, and cells/nuclei that have staining variation. This makes the isolation of individual cells/
nuclei difficult. For those methods, post processing  steps14,15 for grouping pixel labels, splitting touching nuclei 
and/or removing the overly segmented nuclei are important for the final segmentation.

The methods described above have been developed to segment cell nuclei or isolated single cells and in both 
cases the objects of interest appear as mostly well separated solid objects. Our task is much more challenging 
as we need to isolate each cell instance and accurately define the cell boundaries (as defined by the cell mem-
brane) in whole tissue. Each cell is made up of a solid nucleus surrounded by varying amounts of cytoplasm 
and bounded by the cell membrane. Cells are generally packed in closely together, so it is often not possible to 
separate the membrane of one cell from that of its neighbours. This is illustrated in the first row in Figs. 6 and 7. 
The cell membrane usually appears as a very fine line in the MxIF images and the unavoidable staining variation, 
which can come from tissue processing, staining and imaging, results in some cells being rendered in the slide 
with incomplete or broken boundaries (see cells in Region 2 in Fig. 6). This makes the cell boundary hard to 
define and results in under-segmentation (i.e. failure to split cells properly). Also, weak, non-specific staining in 
the background or cell interior, may result in over-segmentation (i.e. incorrectly splitting a single cell into more 
than one object) (see segmentation results by Micro-Net for regions 1 and 2 in Fig. 7). In addition, the visual 
appearance of each cell varies largely as nuclei are different and they can appear at any location within the cell 
(see the different cell appearances in Figs. 6 and 7).

A few  studies12,19 have developed methods for single cell segmentation for MxIF images. Wang et al.12 
described a method that uses single stained membrane channel images for the fluorescent, phase contrast and dif-
ferential interference contrast images. First, they used an object-detection based network (i.e. Faster R-CNN20) to 
identify the cell region with a bounding box, and then applied a watershed  algorithm9 to segment cell boundaries. 
They demonstrated substantial improvement in the cell count accuracy (i.e. accuracy for identifying individual 
cells) but using U-net14 yielded better pixel-level segmentation accuracy in their study. The most relevant work 
by Shan et al.19 proposed Micro-Net for various segmentation tasks including single cell segmentation for MxIF 
images using nucleus and membrane channel images as inputs. They used an enhanced network to improve 
robustness to image noise/variability and reported state-of-the-art performance compared to other widely used 
deep learning methods. Their method, however, used semantic segmentation and post-processing was required 
to achieve instance segmentation.

Recently, the field of object-detection based instance segmentation has been substantially advanced. Mask 
R-CNN21, one of the most accurate methods for instance segmentation, was built on the Faster R-CNN. It pro-
vides an end-to-end workflow for instance segmentation without the need for post-processing steps by efficiently 
performing semantic segmentation using FCN in parallel with the object-detection stage. This generic algorithm 
is widely used in various tasks including segmentation in cellular  images22. Loh et al.23 and Dhieb et al.24 dem-
onstrated accurate results using Mask R-CNN for instance segmentation for counting blood cells in microscopic 
images. Kromp et al.25 evaluated U-Net, instance-aware based architectures and two conventional pipelines for 
nuclear segmentation on complex immunofluorescence images. They found that the instance-aware method 
(including Mask R-CNN) performed better in the object-based metric (i.e. F1 score) while U-Net based method 
performed better on the pixel-level based metric (i.e. mean Dice score). Fujita et al.26 proposed a method to 
improve the performance of Mask R-CNN for nuclear segmentation on the 2018 Data Science Bowl dataset. Their 
method balances the contribution of multiple task losses in training to improve the performance for detecting 
hard samples. These  studies21,23,24,26,27 provided valuable insights on implementing Mask-RCNN for microscopy 
images and demonstrated its effectiveness, particularly for instance identification/detection and segmentation. 
However, these methods were applied to the tasks of blood cell segmentation and nuclear segmentation which, 
as mentioned previously, are very different to our task of cell segmentation in tissue MxIF images.

In addition, the literature pointed to the challenges for implementing Mask R-CNN: (1) needing large number 
of annotated datasets for effective training, and (2) limited generalization capacity for image samples from dif-
ferent datasets or created under different conditions. Manually annotating each cell instance for training is very 
time consuming, especially for cellular images, which usually have hundreds/thousands of cells in one region 
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of interest (ROI). Even if one could collect a very large number of image samples containing large variabilities 
and afford to hire a large group to annotate images, it is impossible to include images that represent all possible 
conditions, nor define annotation standards that fit all use purposes.

Domain adaptation/transfer learning is a method that adapts a model trained for one task for the target task 
by fine-tuning. For a CNN, this allows it to be pre-trained to learn many feature filters (e.g. edge, intensity, etc.) 
before fine-tuning. This method has been effective in improving performance in many tasks, especially when 
the training sample size is not  large28.

In this article, we present a deep learning-based pipeline for instance cell segmentation for MxIF images of 
DAPI (a nuclear stain) and  Na+K+ATPase (a membrane stain, referred to here as MEM) stained images by using 
two-stage domain adaptations to train a Mask R-CNN model. We performed first-stage domain adaptation by 
fine-tuning the model using a weakly labeled dataset. The second-stage domain adaptation was performed by 
using a dataset with manually annotated fine labels. We validated our pipeline on two different in-house datasets 
and one public dataset. The primary contributions of this paper are: (1) description of a two-stage domain adap-
tion method for whole cell segmentation on MxIF images, which allows the model to achieve a human-level 
performance and a better than state-of-the-art performance validating on different datasets; (2) demonstration 
that the use of a weakly labeled dataset (using samples from a similar but different domain) for first-stage domain 
adaption substantially improves the final model performance overall and allows the model to achieve satisfactory 
results on different domain datasets using a few manually annotated samples for second-stage domain adapta-
tion; (3) presentation of a recursive pipeline for generating high-quality weak labels of cell membrane boundary, 
which uses a minimum amount of human labor; (4) deployment of our pipeline in Cellprofiler as a plug-in for 
easy access for both developers and end users.

Methods
Figure 1 is a schematic outline of the workflow for our method. A Mask R-CNN model, pre-trained using natural 
image data, was trained using two-stage domain adaptation by first fine-tuning using a weakly-labeled dataset 
(see the workflow for generating weak labels in B and C) followed by fine-tuning with a manual annotated dataset 
(see the branch resulting pre-train weak). For comparison purposes the model was also fine-tuned using the 
manual labeled data only (see the branch of pre-train COCO). The trained system was deployed as a plug-in to 
the CellProfiler platform. The plug-in deployment packages all the dependencies in an executable for easy access 
and use (refer to “System development” and “Results” for deployment details).

Data. This study was approved by our institutional Health Sciences Research Ethics Board, and all methods 
were performed in accordance with the relevant guidelines and regulations. For the human tissues used in this 
study, informed consent was obtained from all participants and/or their legal guardian(s). For system validation, 
a total number of 223 ROIs were used (see the detailed breakdown in Table 1). Three different datasets were 
used: (1) ovarian cancer, (2) breast cancer, and (3) mouse pancreatic tissue samples (a public dataset used for 
algorithm comparison purposes). Samples were split 50:50 for training and testing such that samples from the 
same case/mouse were not used for both training and testing (see the training and testing datasets separately 
listed in Table 1). For generating the weak labels for the first-stage domain adaptation, a separate dataset (i.e. not 
overlapped with any of the total of 223 ROIs listed in Table 1) comprising a total number of 210 ROIs (referred 
as weak-label-set) was created by sampling from one ovarian cancer tissue section of a training case. When 
sampling, we excluded tissue regions that were sampled for creating O-train. The weak-label-set of 210 ROIs was 
separated into three groups for the weak label generation (see details in weakly labeled data in the following sec-
tion); each group contains 26 (weak set-1), 16 (weak set-2), and 168 ROIs (weak set-3) respectively.

We performed multiplexing for both the ovarian and breast cancer samples at our laboratory. Ovarian cancer 
samples were supplied by Dr. Pamela Ohashi’s laboratory (University Health Network, Toronto, ON). A breast 
cancer tissue microarray (TMA) was purchased from Pantomics (CA, USA). The mouse pancreatic data and 
expert annotations were downloaded from a publicly available dataset: https:// warwi ck. ac. uk/ fac/ sci/ dcs/ resea 
rch/ tia/ data/ micro net.

1. Tissue imaging for in-house data
  In this study, we used six ovarian cancer tissue sections from 6 patients and 40 breast cancer cores from a 

TMA which was created with samples from 20 patients. The tissues were imaged using a prototype Immu-
nofluorescence protein multiplexer (GE Research, Niskayuna NY, USA). The antibodies that were used for 
sequential staining in this work included: CD3, CD4, CD8, Ki67, CD68, PD1, PDL1.  Na+K+ATPase (MEM) 
and Ribosomal S6 were used as membranous and cytoplasmic markers respectively and 4′,6-diamidino-
2-phenylindole (DAPI) was used as a nuclear marker. The formalin-fixed paraffin-embedded tissues were 
imaged on glass slides at 0.293 µm/pixel using MxIF and registered using the software, Layers (GE Research, 
Niskayuna NY, USA).

2. Manual annotated data
  All ROIs (in Table 1) were manually contoured by human observers. The in-house datasets including ovar-

ian and breast cancer tissue samples were annotated by a researcher (Han) trained by a biologist (Cheung) 
and a pathologist (Liu). O-test2 (a subset of six ROIs from one section of the testing dataset) was annotated 
by three observers (i.e. Han, Cheung, and Martel) independently. The annotation was performed to contour 
the cell boundary, defined by the cell membrane edge seen on the MEM channel (see the white annotation in 
A–B as an example in Fig. 6). For each ROI, annotation was performed on the Sedeen viewer (www. pathc ore. 
com/ sedeen). After conversion of the single channel DAPI channel and MEM channel images from 16-bit to 
8-bit, the images were stacked in the R-G-B color space in the order DAPI-MEM-DAPI. The annotator could 

https://warwick.ac.uk/fac/sci/dcs/research/tia/data/micronet
https://warwick.ac.uk/fac/sci/dcs/research/tia/data/micronet
http://www.pathcore.com/sedeen
http://www.pathcore.com/sedeen
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switch between the DAPI channel, MEM channel, and the stacked color images (SCI) during the process. A 
polygon tool was used to contour each individual cell. Cells were excluded if they met any of the following 
conditions: (1) overlapping nuclei; (2) membrane crossing over the nuclei; (3) out of focus nuclei; (4) faintly 
stained nuclei. The manual annotation process took approximately 2.5 hours per ROI for each observer.

3. External mouse pancreatic data
  The publicly available dataset of mouse pancreatic tissue sections was acquired from https:// warwi ck. ac. uk/ 

fac/ sci/ dcs/ resea rch/ tia/ data/ micro net. The images were generated using a different staining (i.e. E-cadherin) 
for the membrane. Those tissues were manually contoured by expert  biologists19. The annotations were car-
ried out using different criteria to those we adopted; each cell was required to be separated from its neighbor 
by a gap and all cells, including those that were faintly stained or out of focus, were included.

Figure 1.  Workflow diagram for methodology: (A) (within black solid box) demonstrates the methods of 
training a Mask R-CNN model using domain adaptation with and without pre-training using weakly labeled 
ovarian data. The corresponding final models are referred to as pre-train weak and pre-train COCO respectively. 
The dotted and dashed boxes (i.e. B and C) demonstrate the process of generating weak annotations for the cell 
boundaries: (B) describes using the  Na+K+ATPase image to generate weak (i.e. rough estimation) annotations 
for cell boundaries using seeded watershed by using nuclear labels as seeds. (C) demonstrates the semi-
automatic nuclear segmentation using bootstrapped U-net after CellProfiler labeling and manual editing of the 
nuclear annotations. This figure is created using diagrams.net (https:// www. diagr ams. net/).

https://warwick.ac.uk/fac/sci/dcs/research/tia/data/micronet
https://warwick.ac.uk/fac/sci/dcs/research/tia/data/micronet
https://www.diagrams.net/
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4. Weakly labeled data

(1) Method overview
  Our method for generating weak labels of whole cell boundaries includes (1) nuclear segmenta-

tion on DAPI channel images, (2) cell membrane segmentation on the MEM channel images. The 
workflow can be found in B and C in Fig. 1. In the nuclear segmentation stage (see the process in 
C in Fig. 1), we created a pipeline using conventional algorithms in CellProfiler to segment nuclei 
on a small set of samples (i.e. weak set-1). To improve the label quality to train a U-Net, a human 
observer participated in editing/correcting the segmentation results (e.g. splitting touching/over-
lapped objects (Fig. 2b)). We then trained a U-Net using the weak set-1. The trained model was used 
to generate nuclear labels for the weak set-2. A second round of human editing helped in correcting 
U-Net generated labels (Fig. 2d–f). Finally, we trained the U-Net using both weak set-1 and weak 
set-2 and used the trained U-Net to label nuclei for the weak set-3. Given the nuclear labels from the 
weak-label-set, we then produced cell boundary weak labels using marker-controlled watershed (B 
in Fig. 1). In such a recursive manner for human-involved editing and U-Net training, on successive 
iterations the human observer only needs to correct a small number of nuclei that were incorrectly 
segmented/labeled. The details of the methods are described in the following sections.

(2) Semi-automatic nucleus segmentation
  For the weak set-1, nuclei were segmented on the DAPI channel images using Otsu’s  method29 for 

thresholding followed by seeded watershed performed in CellProfiler (see result example in (a) in 
Fig. 2). Segmentation results were then reviewed and manually edited using Sedeen  viewer30 (Fig. 2b). 
The DAPI channel images of the weak set-1 and the nuclear segmentation results (Fig. 2c) were used 
to train a U-Net14 for nuclear segmentation. Segmentation was then performed on the weak set-2 of 
the DAPI channel images using the trained U-Net. These segmentation results were reviewed and 
edited manually (Fig. 2d–f). Both weak set-1 and weak set-2 were used to train another U-Net. Nuclear 
segmentation was then conducted on weak set-3 using that trained model.

  Our U-Net14 implementation is based on the implementation (https:// github. com/ carpe nterl ab/ 
unet4 nuclei/) described by Caicedo et al.31 for nuclear segmentation. We adapted the code to imple-
ment it using Pytorch. We used DAPI channel images as input, and three-class label maps (i.e. color 
images in which red labels the nuclear boundary pixels, blue labels pixels within the nucleus, and the 
background pixels are shown in green) as ground truth for training (see Fig. 2c,f).

(3) Automatic cell boundary segmentation using marker-controlled watershed
  For the weak-label-set, nuclear segmentation was performed as described above. Next, cell seg-

mentation (see results in Fig. 3b) was performed on the MEM channel (Fig. 3c) images using seeded 
 watershed9 (see B in Fig. 1). The nuclear segmentation results (see Fig. 3a) include three labels: (1) 
inner nucleus; (2) nuclear boundary; (3) background. A morphological erosion was performed on 
the inner nucleus using a 3 × 3 disk to reduce the size of the marker. The resulting regions were used 
as seeds to perform watershed segmentation of the cells. Some segmented regions were found to cor-
respond to large background regions, therefore, a size filter was used to remove any regions ≥ 1400 
pixels (see grey regions in Fig. 3b). 

System development. Our proposed method (pre-train weak) used the following steps (see workflow in 
Fig. 1). Initially, the Mask R-CNN model was pre-trained for instance segmentation using a large dataset of natu-
ral images (i.e. the MS COCO  dataset32). A two-stage domain adaptation was then performed: (1) fine-tuning 

Table 1.  Dataset information (the notation of each dataset is in the brackets).

Dataset Splitting Number of cases/mice Number of cells
Number of ROIs 
(512 × 512 pixel)

Ovarian cancer

Training (O-train) 3 2026 12

Testing (O-test1) 3 2277 12

Testing (O-test2) (multi-
observer) 1 (from testing case) 1006 6

Total 6 5309 30

Breast cancer

Training (B-train) 10 2172 20

Testing (B-test) 10 2416 20

Total 20 4588 40

Mouse pancreatic (external 
data)

Training (M-train) 6 8479 91

Testing (M-test) 4 5583 62

Total 10 14,062 153

Complete dataset

Training dataset 19 12,677 123

Testing dataset 17 11,282 100

Total 36 23,959 223

https://github.com/carpenterlab/unet4nuclei/
https://github.com/carpenterlab/unet4nuclei/
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with weak-label-set; (2) fine-tuning with manual annotated datasets. Weak cell boundary labels were generated 
using a semi-automatic method as described above (see steps in B and C in Fig. 1). For comparison purposes, 
experiments were also performed on a model without pre-training using the weakly labeled dataset (pre-train 
COCO) (see Fig. 1). In the experiment using a public dataset (see details in experiment design below), a model 
(pre-train breast) was fine-tuned from the final model trained for the breast cancer dataset.

Mask R-CNN21 is a deep learning architecture for instance segmentation (see workflow in Fig. 4). There are 
two stages: (1) generating the proposals for the regions where the objects might exist using a region proposal 
network (RPN) described by Lin et al.33; (2) based on the proposals, performing classification (i.e. classifying 
each proposal as object labels), refining the bounding boxes of the proposal, and segmenting the object. The 

Figure 2.  ROI samples (from weak-label-set) for nucleus label generation using semi-automatic method. 
First row images (a–c) demonstrate nucleus label generation for the method using Cellprofiler + manual edits. 
(a) Label map generated using Cellprofiler. Different nuclei are labeled by different colors. (b) Manual edits 
that were performed on the DAPI channel image to correct the results in (a). Red annotations were added to 
segment the nuclei. (c) Label map generated from (a) and (b). Second row images (d–f) demonstrate generating 
nuclear labels using U-Net + manual edits. (d) Label map output from U-Net. (e) Manual edits were performed 
on the DAPI channel image to correct the results in (d). (f) Label map generated from (d) and (e). Color codes: 
In (c), (d), and (f) red—nuclear boundary, blue—interior of nucleus, and green—the background. In (b) and 
(e): red represents added lines as nuclear boundaries; yellow contours the nuclear boundaries for removal; cyan 
contours the nuclei for removal.

Figure 3.  ROI sample (from weak-label-set) for cell label generation. (a) Nucleus label map in which each 
nucleus was used as a marker for performing marker-controlled watershed + morphological operations to 
generate a cell label map (b). Color codes in (b): white—inner cell regions, black—cell boundaries, and grey—
background. (c) MEM channel image.
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network structure uses a feature pyramid  network33 (FPN) backbone, which includes a bottom-up pathway and 
up-bottom pathway. The bottom-up pathway can be a convolutional neural network (CNN) such as ResNet-50, 
or ResNet-10134.

The Mask R-CNN  implementation27 is based on the implementation by Matterport Inc. released under an 
MIT License. SCIs were used as input images. Stacked binary masks (i.e. cells vs. backgrounds) served as ground 
truth (see the example of binary mask in Fig. 4), and these were extracted from the cell labels as described in 
the previous section.

During training, the model was initialized with the pre-trained weights generated using the MSCOCO 
 dataset32 (https:// github. com/ matte rport/ Mask_ RCNN/ relea ses/ downl oad/ v1.0/ mask_ rcnn_ coco. h5). 
ResNet-101 was used as the backbone structure. To perform cell segmentation, the network heads were first 
trained for 20 epochs, and then all layers were trained for 40 epochs. Binary cross entropy was used as the multi-
loss function, and stochastic gradient descent (SGD) as the optimizer. The training parameters are: batch size = 6, 
learning rate = 0.0001, weight decay = 0.0001, momentum = 0.9. The gradients were clipped to 5.0 to prevent 
gradient explosion. The input images were scaled up by a factor of two using nearest neighbor interpolation and 
normalized across channels. The input images were augmented randomly using the following methods: (1) flip-
ping vertically/horizontally for 50% of all images, (2) blurring images using a Gaussian kernel with sigma of 5.0, 
(3) multiplying by a random value between 0.8 to 1.5 to darken/brighten input images, (4) randomly rotating 
the images by an angle of 90°, 180° or 270° using affine transform. The model was fine-tuned using the identical 
setup as the training stage.

The method was deployed as a CellProfiler plug-in for cell segmentation for MxIF images. As analysis pipe-
lines also require nucleus segmentation, a separate nuclear segmentation model was trained with the 2018 Data 
Science Bowl nucleus  dataset35 and fine-tuned with the dataset with nuclear segmentation labels that were used 
for generating weak cell boundary labels. The same setup was used for training and fine-tuning as described 
above.

Our implementation for seeded watershed used Matlab 2018b (The Mathworks, Natick, MA). The seeded 
watershed algorithm and manual annotation were performed on a PC with AMD Ryzen 5 2600 CPU, 16 GB 
memory, and Gigabyte GeForce RTX 2070 8 GB GPU. Our implementation for U-Net, training and fine-tuning 
of Mask R-CNN were performed on our server using a single Nvidia Titan XP GPU with a setup of dual Intel 
Xeon E5-2660 CPU and 128 GB memory. Experimental validations were performed using Compute Canada 
(www. compu tecan ada. ca) with one node using 48 CPU cores.

Our system was deployed using the Flask  framework36, which included the plug-in and the executable compo-
nents. The plug-in is a Python script written in CellProfiler plug-in specified format. The executable was compiled 
using Pyinstaller-4.1 with our source code and run-time environment dependencies.

Experimental design. Experiment validating against multi-observer annotations. The system was trained 
using O-train and validated on the O-test2 against each observer’s annotation respectively and the results were 
averaged. To evaluate the annotation agreement between different observers as a baseline for comparison, we 
validated the annotations between all pairs of observers and averaged the pairwise results.

In order to evaluate the potential impact from the observer annotation, we also conducted a comparative 
analysis on O-test2. We compare the system results when validating against the researcher’s annotation and 
the expert’s annotation. We also compare those results to the inter-observer agreement between the researcher 
(Han) and expert (Cheung).

Figure 4.  Mask R-CNN workflow for single cell segmentation of multiplexed images. The input images are the 
color stacked images from the DAPI and  Na+K+ATPase -stained single channel images. The input went through 
the backbone (i.e. ResNet101) to form the feature map. Another branch went through the region proposal 
network to generate the instance candidate (i.e. region proposals) on the feature map. The following branches 
are: (1) full convolutional network for segmentation for the proposed instances, (2) fully connected layers for 
classification and bounding box regression for the instances. This figure is created using diagrams.net (https:// 
www. diagr ams. net/).

https://github.com/matterport/Mask_RCNN/releases/download/v1.0/mask_rcnn_coco.h5
http://www.computecanada.ca
https://www.diagrams.net/
https://www.diagrams.net/
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Experiments validating on three different datasets using different training sample sizes. To evaluate the generali-
zation capacity of the system, our methods were validated against manual annotations using (1) the O-test1, (2) 
B-test, and (3) the M-test. For each dataset, the experiment was performed using different training sample sizes 
from the training datasets (i.e. O-train, B-train, M-train) and validated on the corresponding testing datasets 
(Table 1). Specifically, for example, for ovarian cancer tissue datasets, the model was trained using samples from 
O-train and validated on O-test1. Similarly, for breast cancer dataset, the model was trained using samples from 
B-train and validated on B-test. Our methods of pre-train weak and pre-train COCO were compared on our in-
house datasets. The methods (i.e. pre-train weak, pre-train COCO and pre-train breast) were compared to Micro-
Net (state-of-the-art), and U-net using the public dataset. The models were trained with samples from M-train 
and validated on M-test. The direct comparison to Micro-Net and U-net can be found when using a training 
sample size of 72 ROIs, which is the sample size Shan et al.19 used in their study.

Error metrics. Object-Dice (OD) and object-Hausdorff (OH) were computed as metrics to measure the sys-
tem  performance37. The Dice  coefficient38 measures how well the segmented region matches the ground truth. 
Hausdorff  distance39 measures the longest distance between the segmentation boundary and the ground truth 
boundary, which gives the largest misaligned distance. Computing those metrics at the object-level takes object 
identification into consideration. For example, touching cells that are well segmented as a whole but not properly 
separated can have high value of Dice but lower value of Object-Dice weighted by the cell size.

Approval for human experiments. This study was approved by our institutional Health Sciences 
Research Ethics Board (Sunnybrook Research Institute Health Sciences Research Ethics Board, Toronto, 
Ontario, Canada).

Results
Experiment validating against multi‑observer annotations. The results are shown in Table 2. Pre-
train weak yielded comparable results to the multi-observer agreement in both metrics of OD and OH, while 
pre-train COCO showed inferior results with slightly lower OD and higher OH.

Comparative results are shown in Table 3. The annotation agreement between the researcher (Han) and expert 
(Cheung) are close to the multi-observer agreement (Table 2). For pre-train weak, the results validating against 
Cheung are close to the multi-observer agreement (Table 2). When validating against Han’s annotation, which 
were used for second-stage domain adaptation, the results show higher agreement (OD of 0.80 and OH of 7.86). 
This result is similar to the results on other datasets with single observer annotations (see results reported in 
Fig. 5). In Table 3, the differences between two pairwise results are within the range of the standard deviations of 
the two. Based on our observation including two expert observers (Liu and Cheung), the primary disagreements 
between the human observers and model vs. each observer come from the borderline cases where controversy 
may arise due to the excluding rules. 

Experiments validating on three different datasets using different training sample sizes. The 
results are shown in Fig. 5. In general, pre-train weak (blue plots) yields higher OD and lower OH than the 
pre-train COCO (orange plots) in all the experiments, suggesting that it provides superior performance. The 
performance differences between the two methods are larger when the training sample sizes are smaller for the 
experiments using ovarian cancer and external datasets. Compared to pre-train weak, for both metrics, pre-train 
COCO has higher standard deviations and shows larger variation (i.e. changes between the points) when using 
different training sample sizes.

For all methods, we observed increased OD and decreased OH as training sample size increases, and the two-
stage domain adaptation methods (i.e. pre-train weak and pre-train breast) are less sensitive to training sample 
size with a boosted performance than pre-train COCO. The pre-train weak method achieves close to optimal 
OD and OH when using training sample sizes of more than 600 cells for all experiments. This also applies to the 

Table 2.  Multi-observer validation results for O-test2 dataset.

Methods Object dice (OD) Object hausdorff (OH) (pixel)

Multi-observer 0.76 ± 0.03 10.03 ± 1.26

Pre-train weak 0.76 ± 0.04 9.25 ± 0.86

Pre-train COCO 0.73 ± 0.03 10.66 ± 1.03

Table 3.  Comparative results for O-test2 dataset for researcher (Han) and expert (Cheung) annotations.

Pairwise validation Object dice (OD) Object hausdorff (OH) (pixel)

Han vs. Cheung 0.77 ± 0.03 9.14 ± 1.11

Pre-train weak vs. Han 0.80 ± 0.03 7.86 ± 0.76

Pre-train weak vs. Cheung 0.75 ± 0.04 9.92 ± 1.35
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pre-train breast method applied to the public dataset. In contrast, the pre-train COCO method requires a larger 
training sample size and there are large variations in OD and OH. In the experiments using ovarian and breast 
cancer datasets, the pre-train weak using a training sample of one ROI achieves higher OD and lower OH than 
pre-train COCO using all the available training data (A–D in Fig. 5). Similarly, pre-train weak used three ROIs 

Figure 5.  Experiment results on three different datasets using different training sample sizes for training. Left 
and right columns are OD vs. training sample size and OH vs. training sample size respectively. (A, B), (C, D), 
and (E, F) are the results using the ovarian cancer dataset, breast cancer dataset, and public mouse pancreatic 
dataset respectively. Color code in the plots represents different methods.
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for training to achieve better performance than pre-train COCO using all the training samples in the experiment 
using the public dataset (E and F in Fig. 5). We note that the available training sample size in the public dataset 
includes 90 ROIs, which contains 8426 annotated cells.

For the experiment using publicly available data, pre-train breast and pre-train weak have similar ODs and 
OHs for all training sample sizes (E–F in Fig. 5). When using a training sample size of 72 ROIs for direct compari-
son, both methods have superior performance compared to Micro-Net (Table 4). The performance superiority 
remains when using a sample size as small as one ROI for training (Fig. 5 and Table 4). Pre-train COCO also has 
a slightly higher OD and a much lower OH than Micro-Net using the training sample size of 72. All methods 
using Mask R-CNN, regardless of training sample sizes, have lower OHs than Micro-Net using 72 ROIs for train-
ing (Fig. 5 and Table 4). In addition, all methods, regardless of training sample sizes, show substantially higher 

Table 4.  Validation results for M-test dataset using training sample size of 72 ROIs.

Methods Object dice (OD) Object hausdorff (OH) (pixel)

Micro-Net 0.74 ± 0.07 27.53 ± 11.36

Pre-train weak 0.79 ± 0.05 16.63 ± 3.01

Pre-train COCO 0.75 ± 0.08 18.73 ± 4.51

Pre-train breast 0.79 ± 0.05 16.67 ± 3.00

Figure 6.  Visual results for the example image of a breast cancer tissue sample. First row is a color stacked 
image from DAPI and  Na+K+ATPase-stained images. The  Na+K+ATPase channel is enhanced for visualization. 
Yellow square highlighted Region 2 is zoomed in at right. White dashed box 1 contains cells that have tight 
boundaries. (A,B) show the system output contours and manual contours overlaid on the color image. White: 
system prediction. Cyan: manual annotation. Red: False negative. Yellow: False positive. (C,D) are prediction 
maps by the systems. Each contour mask is shown with a different color. This figure is created using diagrams.
net (https:// www. diagr ams. net/).

https://www.diagrams.net/
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OD and lower OH than U-net as reported by Shan et al.19 (OD of 0.67; OH of 40.39) using training sample size 
of 72ROIs (Fig. 5 and Table 4).

Example visual results from the experiments. Figure 6 shows an example of our experimental results. 
We observe that most system outputs are closely aligned to the manual annotation, with pre-train weak show-
ing slightly better alignment than the pre-train COCO (see cyan and white contours in A–B). Each cell is con-
toured by the system independently without broken contours (see color masks in C-D). Cells that have very 
tight boundaries (cells in the white dashed box 1) are also contoured by both pre-train weak and pre-train COCO 
(see cells in the white dashed box 1 in A–B). It was found that pre-train weak yields lower numbers of FNs and 
FPs than pre-train COCO (see FNs by red contours and FPs by yellow contours in A–B), especially at the region 
where the cells are tightly packed with weak boundary stains (see cell boundaries indicated by yellow arrows in 
Region 2 and result maps A–B).

Figure 7 shows an example of our experiments on the public dataset. In general, all outputs are closely 
aligned with manual annotations. Pre-train weak and pre-train breast show similar performance with the clos-
est alignment to the manual annotations. In contrast, Micro-Net has cells that are overly segmented, and those 
masks show irregular and fragmental shapes (see Region 1 and 2 in the result maps indicated by yellow arrows 
for comparison). This results in a large value of Hausdorff distance. Pre-train COCO shows a lower degree of 
alignment to manual annotation than pre-train breast and pre-train weak (see the example indicated by the green 
arrow in result maps). It also has an overly segmented cell (see Region 3, and cell indicated by the orange arrow 
in the pre-train COCO result map).

Implementation deployment. The workflow is shown in Fig. 8. We set up the inputs and outputs in the 
CellProfiler interface (D). The input images are DAPI (a nuclear stain) and  Na+K+ATPase (a membrane stain) 
channel images for nuclear and cell segmentation. Pan-cytokeratin channel image (C) is the image for cellular 
profiling as an example. Once the executable is successfully launched (E), the “Analyze image” button is clicked 
to run the algorithm. The segmentation results are overlaid in the color image (F). These results were applied 
to the pan-cytokeratin channel image for cellular profiling and image is presented (G). Users can profile images 
from multiple channels simultaneously by adding more images as input. A detailed demo is available at: https:// 
youtu. be/ gpLDj PQJF8Q. The setup tutorial is available at: https:// www. youtu be. com/ watch?v= sirRJc- A4tc. The 
package is publicly available at: https:// drive. google. com/ drive/ folde rs/ 1WBYF H9bf8 9s- xjQNZ HKSGd Fov08 
h0iFG? usp= shari ng. The source code is available at: https:// github. com/ Wench aoHan SRI/ DeepC Seg.

The source code and testing data for the three experiments is available at: https:// github. com/ Wench aoHan 
SRI/ Cell- Segme ntati on/ tree/ main/ Mask_ RCNN- master.

Discussion
We have described a two-stage domain adaptation pipeline to train a Mask R-CNN for instance cell segmenta-
tion of MxIF images using a weakly labeled dataset for pre-training. The trained model provides end-to-end 
instance segmentation without the need for any pre- and post-processing steps. The segmentation results were 

Figure 7.  Visual results for an example of a mouse pancreatic tissue sample. The first row shows the color 
stacked image from DAPI and E-cadherin (Ecad) stained images 1, 2 and 3 are regions highlighted by the yellow 
arrows. Those regions are in a zoomed-in view at the right. The second row shows the results using different 
methods. Red: contour mask generated from manual annotation. Blue: contour mask generated from system 
outputs. Purple: overlapped region of manual annotations and system outputs. This figure is created using 
diagrams.net (https:// www. diagr ams. net/).

https://youtu.be/gpLDjPQJF8Q
https://youtu.be/gpLDjPQJF8Q
https://www.youtube.com/watch?v=sirRJc-A4tc
https://drive.google.com/drive/folders/1WBYFH9bf89s-xjQNZHKSGdFov08h0iFG?usp=sharing
https://drive.google.com/drive/folders/1WBYFH9bf89s-xjQNZHKSGdFov08h0iFG?usp=sharing
https://github.com/WenchaoHanSRI/DeepCSeg
https://github.com/WenchaoHanSRI/Cell-Segmentation/tree/main/Mask_RCNN-master
https://github.com/WenchaoHanSRI/Cell-Segmentation/tree/main/Mask_RCNN-master
https://www.diagrams.net/
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validated against three different manually annotated datasets with a performance that matches multi-observer 
agreement on the ovarian cancer dataset (Table 2), and a better performance than the state-of-the-art on the 
public mouse pancreatic dataset (E–F in Fig. 5 and Table 4). We deployed our model to a widely used software 
platform, CellProfiler, as a plug-in for easy access. The plug-in runs using an executable backend without the 
need for installing any software dependencies. It performs instance nuclear and cell segmentation followed by 
cellular profiling for the target image channel(s). The plug-in demonstrates the potential for supporting more 
efficient immunoprofiling using MxIF images (Fig. 8).

Our method using two-stage domain adaptation boosted the model performance, and the advantage is more 
obvious when the training sample size is small. This is demonstrated in Fig. 5 where the pre-train weak network 
(blue plots) shows higher OD and lower OH than the pre-train COCO network (orange plots) in all experiments; 
both models used the same network (i.e. Mask R-CNN) but were trained differently. In the experiment using 
the public dataset, pre-train COCO shows a similar OD to the method of Shan et al.19 regardless of the train-
ing sample size. In contrast, the two-stage domain adaptation methods showed a better performance than the 
state-of-the-art even when only a few ROIs were used for fine-tuning (E–F in Fig. 5 and Table 4). In addition, 
the two-stage domain adaptation approach showed more robust and consistent performance than the single 
domain adaptation method (i.e. pre-train COCO). The volatility of the pre-train COCO results may be due to 
the uneven distribution of different training samples, and it is possible that our method makes the model less 
sensitive to the selection of training samples by using a large number of weakly labeled samples for pre-training.

Our method of generating weak labels is efficient for the first-stage domain adaptation, which creates a 
large number of weakly labeled data that have sufficient quality for pre-training. First, comparing to the exist-
ing methods (including conventional methods and a deep learning-based approach), we used a combination 
of conventional algorithms and a deep learning model (i.e. U-Net) with a recursive manual label correction 
process. Our method takes advantage of the low computation cost of conventional methods to create a set of 
coarse labels for a small number of samples. We also take the advantage of batch processing capacity and accurate 
segmentation performance using U-Net to generate more labels. The recursive process of both manual correction 
and U-Net training improved the label quality (see example images from Figs. 2 and 3) and increased training 
sample size with a minimum labor cost involved. Also, generating these weak labels is much easier than manual 
annotation. For one ROI that contains approximately 200 cells, it takes about 3 hours to annotate. In contrast, 
the weak labels take about 3 minutes for manual editing. Importantly, the mouse pancreatic data experiment 
shows that pre-training using these weak labels performs equally well as manual labels (E and F in Fig. 5 pre-
train weak vs. pre-train breast which was pre-trained with 2000 manual annotated cells). We speculate that 
the first-stage fine-tuning effectively trained the network for identifying cell objects. This can also explain our 

Figure 8.  The DeepCSeg plug-in workflow. The input images are the immunofluorescence multiplexed images 
stained with (A). DAPI, (B) Na + K + ATPase, and (C) pan-cytokeratin. There are two components in DeepCSeg: 
(D) the plug-in for the CellProfiler and (E) the executable for implementing the core algorithm. Flask is the 
framework that is used for the communication between the two components. (F) shows the output results for 
whole cell and nuclear segmentation on the color image, which is synthesized from (A) and (B) in the R-G-B 
color mode. The yellow contours identify the cell boundaries, and the blue contours identify the nuclear 
boundaries. (G) The quantitative measurement (e.g. cell central location, size, mean intensities etc.) for each cell 
for the testing biomarker image (C), which is computed using the whole cell and nuclear segmentation results. 
This figure is created using diagrams.net (https:// www. diagr ams. net/).

https://www.diagrams.net/
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observation that the primary difference in results between pre-train weak and pre-train COCO is the number of 
FNs. Pre-train COCO was not pre-trained with more samples, therefore, has more FNs (A-B in Fig. 6). Finally, 
pre-training the network with weakly labelled data from one dataset, allows the model to be fine-tuned using a 
very small amount of labelled data (i.e. approximately 600 cells) from the target dataset to achieve a performance 
that is close to optimal (obtained when fine-tuning used more than 8000 cells) as shown in Fig. 5, even when the 
annotations are slightly different to those in the initial dataset (i.e. difference between mouse annotations that 
do not  touch19 vs. our in-house dataset annotations that are touching). It is extremely impractical to annotate 
thousands of cells for each task and our method enables easier adaptation by using a very small sample size of 
manually annotated data for fine-tuning.

Our method and experimental results should be interpreted with the following limitations. First, although our 
study used a large sample size from three different datasets, the sample size is still limited and further improve-
ments in performance may be achievable when a larger sample size is available for hyper-parameter tuning. 
Second, although we used three different datasets, which includes annotations done by four different observers, 
we cannot rule out annotation bias as each dataset was primarily annotated by a single observer. We expect the 
model may be biased toward the annotator whose annotation is used for second-stage fine-tuning (Table 3 and 
Fig. 5). Our comparative analysis indicated that the bias may not substantially impact results even when validating 
against a different annotation. For example, in comparing the OD and OH between the two observers, and model 
vs. one of the observers in Table 3, the differences between two pairwise results are seen to be within the range of 
the standard deviations of the two. In addition, based on the observation on the samples from the comparative 
analysis, the disagreement primarily arises from the “include/exclude” rules. In application, since the users may 
need to annotate a few ROIs for the second stage domain adaptation for their specific task, our reported results 
should still validly reflect the model performance in application. We have deployed our method in an open-source 
platform and the source code is publicly available. We recommend that this tool be validated by a broader group 
of users in the near future. Third, to compare our method to the most relevant  works12,19, it is not immediately 
clear if Mask R-CNN is superior to Micro-Net for the experimental task because Micro-Net was not pre-trained 
by the MS COCO dataset nor the weakly labeled data. However, the use of Mask R-CNN is suitable for our need 
for end-to-end instance-level cell segmentation. Finally, in order to make the model more generic, our results 
did not include any post-processing steps, which usually requires manually setting hyper-parameters. In practice, 
post-processing steps may be helpful to further improve the performance for specific tasks.

Data availability
All of our testing datasets with manual annotation indices are available via: https:// github. com/ Wench aoHan 
SRI/ Cell- Segme ntati on/ tree/ main/ Mask_ RCNN- master. The training datasets will be publicly available once 
the paper is accepted for publication.
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