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Epithelial damage and loss of intestinal barrier function are hallmark pathologies of the
mucosal inflammation associated with conditions such as inflammatory bowel disease. In
order to resolve inflammation and restore intestinal integrity the mucosa must rapidly and
effectively repair the epithelial barrier. Epithelial wound healing is a highly complex and co-
ordinated process and the factors involved in initiating intestinal epithelial healing are poorly
defined. In order for restitution to be successful there must be a balance between epithelial
cell migration, proliferation, and differentiation within and adjacent to the inflamed area.
Endogenous, compensatory epithelial signaling pathways are activated by the changes
in oxygen tensions that accompany inflammation. These signaling pathways induce the
activation of key transcription factors, governing anti-apoptotic, and proliferative processes
resulting in epithelial cell survival, proliferation, and differentiation at the site of mucosal
inflammation. In this review, we will discuss the primary processes involved in epithelial
restitution with a focus on the role of hypoxia-inducible factor and epithelial integrins as
mediators of epithelial repair following inflammatory injury at the mucosal surface.
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INTRODUCTION
The successful healing of a mucosal wound requires the inter-
related processes of inflammation,proliferation,granulation tissue
formation, and tissue remodeling (1). These are highly regulated
and over-lapping events with environmental stimulus from one
event, dictating progression to the next (2). One important aspect
of mucosal wound healing is the role of oxygen sensing in the tissue
repair process, given the dramatic changes in tissue oxygen tension
during inflammation and wounding, where oxygen tensions may
decrease 10-fold at a wound site (3). Despite these changes most
inflammatory wounds resolve and tissue homeostasis is restored.
Thus, wounded and inflamed tissues may adapt to reduced oxy-
gen availability at an inflammatory wound and retain the ability
to repair, despite tissue hypoxia. Much of what we know about
wound healing processes is derived from studies in dermal healing
and there is relatively little known about mechanisms of mucosal
wound healing,particularly at the intestinal mucosa,where normal
oxygen tensions are low (4).

MUCOSAL INFLAMMATION AND HYPOXIA
In the early stages of the initial mucosal insult, intestinal wounds
are almost devoid of oxygen (3). This is a result of both the
vascular damage occurring with injury and increased cellular oxy-
gen demand at the wound. Infiltrating immune cells generate
superoxide, combating infection, but greatly increasing oxygen
demand (3, 5). In addition reparative processes such as cell pro-
liferation and collagen production increase oxygen demand in the
mucosal environment (6). Thus, the initial inflammatory response

to mucosal damage promotes a state of chronic hypoxia within the
microenvironment of the wound. This “inflammatory hypoxia”
has been elegantly demonstrated in murine models of colitis. For
instance, the 2,4,6-trinitrobenzenesulfonic acid (TNBS) model of
murine colitis has been widely utilized to model inflammatory
bowel diseases (IBDs) (7). Histologically these animals demon-
strate profound vasculitis of the small submucosal vessels associ-
ated with mucosal inflammation, similar to observations in human
tissues (8, 9). The chronic hypoxia and inflammation within
the intestinal mucosa is associated with angiogenesis, further
enhancing influx of inflammatory cells and endothelial dysfunc-
tion (10). Associated upregulation of collagen synthesis increases
the risk of fibrosis, a key feature of chronic inflammatory disease
potentially driven by chronic tissue hypoxia (11). Tissue hypoxia
associated with inflammation has been demonstrated in animal
models, through utilization of the characteristic reduction and
binding of 2-nitroimidazole compounds, such as pimonidazole
and EF5, to cellular thiol-containing proteins oxygen levels below
10 mmHg (12).

Animals with TNBS-induced colitis demonstrated dramatic
levels of nitroimidazole retention associated with colitic lesions,
both in superficial and in deeper submucosal regions of the
mucosa (13, 14). This is in marked contrast to the superficial
retention of nitroimidazoles observed in healthy animals. These
findings, demonstrated in several other animal models, indicate
that mucosal inflammation, such as that associated with models
of mucosal inflammation likely result in significant tissue hypoxia,
predominantly within the epithelium.
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MOLECULAR SIGNALING BY HYPOXIA
Oxygen is a key component in the generation of metabolic energy
for all eukaryotic cells (15). Fluctuations in tissue oxygen supply
(hypoxia) are common physiologic and pathophysiologic occur-
rences. These include frank vascular occlusion such as those
occurring with stroke, tissue fibrosis, and the microvascular break-
down associated with chronic inflammation which also results in
localized tissue hypoxia/ischemia. Alternatively, diminished oxy-
gen delivery to tissues may occur in shock, hypotension, or in
cases where the oxygen carrying capacity of blood is compro-
mised [e.g., chronic obstructive pulmonary disease (COPD), car-
bon monoxide poisoning] (16, 17). Thus, mammalian cells have
evolved compensatory mechanisms to adapt to tissue hypoxia (18).
One such mechanism is the oxygen-sensing molecule; hypoxia-
inducible factor (HIF), a transcription factor which functions as a
global mechanism for adaptation to hypoxia (19).

HYPOXIA-INDUCIBLE FACTOR REGULATION AND CELLULAR
OXYGEN SENSING
Hypoxia-inducible factor is a central regulatory transcription fac-
tor for hypoxia-induced gene expression, and serves as a sensitive
and selective indicator of hypoxia (20–22). HIF is a heterodimeric
nuclear protein made up of an α oxygen regulated and constitu-
tively expressed β subunit (23, 24). Under conditions of normal
tissue oxygen tensions (normoxia), the α subunit is continuously
synthesized, and degraded through a cascade of events. The prolyl
residues (402 and/or 564) on the α subunit undergo oxygen-
dependent hydroxylation by the prolyl-4-hydroxylase (PHD)
enzymes. PHDs, principally prolyl hydroxylase-2 (PHD2), target
oxygen, and α-ketoglutarate as substrates to catalyze a dioxy-
genase reaction (22, 25), which facilitates hydroxylation of the
hypoxia-inducible factor-1α (HIF-1α) subunit (26). This leads to
binding of the von Hippel–Lindau (VHL) protein, which allows
the recruitment of the ubiquitin ligase complex (22, 27) and targets
HIF-1α for proteasomal degradation by the 26S proteasome (28).
However, during periods of reduced oxygen availability (hypoxia),
PHD2 activity is reduced due to substrate (oxygen) limitations.
This allows stabilization of HIF-1α within the cytoplasm of the cell
and translocation to the nucleus for dimerization with the HIF-1β

subunit (29). Dimerization forms a transcriptionally functional
HIF-αβ dimer, which then binds to cis-acting hypoxia response
elements (HREs) in the promoter of target genes and recruits
co-activator proteins (Figure 1A). As a result of this cascade, tran-
scription of HIF target gene sequences to mRNA is increased (21,
30). However, this is not an all or nothing response, and HIF-1α

stabilization is gradual and graded over the progression from mild
to chronic hypoxia (31) (Figure 1B).

Until very recently, most work with HIF focused on under-
standing the basic mechanisms by which HIF acts as a key mediator
of the cellular hypoxic response, particularly in the context of
carcinogenesis (17, 32). Solid tumors have been demonstrated to
form hypoxic cores and adapt to this oxygen deficiency in order
to maintain a proliferative state. However, recent studies reveal
a potentially central role for HIF in endogenous protective and
restorative pathways within a variety of inflammatory diseases,
including respiratory distress syndrome, retinitis, diabetes, and
arthritis (17).

FIGURE 1 | (A) Oxygen-dependent regulation of HIF-1α targets in epithelial
restitution. Under normal oxygen tensions (normoxia) (i) prolyl hydroxylase
(PHD) enzymes hydroxylate the HIF-1α subunit resident in the cellular
cytoplasm (26). Hydroxylated HIF-1α facilitates, (ii) the binding of von
Hippel–Lindau protein (pVHL) and subsequent recruitment of the ubiquitin
ligase complex, (iii) targeting HIF-1α for 26S proteasomal degradation (28).
Under conditions of reduced oxygen (hypoxia) (iv) the lack of oxygen
substrate for PHD prevents hydroxylation of HIF-1α leading to (v)
cytoplasmic accumulation and translocation to the cell nucleus (29). (vi)
HIF-1α dimerizes with HIF-1β and binds to hypoxia responsive elements
(5′-ACGTGC-3′) in the promoter of target genes (21, 30). (vii) This leads to
transcription of HIF target genes involved in epithelial restitution. (B) As
tissue oxygen levels gradually decline, HIF stabilization increases. This
results in graded HIF stabilization during progressive hypoxia (31), such as
the progression of inflammation.

HIF AND ADAPTION TO MUCOSAL INFLAMMATION
Activation of HIF-1α due to the unavailability of oxygen has been
widely shown to promote adaption to inflammation, primarily
through an increase in mucosal barrier protection (4, 33, 34).
Key to this protective response is the induction of genes involved
in non-classical epithelial barrier function. These include genes
that regulate the integrity of the mucous-gel layer; Mucin 1 and
3 (MUC1 and MUC3) (34, 35) and intestinal trefoil factor (ITF)
(33), the epithelial xenobiotic drug efflux pump; (multi drug resis-
tance protein 1, MDR1; P-glycoprotein) (36), leukocyte trafficking
and clearance; CD55 (decay accelerating factor) (37), and cellu-
lar energy metabolism; CD73 (ecto-5′-nucleotidase) (38), and the
adenosine A2B receptor (39). Thus, genes induced by HIF-1α sup-
port overall tissue integrity and include target proteins necessary
for cellular, whole tissue, and whole animal adaptive responses to
hypoxia (40, 41).

HIF AND MUCOSAL HEALING
Hypoxia-inducible factor regulates a diverse number of genes,
many of which feeding back into processes critical for wound
healing (31). While HIF signaling allows the tissue to adapt to,
and protect against, inflammatory hypoxia, HIF also regulates
the expression of genes that drive angiogenesis. As inflammatory
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damage to the tissue is a key driving factor in tissue hypoxia, it
is unsurprising that HIF adaptive responses include restoration
of the vascular oxygen supply. In particular, HIF regulates the
expression of vascular endothelial growth factor A (VEGFA) and
angiopoietins, which drive angiogenesis through endothelial mito-
sis and migration (42–45). As evidence of the role of HIF in wound
healing, over-expression of HIF-1α improves wound healing in
mouse models of diabetes (29, 46), a condition where impaired
healing may lead to complications such as diabetic foot (47). Con-
versely suppression of HIF-1α expression results in dysfunctional
wound healing and defective vascularization (48).

Hypoxia-inducible factor also regulates the induction of VEGF
receptor Flt-1 (49, 50) and a range of vasomotor peptides, such
as adrenomedullin (51) and endothelin-1 (52) which act to fine
tune the angiogenic response, underpinning the importance of
HIF signaling in the regulation of angiogenesis. The potential
risks associated with angiogenesis in chronic inflammatory disease
states such as CD include formation of a dysfunctional new vessel
architecture and further recruitment of inflammatory cells. In the
absence of fine tuning of the angiogenic response that remains
functional in acute intestinal inflammation such as infectious col-
itis, the responses seen in CD lead to fibrosis, and the need for
bowel resection (53).

In contrast to angiogenesis, little is known about how hypoxia
and HIF signaling directly influences mucosal, epithelial wound
healing at the molecular level. Moreover, while there is evi-
dence of the importance of HIF in regulating keratinocyte re-
epithelialization (54), there is far less understanding of how
transcriptional amplification by hypoxia might be important in
initiating mucosal wound healing responses.

EPITHELIAL WOUND HEALING
Early in the healing process, epithelial cells adjacent to the mucosal
wound lose polarity and convert into a migratory phenotype (55).
The depolarized epithelial cells rapidly migrate into the denuded
area and line the underlying matrix in order to re-establish a pro-
tective barrier (56). Once the barrier has been restored, epithelial
cell proliferation begins and enterocyte numbers increase to resur-
face the wounded area (57). Proliferation occurs hours to days
after injury, usually in the crypts near the damaged mucosal area.
Finally, proliferation progenitor epithelial cells must differenti-
ate into a specific lineage subset. Functionally, these encompass
absorptive enterocytes or one of three secretory lineages cells (gob-
let, enteroendocrine, and paneth cells) (58). Once differentiated,
IECs can restore the functional activities of the epithelial layer and
intestinal homeostasis resumes (55).

Damage to the intestinal epithelial layer is a common pathol-
ogy of the inflammation associated with diseases such as IBD (56).
In order to suppress inflammation and restore normal intestinal
homeostasis the mucosa must activate rapid repair mechanisms
and restore epithelial defenses (59, 60). Even the most super-
ficial injuries to the epithelium result in epithelial destruction
and require healing (61). Successful epithelial repair requires a
balance between epithelial restitution, proliferation, and differ-
entiation within and adjacent to areas of mucosal damage (55,
62). Thus, for the resolution of inflammation to occur, the tis-
sue must first halt the influx of luminal antigens through the

damaged epithelium. Accordingly, the first phase of the wound
healing process is restitution of the epithelial barrier.

EPITHELIAL RESTITUTION
Restitution is the rapid migration of epithelial cells adjacent to
the wound/injury in order to reseal the damaged area. Migrating
cells achieve restitution through a sequence of transient adher-
ence to the extra-cellular matrix. This adherence is achieved via
a collection of specialized basal structures that evolve from focal
complexes followed by focal adhesions to fibrillar adhesions (63–
67). Rapid migration of the epithelial cells adjacent to the wound,
at the wound edge, marks the initiation of restitution, and this
begins within minutes to hours of the injury occurring (56, 68).
Epithelial cells surrounding the wound have the ability to rapidly
migrate due to the loss of columnar polarity. These cells undergo
extensive reorganization of their actin cytoskeleton (55, 69), losing
their microvilli, and apical/basolateral orientation to adopt a flat
morphology. The cells then re-polarize to induce migration, with
polarization now defined from leading to trailing edge (70–72).
Migration is dependant on F-actin-rich protrusions called lamel-
lipodia at the leading edge, which enable transient adherence to
the underlying matrix at focal adhesion complex sites (73, 74).
This change in polarization and shape allows the cells to migrate
rapidly to the injury site and attach via focal contacts (75), restor-
ing barrier integrity (56, 68, 76). Restitution is a very rapid process
and enables reconstitution of epithelial continuity much faster
than could be achieved through proliferation of cells alone. How-
ever, proliferation is still required to ultimately restore the mucosal
surface. Restitution is the central component to epithelial healing
regardless of the cause or extent of the injury, as restitution ensures
epithelial continuity is re-established (77).

HIF-MEDIATED EPITHELIAL RESTITUTION
In order to facilitate repair of the epithelial barrier, HIF directly
targets a number of critical components for the epithelial wound
healing process including energy metabolism and cell migration,
both important processes in restitution (Figure 2). Induction of
CD73 and glucose transporter 1 (GLUT-1), allow the cells to main-
tain energy metabolism in the hypoxic microenvironment of the
mucosal wound (38, 78). Pre-epithelial barriers are augmented
through the induction of mucins and ITF (33). ITF is a par-
ticularly noteworthy factor in mucosal wound healing, as it not
only augments the barrier, through increased mucosal integrity
via interactions with mucin glycoproteins (79), but also facilitates
epithelial restitution. Both apically secreted and exogenous ITF
accelerate epithelial cell migration into the wound area through
pathways independent of transforming growth factor-β (TGF-β)
signaling at the basolateral interface (68, 80). In addition ITF can
prolong epithelial cell life at the site of a wound, through inhi-
bition of apoptosis (81). Thus HIF-mediated induction of ITF,
not only acts to protect a wounded mucosal surface, but also
modulates epithelial restitution. However, a double-blind, ran-
domized, placebo-controlled study, to examine the efficacy of
supplementing conventional treatments with recombinant ITF for
the treatment of mild-to-moderate ulcerative colitis, did not reveal
any additional benefit above that of conventional therapies alone
(82). This could be due to the enema method of ITF delivery, which

www.frontiersin.org September 2013 | Volume 4 | Article 272 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Mucosal_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Goggins et al. Hypoxia and epithelial restitution

FIGURE 2 | Hypoxia-inducible factor-mediated pro-restitution
pathways. Hypoxia-inducible factor (HIF) activation at the site of the
mucosal wound leads to induction of (A) epithelial intestinal trefoil factor
(ITF) (33), which acts to increase mucosal barrier function, suppress
epithelial apoptosis (127), and drive epithelial migration (80), (B) integrin β1

(ITGB1) (84), a lamellipodia protein critical for epithelial cell migration across
the extra-cellular matrix, (C) ecto-5′-nucleotidase (CD73) (38), which
facilitates conversion of AMP into adenosine (ADO), and (D) glucose
transporter 1 (GLUT-1) (7, 8), which facilitates the transport of d-glucose and
d-galactose across the plasma membrane.

may not facilitate sufficient ITF-epithelial interactions to mediate
restitution. The study did not measure mucosal responses to local
delivery of ITF to determine or confirm whether it was biologically
active in the disease state in human subjects. Further studies will
need to address this.

Hypoxia-driven motility is associated with increased expres-
sion of lamellipodia proteins, increased expression of collagenase
and decreased expression of laminin-5, the locomotion brake
for keratinocytes (83). Our own studies have identified HIF-1α

stabilization as a key promoter of integrin β1 (ITGB1), a criti-
cal mediator of lamellipodia binding, during wound healing in
IBD (84). Here we demonstrated direct binding of HIF to the
ITGB1 promoter, leading to increased expression of functional β1

integrin. In TNBS models of colitis, mucosal ITGB1 expression
correlated directly with disease severity, revealing a correlation
between mucosal hypoxia and ITGB1 expression in vivo. Interest-
ingly, site-directed mutagenesis of the hypoxia responsive element
(HRE) on the ITGB1 promoter did not completely abolish the
HIF response, suggesting that secondary mechanisms may also
be involved, for instance inhibitor of DNA binding-1 (Id-1) has
been shown to induce ITGB1 in a HIF-dependent manner and Qiu
et al. have speculated on whether Id-1 may regulate the ITGB1 pro-
moter directly (85). Nevertheless, in subsequent studies examining
the role of HIF-1α stabilization in mucosal response to colitis in
murine models, we have demonstrated that stabilization of HIF-1α

through prolyl hydroxylase inhibition (PHDi) results in earlier and
increased epithelial ITGB1 expression, concurrent with accelerated
mucosal healing and restitution of epithelial barrier function (86).
Furthermore, the protective effect of the pharmacological HIF sta-
bilization by PHDi is lost in conditional epithelial HIF deficient
animals. Further evidence for the role of HIF in integrin-mediated
wound healing has been shown in dermal healing models. HIF-1α

silencing, led to decreased expression of Lamanin-322, α6 integrin
and β1 integrin, and this was associated with impaired epidermal
healing and dermis formation in both murine models and human

keratinocyte cultures (87). This implicates an importance for HIF
in aging and wound healing processes. Overall, these data sug-
gest direct roles for both HIF-1α and ITGB1 in mediated mucosal
wound healing.

INTEGRINS AS MEDIATORS OF EPITHELIAL WOUND
HEALING
A key factor in the co-ordination of restitution is the ability of cells
to adhere to, and interact with the extra-cellular matrix. Integrins
are critical mediators of these interactions and facilitate epithe-
lial migration into the denuded mucosal wound. Integrins are a
family of cell adhesion receptors responsible for mediating both
cell-substratum and cell–cell adhesion (88). They exist as het-
erodimeric glycoproteins consisting of non-covalently bonded α

and β subunits (89–91). Integrins provide essential links between
the extra-cellular environment and intracellular signaling path-
ways. This makes them key regulators of cell behaviors such as
cell survival, apoptosis, differentiation, migration, and transcrip-
tional regulation (92), thus integrins are critical for processes in
development, immune function, and wound healing.

In the context of wound healing and epithelial restitution Lotz
et al. showed the functional importance of integrin heterodimers
containing a β1-subunit, in particular α6β1 and α3β1 integrins
in epithelial wound restitution (93). In T84 epithelial wound-
ing models, cell migration was shown to be integrin-dependent,
regulated by the expression of localized, specific integrins, and
their cell matrix protein ligands. Monoclonal antibodies directed
against functional epitopes on α3 and β1 integrins were found
to inhibit wound closure completely, while functional blockade
of α6 integrin also significantly inhibited wound closure. These
heterodimers are differentially expressed within the process of
restitution, with α6β1 integrin increased along the lateral surfaces
of migrating cells, while α3β1 integrin expression localized to flat-
tened cell surfaces and along wound and colony perimeters (93).
These studies suggest a fundamental role of integrins, particularly
α3β1 and α6β1, in epithelial restitution.

INFLAMMATORY SIGNALING AND INTEGRIN-MEDIATED
RESTITUTION
Epithelial injury observed in patients with IBD is associated with
the infiltration of inflammatory cells to the mucosa, which triggers
an inflammatory cascade in the tissue causing the release of proin-
flammatory cytokines and, often, further tissue injury (94, 95).
Secreted inflammatory cytokines can also directly influence the
progression of epithelial restitution (96). For instance, interferon-
γ (IFN-γ) has been identified as a key proinflammatory cytokine
in IBD, with elevated levels observed in the mucosa of IBD patients
(97). While extensive investigations have been conducted on the
effects of IFN-γ on epithelial intercellular junctions and barrier
properties (94, 98–100), there is a paucity of studies characteriz-
ing the effect of IFN-γ on the wound healing process. To address
this, Tong et al. investigated the influence of IFN-γ on intestinal
epithelial wound closure (96), examining epithelial cell migration
in vitro. IFN-γ demonstrated clear inhibitory effects on epithelial
migration, causing dysfunction of the F-actin-rich lamellipodia
protrusions at the leading edge of the migrating cell. No difference
in the average number of lamellipodia at the leading edge of cells
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was found between control and IFN-γ-treated monolayers (96).
As IFN-γ is known to drive pathology in a number of mucosal
inflammatory diseases, these findings may explain the impaired
wound healing observed in mucosal disease, where IFN-γ alters
lamellipodia formation and subsequently impairs cell migration.

Attachment of lamellipodia occurs at focal adhesion complex
sites, and key components of these focal adhesion sites are integrin
heterodimers (55). As migrating cells move, continuous attach-
ments are formed to the extra-cellular matrix at the leading edge of
the cell, in synchrony with rear edge detachments until the wound
is resealed by intercellular focal contacts (73). Integrins contribute
to this process through cycles of exocytosis and endocytosis of
surface bound integrins. Integrin heterodimers are transported
via endocytic vesicles to the cell surface at the leading edge where
they can form new focal complexes (101, 102). The mechanism of
IFN-γ mediated lamellipodia dysfunction appears to involve sev-
eral key focal adhesion proteins. For instance, IFN-γ suppresses
expression of vinculin, focal adhesion kinase, and paxillin (96).
IFN-γ also reduces the deposits of intracellular β1 integrin in
focal adhesions at the leading edge of migrating epithelial cells,
while reducing the number of β1 integrin containing cellular vesi-
cles overall. This change in integrin distribution is not a result
of accelerated degradation or loss of integrin protein, but rather
accelerated endocytosis of membrane integrins. Migrating cells
treated with IFN-γ-shown broadly distributed clusters of inte-
grins throughout the cell, rather than the accumulation of β1

integrin observed at the leading edge of the migrating control
cells (96). These studies further highlight the fundamental role
of integrin β1 in the wound healing process and the importance
of integrin β1 localization at leading edge focal complexes and
vesicular transport of β1 for cell migration and movement.

Studies by Glover et al. (103) have further characterized the
pathogenic contribution of IFN-γ to inflammatory diseases such
as IBD. Inflammation is associated with dramatic shifts in tis-
sue metabolism due to immune cell recruitment to inflamma-
tory wounds or lesions (104). Hypothesizing that inflammatory
cytokine signaling may input into the hypoxic response to mucosal
inflammation, Glover et al. investigated the effect of inflammatory
mediators on HIF regulation in intestinal epithelial monolayers.
Investigating a host of common inflammatory cytokines, includ-
ing TNF-α, IL-4, PGE2, and IFN-γ in both normoxic and hypoxic
cultures, IFN-γ demonstrated the ability to significantly repress
HIF-1 transcriptional targets in both normoxic and hypoxic con-
ditions. In contrast, HIF-1α mRNA expression showed moderate
increases in expression in response to IFN-γ and further investi-
gation demonstrated that attenuation of HIF activity is the result
of selective repression of HIF-1β.

While HIF responses drive expression of both protective and
reparative pathways, the expression of HIF-1α is concurrent with
chronic mucosal inflammation, suggesting that in chronic inflam-
matory diseases such as IBD, the HIF response is not always suffi-
cient to promote restitution. This may in part, be due to increased
levels of mucosal IFN-γ associated with chronic inflammation
(103). In vitro, IFN-γ was shown to repress the expression of the
HIF-1β and dextran sodium sulfate (DSS) murine models of IBD
showed an inverse correlation between IFN-γ and HIF-1β expres-
sion. This result is surprising, in that HIF-α subunits are generally

considered to be the regulated components of HIF signaling, while
HIF-β subunits are regarded as constitutively expressed (23). As
many studies only examine the expression of HIF-α isoforms, the
study by Glover et al. may offer a critically important explanation
as to why chronic inflammation progresses despite the stabiliza-
tion of HIF-1α, given that IFN-γ is involved in the pathogenesis
of many mucosal diseases (105–107). In particular, inhibition of
HIF signaling by IFN-γ could, hypothetically, significantly impair
mucosal healing, through reduced expression of a number of cel-
lular proteins, such as β1 integrin, critical for epithelial restitution,
and wound healing.

INTEGRINS AND TGF-β-MEDIATED PATHWAYS
Transforming growth factor-β is a pleiotropic cytokine and is
critical to the regulation of cellular events involved in wound
healing, including cell differentiation, proliferation, epithelial-
mesenchymal transition, and cell migration. There is a strong
degree of cross-talk between hypoxia and TGF-β (108), particu-
larly the TGF-β1 isoform. Hypoxia has been shown to increase the
transcription of TGF-β1 in dermal fibroblasts (109), while TGF-β1

may stabilize HIF-1α through selective inhibition of PHD2 (110).
This inhibition is achieved through the downregulation of PHD2
gene expression via SMAD dependent pathways (111). SMAD
proteins are intracellular TGF-β signal transducers that mediate
the interaction between TGF-β receptor ligands and downstream
nuclear responses (112). For instance, at the site of a wound,
TGF-β1 mediated activation of SMAD2/3 complexes and sub-
sequent interaction with SMAD4 leads to the formation of a
SMAD transcription factor which drives cellular responses toward
re-epithelialization (113–115).

While few studies have been conducted in the context of
mucosal inflammation and healing, there is evidence to sug-
gest convergence of HIF, TGF-β, and SMAD pathways in the
co-ordinated regulation of epithelial restitution (Figure 3). For
instance, studies in the hypoxic microenvironment of solid tumors
have identified SMAD7 as a HIF-1α responsive gene (116). SMAD7
has been shown to be a potent inhibitor of TGF-β1 (116, 117)
and thus may prevent TGF-mediated cell proliferation and anti-
inflammatory signaling. However, SMAD7, is itself inhibited by
integrin signaling, specifically by epithelial integrin heterodimers
containing an integrin β1 (ITGB1) subunit (118). Reynolds et al.
demonstrated that α3β1 integrin heterodimers inhibited SMAD7
and enhanced cutaneous re-epithelialization in murine models
of wound healing (118). As both ITGB1 and SMAD7 are HIF
responsive, it is feasible that they represent co-dependent mod-
ulators of TGF-β1 mediated wound healing. α3β1 integrins are
expressed in depolarized intestinal epithelial cells, particularly
around the wound edge (93), thus induction of these integrins
may act to inhibit SMAD7, promote TGF-β1 signaling, and ini-
tiate intestinal epithelial wound closure. Interestingly, SMAD7 is
overexpressed in the inflamed mucosa of IBD patients (117) and
targeting of SMAD7 has shown efficacy in mouse models of col-
itis (119), while ITGB1 single nucleotide polymorphisms have
been identified as a risk factor in IBD (120). Thus, dysfunction
of the pathway by which HIF-induced ITGB1 inhibits SMAD7,
and the subsequent elevation of TGF-β1, may lead to the progres-
sion of chronic inflammation instead of mucosal wound healing.
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FIGURE 3 | Convergence of HIF,TGF-β, and SMAD pathways. The
complexity of the signaling cascade by which HIF regulates integrin β1

(ITGB1) and SMAD7 induction. At the site of the wound α3β1 integrin
inhibits SMAD7, promoting TGF-β1 induction, which promotes restitution.
How these factors interplay may be critical to our understanding of
epithelial wound healing.

Importantly, TGF-β1 plays a role in the pathogenesis of intesti-
nal fibrosis in Crohn’s patients (95) and TGF-β1 codon 25 variants
are associated with structuring (121). Whether this polymorphism
represents a dysfunction ins SMAD7/ITGB1/TGF-β1 signaling is
unknown, but as HIF-mediated ITGB1 drives fibroblast-collagen
contraction in vitro, any dysfunction in TGF-β1 signaling is likely
to interplay in this pathway.

We may also consider that TGF-β1 acts to “fine tune” the HIF-
1α response, as exogenous TGF-β1 enhances HIF-1α expression
in hypoxic cells, while also increasing HIF-1α stabilization in
normoxic conditions. As TGF-β1 does not affect transcription
of HIF-1α itself, nor decrease degradation, it appears that this

interplay occurs at the level of HIF-1α translation. This may occur
independently of hypoxia, thus it is possible that TGF-β1 may
act to “prime” the HIF response (122) in a manner similar to
HIF-priming vasopeptides such as adrenomedullin (51).

SUMMARY
While a role for oxygen in mediating wound healing has been
recognized for decades (6, 123, 124), the importance of cellu-
lar oxygen sensing in cellular adaptive and reparative pathways
is a relatively new area (3, 16, 125). Given the rapidly chang-
ing oxygen tensions in the mucosal wound, the role for hypoxia
responsive pathways in processes such as epithelial restitution is
unsurprising. Hypoxia seems to independently regulate several
critical drivers of epithelial restitution that subsequently exhibit a
high degree of interplay. The interactions between HIF, β1 integrin
heterodimers, SMAD7, and TGF-β are complex and have not been
fully elucidated. Crucially, much of our knowledge of these path-
ways come from models of dermal wound healing, where basal
oxygen levels are markedly higher than that of intestinal mucosal
tissues (126).

Therapeutically, wound healing pathways are an attractive tar-
get for mucosal disease. For instance, despite the successes of
immunomodulators in the maintenance of IBD, up to 70% of
IBD patients still require surgery to remove tissue damaged by
repeated cycles of inflammatory damage and improper healing.
Therapies aimed at modulating the healing process may reduce
the need for these surgeries. Further elucidation of the pathways
driving mucosal wound healing are therefore critically important,
and may open the door for improved therapeutic strategies for the
management of mucosal inflammatory disease.
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