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Background
Human cells contain a variety of non-coding RNAs. MicroRNAs(miRNAs) are a set of 
short non-coding RNA, with about 20–25 nucleotides in length, which play an essential 
role in various biological processes of living organisms [1]. In 1993, the first miRNA lin-4 
was discovered in elegans [2]. However, this discovery didn’t catch researchers’ attention 
at that time, and people used to see miRNAs as the “Dark Matter”. Now, a substantial 
number of miRNAs have been found in animals, plants, viruses, and humans. Mount-
ing evidences have shown that miRNAs participate in cell proliferation, cell division, cell 
death, cell differentiation, hematopoiesis, and neural development [3].
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Besides, miRNAs have been identified to regulate gene expression post-transcription-
ally by affecting the translation of mRNA[4], which means the dysregulation of miRNAs 
may be associated with kinds of diseases by affecting gene expression. Studies have vali-
dated that miRNAs are closely related to diseases [5, 6]. For example, chronic lympho-
cytic leukemia(CLL) results from miR-15 and miR-16 by controlling the antiapoptotic 
B-cell lymphoma protein BCL-2 in B cells [7]. Iorio proposed the abnormal expression 
of miR-21, miR-125b, miR-145, and miR-155 are involved in human breast cancer [8]. 
Kozaki observed oral squamous cell carcinomas(OSCC) are associated with the follow-
ing miRNAs. miR-34b, miR-137,miR-193a, and miR-203, which were silenced by aber-
rant DNA methylation [9]. Glioblastoma multiform(GBM) pathogenesis are shown to be 
associated with the deregulation of miR-21 [10]. Also, the decreased expression of APP 
and BACE1 regulated by miR-9, miR-29a, and miR-29b-1 may increase the occurrence 
of Alzheimer’s ailment [11]. Based on the research above, predicting miRNA-disease 
association is apparently a valuable field to research. It provides a better understanding 
of the pathogenesis of diseases, and contributes a lot to prevent and diagnose illnesses.

In earlier studies, researchers devoted to identifying miRNA-disease association using 
conventional biological experiments, which are pricey, time-consuming, laborious, 
and easy to fail. In those studies, a mass of biological datasets still has been collected. 
Therefore, establishing an effective computational model with high accuracy to predict 
the connection with miRNAs and diseases is essential. Nowadays, machine learning, 
deep learning, and methods that combine the above algorithms are widely applied in 
proposed computational models, mainly relying on the assumption that miRNAs with 
similar functions are nearly related to similar diseases [12]. For example, Chen et al.[13] 
built a random walk-based computational model named RWRMDA to reveal miRNA-
disease association. Xuan et  al. [14] presented a network-based model named MIDP, 
which considered the prior information and the structure of different categories of net-
work nodes, diminished the negative effect of noisy data effectively and performed bet-
ter than Chen’s RWRMDA [13]. Chen et al. improved their original work to create a new 
model, GRMDA [15], using graph regression synchronously on miRNA, disease, and 
association graph, while combining with Partial Least-Squares to reduce the noise. Jiang 
et al. [16] proposed ICFMDA to uncover the unknown relationship between miRNA and 
diseases through using the similarity matrices to adjust the weight of the bipartite net-
work of miRNA and diseases, implementing a collaborative filtering algorithm to suggest 
miRNA or diseases to each other. You et al. [17] put forward PBMDA using the similar-
ity of miRNA and diseases as subgraphs to construct a heterogeneous graph, applying a 
depth-first search algorithm to traverse the graph’s paths to find the possible connection 
between miRNA and disease.

The above approaches are generally based on graphs to predict the relationship 
between miRNA and diseases. This way can effectively dig out the potential, deep-
seated, unknown relationship between miRNA and disease from the existing relation-
ship between miRNA and disease, and the use of graphs can more clearly understand the 
connection between miRNA and disease. However, methods based on graphs are easily 
biased towards miRNAs or diseases which have many known associations. For diseases 
with few known associations, it is difficult for them to fully obtain accurate miRNAs 
candidates because sparse links limit information propagation. Meanwhile, with the 
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spring up of machine learning and deep learning, more and more machine learning and 
deep learning algorithms are utilized for miRNA-disease prediction. Yao et al. [18] used 
random forest for feature selection and selected the top 100 features to use random for-
est regression to score the connection between miRNA and disease. Zheng et  al. [19] 
raised a machine learning-based model named MLMDA, which adopted a deep auto-
encoder neural network to extract features and the random forest classifier to deduce 
miRNA-disease interaction. Zhao et al. [20] utilized k-means clustering in data-process-
ing to balance the positive and negative sample and presented ABMDA implemented 
by boosting algorithm that iterates the weak classifier, decision tree, to improve the 
accuracy of classification to know the potential miRNA-disease interaction. Wang et al. 
[21] first integrated the miRNA sequence information with miRNA and disease similar-
ity to extract features, and they applied the logistic tree model to classify the relation-
ship between miRNA and disease, with 90.54% AUC value. Zhou et al. [22] constructed 
a novel model GBDT-LR using GDBT to extract latent features efficiently and logistic 
regression to score the disease-miRNA interaction. Zhang et al.[23] obtained two splic-
ing matrices from the similarity matrix and association matrix of disease and miRNA, 
and then adopted two variational autoencoders to predict the unknown miRNA-disease 
interaction. Xuan et al. [24] proposed CNNMDA constructed by CNN to train the local 
and global features acquired from the two embedding layers learn from the association 
between miRNA and disease respectively to expose the relationship between miRNA 
and disease. Chen et al. [25] presented a model that can easily extend to higher dimen-
sion datasets called LRSSLMDA implemented by Laplacian regulation and L1-norm to 
optimize the function to get the possible connection between disease and miRNA. Fu 
et al. [26] implemented DeepMDA which uses stacked autoencoder to extract features 
and applies a 3-layer neural network to identify the connection between miRNA and dis-
ease. Li et al.[27] presented MCMDA using the SVT algorithm to complete the matrix 
to obtain an updated miRNA-disease association matrix to predict miRNA and disease 
connection. Zhao et al. [28] put forward the Spy and Super Cluster strategy to uncover 
the interaction between disease and miRNA based on the established miRNA-disease 
association. Furthermore, Luo et al. [29] put forward KPLMS to reveal the potential con-
nection of miRNA and disease by combining miRNA and disease through Kronecker 
product into the whole space and using regularized least squares to predict miRNA-
disease interaction. Also, a novel model presented by Gong et al. [30] utilizing random 
forest to train the features obtained from miRNA-disease association matrix and disease 
description graph is designed for miRNA-disease association prediction.

We can regard miRNA-disease association prediction as a miRNA-disease recom-
mendation system. There are complex potential factors hidden under the miRNA-dis-
ease association matrix. Unearthing these potential factors can help accurately predict 
miRNA-disease associations. Hence, we present a novel approach to extract latent fea-
tures from the original miRNA-disease association matrix. In this work, we develop a 
calculation framework called SMALF that utilizes stacked autoencoder and XGBoost 
to infer unknown miRNA-disease associations by integrating latent features and simi-
larities. Stacked autoencoder is an unsupervised learning model that can extract latent 
features from the input information [31]. XGBoost is a representative of the boosting 
algorithm, which can effectively enhance the classification effect by integrating many 



Page 4 of 18Liu et al. BMC Bioinformatics          (2021) 22:219 

weak classifiers to generate a robust classifier[32]. In SMALF, firstly, we use stacked 
autoencoders to extract miRNA latent feature and disease latent feature from the origi-
nal miRNA-disease association matrix. Next, cascade latent features and similarities to 
obtain feature vectors. Finally, adopt the XGBoost model to complete the classification 
prediction. To evaluate the performance of SMALF, we perform cross-validation experi-
ments. The AUC of SMALF reached 0.9503, which is much higher than other models. 
Simultaneously, the top 10 miRNAs predicted for hepatocellular carcinoma, colon can-
cer, and breast cancer were 10, 10, and 9 verified in other databases, respectively. All in 
all, SMALF can effectively predict miRNA-disease associations.

Results and discussion
The performance of SMALF based on five‑fold cross‑validation

In this section, to validate the ability of SMALF to infer unknown miRNA-disease 
associations, we adopt the five-fold cross-validation in our experiment. The dataset is 
randomly divided into five subsets, then four subsets are selected for training and one 
subset for testing. This process is repeated until all subsets have been used for the test 
set. In classification problems, the ROC curve is an important method to evaluate model 
performance. The horizontal coordinate of the ROC curve is the false positives rate 
(FPR), and the vertical coordinate being the true positives rate (TPR).FPR and TPR is 
given by the following formulas:

where TP and TN are the numbers of miRNA-disease association pairs and non-asso-
ciation pairs which are correctly identified, respectively; FP and FN are the numbers of 
miRNA-disease association pairs and non-association pairs which are incorrectly identi-
fied, respectively. This paper selects the AUC value as the main evaluation index. The 
AUC value is the area under the ROC curve, and its value is between 0 and 1. We can 
regard AUC as the probability that a positive sample is ranked higher than a negative 
sample in a test. Generally, if a model has good performance, its AUC is usually high as 
well.

Figure 1 shows the performance of SMALF based on five-fold cross-validation. As we 
can see from Fig.  1, AUCs of SMALF are 0.9534,0.9529,0,9496,0.9437,0.9521, respec-
tively. The average AUC value is 0.9503. The results indicate that SMALF has good per-
formance in inferring unknown miRNA-disease associations.

Analysis the dimensionality of latent feature

In SMALF, we use stacked autoencoders to obtain latent feature from the original 
miRNA-disease association matrix. If the dimensionality of the latent feature is too 
short, the model cannot fully learn the association between miRNA and disease. If the 
dimensionality of the latent feature is too long, the risk of overfitting will increase. In this 

(1)FPR =
FP

TN + FP

(2)TPR =
TP

TP + FN
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section, in order to study the impact of the dimensionality of the latent feature on the 
model, we set the dimensionality of latent feature to 8, 16, 32, 64, 128 for experimental 
comparison.

The experimental results are shown in Table  1. From Table  1, we can see that the 
model achieves the optimal AUC value when the dimensionality of latent feature is 64. 
Therefore, in this study, we set the dimensionality of latent feature to 64.

Analysis effects of feature vectors

How to construct feature vectors to represent per miRNA-disease has an essential role 
in inferring unknown miRNA-disease associations. In SMALF, we combine similarity 
data and latent features to represent per miRNA-disease. To verify whether our com-
bined strategy helps infer unknown miRNA-disease associations, we designed three sets 
of experiments. The first set of experiments only used similarity data, directly integrating 
miRNA functional similarity and disease semantic similarity. We only used latent fea-
tures in the second set of experiments, directly integrating the latent feature of miRNA 
and disease. The third set of experiments used similarity data and latent features, which 
was the same as SMALF.

Fig. 1  The ROC curve of SMALF based on five-fold cross validation

Table 1  The AUC, AUPR, Precision, Recall,F1_score and Accuracy of latent feature in different 
dimensions

Bold values represent relatively good performance

Dimensionality AUC​ AUPR Precision Recall F1_score Accuracy

8 0.9371 0.9371 0.8623 0.8756 0.8689 0.8678

16 0.9436 0.9392 0.8682 0.8841 0.8760 0.8748

32 0.9452 0.9404 0.8748 0.8828 0.8788 0.8781

64 0.9503 0.9472 0.8808 0.8931 0.8868 0.8860
128 0.9495 0.9479 0.8795 0.8869 0.8831 0.8825
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The results are shown in Table 2 and Fig. 2, AUCs of models using similarity data, only 
using latent feature, and combining similarity data and latent feature are 0.9161, 0.9467, 
and 0.9503. In summary, combining similarity data and latent feature gets better per-
formance than only using similarity data or latent feature in inferring potential miRNA-
disease associations.

Comparison with different classifiers

SMALF performs well on HMDD2.0 by using the XGBoost classifier. This section 
selected several typical classifiers (Adaboost, Random Forest, SVM) for experimental 
comparison. Adaboost obtains a robust classifier by integrating multiple weak classifiers, 
achieving good performance in many fields. Random forest integrates various decision 
trees, and its final output value is determined by voting on these decision trees. SVM is 
a classic two-class classification model, which realizes classification by maximizing the 
interval between two heterogeneous classes. SVM has taken excellent results on many 
classification problems. In the Adaboost algorithm, we choose the decision classifica-
tion tree as the weak classifier, where the maximum depth of the tree is 10 and minimize 
samples split is 5. The remaining parameter values are the default. In the RF algorithm, 
we set the maximum depth of the tree to 10 and max features is 100. The remaining 
parameter values are default. In the SVM algorithm, we utilize RBF kernel and set C to 

Fig. 2  Histograms of the results of using different features vectors

Table 2  The AUC, AUPR, Precision, Recall,F1_score and Accuracy of using different features vectors

Bold values represent relatively good performance

Feature vector AUC​ AUPR Precision Recall F1_score Accuracy

Only Similarity 0.9167 0.9145 0.8297 0.8458 0.8376 0.8359

Only Latent Feature 0.9476 0.9437 0.8756 0.8891 0.8822 0.8815

SMALF 0.9503 0.9472 0.8808 0.8931 0.8868 0.8860



Page 7 of 18Liu et al. BMC Bioinformatics          (2021) 22:219 	

50. In the XGBoost algorithm, we set the number of trees to 1000, and the learning rate 
is 0.1. The remaining parameter values are default.

Table 3 and Fig. 3 show the performance of these classifiers. From Fig. 3, we can see that 
AUCs of Adaboost, Random Forest, SVM, XGBoost classifiers are 0.9334,0.9191,0.9357 
and 0.9503, respectively. The experimental results show that XGBoost achieves much 
higher AUC values than the other three classifiers. Calculating miRNA functional simi-
larity and disease semantic similarity, there are missing values in the similarity data due 
to the lack of biological data. Compared with other classifiers, the XGBoost algorithm 
handles missing values more simply and effectively.In general, the XGBoost classifier is 
more suitable than other classifiers for SMALF.

Comparisons with the state‑of‑the‑art methods

To further assess the predictive ability of SMALF, we compare the SMALF with seven 
other computational methods (GBDT-LR [22], LMTRDA [21], ABMDA [20], RFMDA 
[33], ICFMDA [16], GRMDA [15], MCMDA [27]). GDBT-LR first integrates disease 
similarity and miRNA similarity to represent miRNA-disease. Then, it applies GDBT to 
extract new features. Finally, the LR model is employed to predict miRNA-disease asso-
ciation. LMTRDA integrates miRNA sequence similarity, miRNA functional similarity, 
and disease semantic similarity. The authors creatively engage skip-gram algorithms in 
calculating miRNA sequence similarity. Finally, LMTRDA utilizes logistic model trees 

Fig. 3  The ROC curve of SMALF with different classifiers

Table 3  The AUC, AUPR, Precision, Recall,F1_score and Accuracy of four classifiers

Bold values represent relatively good performance

Classifier AUC​ AUPR Precision Recall F1_score Accuracy

Adaboost 0.9334 0.9301 0.8639 0.8545 0.8590 0.8597

Random Forest 0.9357 0.9334 0.8641 0.8595 0.8617 0.8620

SVM 0.9191 0.9165 0.8445 0.8499 0.8471 0.8465

XGBoost 0.9503 0.9472 0.8808 0.8931 0.8868 0.8860
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to achieve the prediction of miRNA-diseases association. ABMDA utilizes boosting 
algorithm which integrates many decision trees to mine miRNA-disease associations. 
To calculate the similarity about miRNA and disease accurately, RFMDA fuses vari-
ous information and uses the random forest to realize the prediction of miRNA-disease 
associations.ICFMDA implements a collaborative filtering algorithm to suggest miRNA 
or diseases to each other.GRMDA uses graph regression synchronously on miRNA, 
disease, and association graph to infer miRNA-disease association. MCMDA pre-
dicts miRNA and disease association by using the SVT algorithm to obtain an updated 
miRNA-disease association matrix.

Table 4 and Fig. 4 show experimental results for SMALF and the other seven computa-
tional methods. SMALF achieves the highest AUC value, which is 2.29% higher than the 
second-best model (GBDT-LR). The reason why SMALF can achieve such good results 
is due to using not only similarity data but also latent feature.

Fig. 4  Histograms of AUC and AUPR with different computational methods

Table 4  The AUC, AUPR, Precision, Recall, F1_score and Accuracy of eight computational methods

Bold values represent relatively good performance

Methond AUC​ AUPR Precision Recall F1_score Accuracy

SMALF 0.9503 0.9472 0.8808 0.8931 0.8868 0.8860
GBDT-LR 0.9274 0.9014 0.8315 0.8273 0.8302 0.8304

ABMDA 0.8841 0.8807 0.8152 0.7827 0.7908 0.8027

LMTRDA 0.8479 0.8217 0.8013 0.6190 0.7067 0.7327

ICFMDA 0.8132 0.7913 0.7756 0.7534 0.7643 0.7677

RFMDA 0.7388 0.7034 0.6253 0.9548 0.7453 0.6912

MCMDA 0.7189 0.7061 0.6801 0.6743 0.6771 0.6788

GRMDA 0.6716 0.6403 0.6284 0.6573 0.6425 0.6341
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Discussion
To investigate the performance of SMALF to infer unknown miRNA-disease interac-
tions in practical application, we selected three common diseases (hepatocellular car-
cinoma, colon cancer, and breast cancer for case studies. In a specific disease study, we 
eliminated all miRNAs associated with this disease. Then we utilized SMALF to pre-
dict the remaining miRNAs’ score, getting the top 10 candidate miRNAs of this disease. 
Finally, we verify them by searching them in MNDR v3.0 [34] and miRCancer [35].

The first disease we studied is hepatocellular carcinoma. Hepatocellular carcinoma 
is a type of primary liver cancer that has a high mortality rate. [36] Hepatocellular 
carcinoma remains one of the most common and aggressive human malignancies 
worldwide [37, 38]. For hepatocellular carcinoma, we remove 214 miRNAs (hsa-let-
7a, hsa-mir-101, hsa-mir-103a, et al.) associated with it. The remaining 281 candidate 
miRNAs are sent to SMALF for prediction.The results are shown in Table 5. From our 
study results, all the top ten miRNA candidates about hepatocellular carcinoma are 
confirmed in MNDR v3.0 or miRCancer.

The second disease we studied was colon cancer. Colon cancer has a high incidence 
in people aged 40 to 50 [39]. Colon cancer has no symptoms in its early stages, so 
it is straightforward to miss the diagnosis. For colon cancer, we remove 4 miRNAs 

Table 5  The top 10 predicted miRNAs which may be associated with hepatocellular carcinoma

miRNA Evidence

hsa-mir-429 MNDR v3.0 miRCancer

hsa-mir-133a miRCancer

hsa-mir-708 MNDR v3.0 miRCancer

hsa-mir-9 miRCancer

hsa-mir-34b MNDR v3.0 miRCancer

hsa-mir-143 MNDR v3.0 miRCancer

hsa-mir-196b MNDR v3.0

hsa-mir-342 miRCancer

hsa-mir-184 MNDR v3.0 miRCancer

hsa-mir-539 MNDR v3.0 miRCancer

Table 6  The top 10 predicted miRNAs which may be associated with colon cancer

miRNA Evidence

hsa-mir-125b MNDR v3.0

hsa-let-7a MNDR v3.0 miRCancer

hsa-mir-20a MNDR v3.0

hsa-mir-29a MNDR v3.0 miRCancer

hsa-mir-155 MNDR v3.0 miRCancer

hsa-mir-21 MNDR v3.0 miRCancer

hsa-mir-146a MNDR v3.0 miRCancer

hsa-mir-106b MNDR v3.0

hsa-mir-205 MNDR v3.0 miRCancer

hsa-mir-142 MNDR v3.0 miRCancer
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(hsa-mir-106a, hsa-mir-145, hsa-mir-126, hsa-mir-17) associated with it. The remain-
ing 491 candidate miRNAs are sent to SMALF for prediction. The results are shown 
in Table 6. Our study results show that all the top ten miRNA candidates about colon 
cancer are verified in MNDR v3.0 or miRCancer.

The third disease we studied was breast cancer. The number of people who have 
breast cancer is increasing since the 1970s, and now it has become common cancer 
affecting women’s physical and mental health [40]. We remove 202 miRNAs (has-mir-
1245a, has-mir-1245b, has-mir-1258, et al.) associated with breast cancer. There are 
293 candidate miRNAs for breast cancer. The results are shown in Table 7. Our study 
results show nine of the top ten miRNA candidates about breast cancer are confirmed 
in MNDR v3.0 or miRCancer. It’s worth noting that biological experiments haven’t 
validated hsa-mir-487b. It is likely associated with breast cancer.

Conclusion
Discovering unknown miRNA-disease associations is vital for us to understand the 
pathogenesis of diseases at the molecular level. However, the biological experiment-
based approach to uncovering unknown miRNA-disease associations is still very 
limited. Thus, it is increasingly important to use computational methods to predict 
unknown miRNA-disease associations. We developed SMALF, which is a computational 
method by combining similarity data and latent features. SMALF first extracted miR-
NAs and diseases latent features from the original miRNA-disease association matrix by 
utilizing a stacked autoencoder, respectively. Then, integrating miRNA functional simi-
larities, disease semantic similarities, miRNA latent features, and disease latent features 
generated the feature vector representing miRNA-disease. Finally, SMALF obtains the 
prediction result by employing the XGBoost algorithm. We performed five-fold cross-
validation experiments. SMALF achieved an AUC value of 0.9503, which is much higher 
than many other computational methods. Besides, the case studies also indicated that 
SMALF could infer unknown miRNA-disease interactions effectively. However, our 
work still has some room for improvement. Due to the lack of negative samples, we 
select unknown miRNA-disease associations as negative samples. There may be false 
negatives in these negative samples, which may also impact the experimental results. 

Table 7  The top 10 predicted miRNAs which may be associated with breast cancer

miRNA Evidence

hsa-mir-142 MNDR v3.0 miRCancer

hsa-mir-376a miRCancer

hsa-mir-372 MNDR v3.0 miRCancer

hsa-mir-130b MNDR v3.0

hsa-mir-150 MNDR v3.0 miRCancer

hsa-mir-370 MNDR v3.0 miRCancer

hsa-mir-378a MNDR v3.0

hsa-mir-106a MNDR v3.0 miRCancer

hsa-mir-487b uncomfirmed

hsa-mir-186 MNDR v3.0 miRCancer
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Therefore, finding reliable negative samples will help further improve the performance 
of the model.

Methods
Problem description

Researchers use lots of biological experiments to confirm miRNAs-disease associa-
tions, and by tapping the potential connections between human diseases and biomol-
ecules, which could effectively boost the prevention, diagnosis, and treatment of human 
diseases. How to efficiently and accurately dig out the potential relationship between 
miRNA and disease is what we want to breakthrough. Most of the existing studies are 
based on the miRNA-disease databases provided by HMDD V2.0 [41]. To extract latent 
features of existing miRNA-disease associations, the known associations are identified 
by constructing an adjacency matrix Y. The research task of this paper is to discover the 
unobserved potential connections in known miRNA-disease association matrix(0 in 
matrix Y).

Human miRNA‑disease association

To express the relationship between miRNA and disease, the adjacency matrix Y of the 
interaction between miRNA and disease is constructed. If miRNA m(i) and disease d(j) 
have a known association in this matrix, the value of Y(i,j) at the corresponding position 
of the matrix is set to 1, otherwise to 0. Note that, in this association, the 0 matrix does 
not indicate that there is no relation between miRNA and diseases. It only indicates that 
potential links are not yet discovered. For the ideal experimental result, it is necessary 
to select the positive and negative samples of miRNA-disease association. During the 
experiment, we used the miRNA-disease associations that are the same as Zhou et  al 
[22]. and its 5430 positive samples and 5418 negative samples.The statistical information 
of the dataset is shown in Table 8.

MiRNA functional similarity

According to previous research results, it is not difficult to find that miRNA functional 
similarity is often more likely to be associated with phenotypically similar diseases. The 
miRNA functional similarity score can be computed [42]. We can construct an adjacency 
matrix FS(m(i),m (j)) to point out the useful similarity between miRNAs with records.

Disease semantic similarity

Inspired by previous studies, the MeSH database (http://​www.​ncbi.​nlm.​nih.​gov/), which 
is widely used to obtain disease-related data, is extracted to constructa directed acyclic 

Table 8  Statistics of the constructed dataset

No. of miRNAs No. of diseases No. of known associations Association density

495 383 5430 0.0286

http://www.ncbi.nlm.nih.gov/
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graphs(DAG). For the given D, DAG(D) = (D, T, E),where T(D) represents the node set 
composed of D and all of its ancestor nodes, and the parent node. The edge directly con-
nected by the child nodes is defined as E(D). Finally, as Xuan et al [43], the value of d(a 
disease) to D (semantic value) can be defined as:

where △ is the semantic contribution attenuation factor. Xuan et al. denoted the value of 
△ to 0.5, the contribution value of disease D to itself is 1, and the value of other diseases 
to D decreases as the distance. From the above formula of the semantic value:

if two diseases can share more DAGs, they will be able to obtain a higher semantic simi-
larity value. Therefore, the semantic similarity score SS between two diseases is:

Stacked autoencoders for latent features of miRNAs and diseases

In the adjacency matrix Y constructed by human miRNA-disease associations, the 
known 5430 miRNA-disease associations account for only 2.8% of all disease-miR-
NAs. In order to better represent these sparse primitive simple data, The stacked 
autoencoder extracts the potential relationships contained in the high-dimensional 
and sparse original feature vectors of miRNA and disease.

Autoencoder(AE) is an unsupervised learning method. Its purpose is based on the 
input unlabeled data, through training to obtain a dimensionality reduction feature 
expression of the data after compression. The autoencoder is an artificial neural net-
work composed of two sub-networks: encoder and decoder [44]. In this article, a 
stack encoder is used to extract potential associations of miRNA-disease. The stacked 
autoencoder is a cascade of multiple autoencoders, that is, contains multiple hidden 
layers to complete the task of extracting information layer by layer for the original 
features. The stacked autoencoder trains multiple layers of AE sequentially. After the 
first AE training is completed, the output of its encoder is used as the input of the 
second AE, and so on, and finally, a more representative and low-dimensional latent 
feature is obtained.

SMALF model

In this section, we will detail the SMALF model construction process, and show the 
overall process in Fig. 5.

(3)
{

D1D(d) = 1 if d = D
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{
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d′
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(

d(i), d
(

j
))
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)

DV (d(i))+ DV
(

d
(

j
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Step 1: Matrix decomposition

Regarding the original matrix Y as the input, each row of Y is the original feature of 
the miRNA, and each column is the original feature of the disease. In the original fea-
ture vectors, m(i) and d(j) that decompose miRNA and disease, the one marked with 1 
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Fig. 5  Overview of our proposed SMALF method for predicting miRNA-disease assoications.SMALF consists 
of four parts: Step1, we decompose miRNA-disease matrix Y into miRNA original feature M and disease 
original feature DT  . Step2, we utilize stacked autoencoders to learn the latent features of miRNAs and 
diseases from the original feature M and DT  . Step3,Integrating miRNA functional similarity, miRNA latent 
feature, disease semantic similarity, and disease latent feature generates the feature vector representing 
miRNA-disease. Step4, the XGBoost algorithm is employed to predict the miRNA-disease associations
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indicates that there is a correlation, and the one marked with 0 indicates that there is an 
unobserved correlation. Decompose miRNA disease association matrix Y into M and 
DT .

there M,DT ∈ Ym∗n is a real matrix. In our research, Mi and DT
j  are respectively 

regarded as the original feature vectors of m(i) and d(j).

Step 2: Extracts latent features by stacked autoencoders

In our autoencoder, the encoder H1 accepts the original feature m from miRNA in 
M and the encoder H2 accepts the original feature d from the disease in DT  as input, 
define the i-th training sample xi = m in M in H1; define H2 The j-th training sample 
xj = m and encoder H extracts features from the low-dimensional code Z. The for-
mula is as follows:

where l = 1, ....,L , we set L to 2, which means that use two hidden layers, h(l)i  is the l-th 
hidden layer, h(0)i  represents the input xi , Wl is the weight matrix and bl is the bias of the 
l-th layer, The activation function fe(.) can effectively adjust the input through training.

The purpose of the decoder is to reconstruct the input xi as much as possible from the 
latent features zi output by the encoder. Its definition formula is as follows:

Where fd(.) and gd(.) represent activation function and hyperbolic tangent function, 
respectively. where fd(.) and gd(.) represent activation function and hyperbolic tangent 
function, respectively.

Finally, the loss function is the sum of the reconstruction errors of all samples, and its 
expression is as follows:

among them, the first term loss is the square of the loss, the second term is the nor-
malization of the Jacobian Jh(xi) and � is a hyperparameter. The stacked autoencoder 
will update the parameters of each node of the network iteratively to minimize the 
loss. it is trained through the iterative method of backpropagation, This step is also 
called fine-tuning. After continuous fine-tuning, the minimal loss is achieved, and the 
optimal solution of the autoencoder is reached. At this time, the latent feature z is the 
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low-dimensional and high-density feature vectors Mi and DT
j  compressed by the miRNA 

and disease sparse features we need.

Step 3: Combining latent features and similarity features

So far, we have obtained the 64-dimensional miRNA and disease latent feature vectors 
Mi and DT

j  extracted by stacking autoencoder, which respectively concatenate with 
495-dimensional miRNA functional similarity feature FSi and 383-dimensional disease 
semantic similarity feature SSj to new vectors that is 559-dimensional miRNA new fea-
ture and 447-dimensional disease new feature.

then concatenate the two vectors to get a new vector for model prediction.

Step 4: Predict new feature vectors by XGBoost

XGBoost accurately classifies the weak classifiers it contains through gradient iteration 
[45]. In this paper, we predict the new features of the miRNA-disease cascade in the new 
data set by the XGBoost model, which uses the cascaded Vecnew as input and obtains its 
best gradient regression tree through training. XGBoost model contain K decision trees, 
fk represents the k-th decision tree, and the feature vector Vecnew_i is regarded as input 
xi , and finally get the prediction result as the following formula:

where ŷ(t)i  means the classification result of the first j-th classifier, to minimize the loss 
of the objective function, the XGBoost algorithm adds a new function to the original 
model in each iteration. And use the function �(ft) to control the complexity of the t-th 
subtree.

where T is the number of leaf nodes, wj is the score of each leaf node, γ and � are the 
hyperparameters that control the proportion of complexity, and overfitting phenome-
non can be prevented by adjusting these two hyperparameters. Furthermore, XGBoost 
also uses second-order Taylor expansion to optimize the objective function. The objec-
tive function of the t-th iteration is as follows:
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where l(.) is the mean square error function of the iteration t-1, because fi(xi) will finally 
be assigned to the leaf in the subtree, and its value can also be represented by the weight 
of the leaf wj.

where Ij represents the sample set contained in leaf j. The iterative training of the above 
formula can effectively fit the new miRNA-disease features and obtain the optimal pre-
diction model. Traverse all the data in the new test set, input the fused feature vector 
into the optimal SMALF model, and get the score prediction value for each potential 
miRNA-disease.
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