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Abstract: Skeletal muscle is the principal contributor to exercise-induced changes in human metabolism.
Strikingly, although it has been demonstrated that a lot of metabolites accumulating in blood and
human skeletal muscle during an exercise activate different signaling pathways and induce the
expression of many genes in working muscle fibres, the systematic understanding of signaling–
metabolic pathway interrelations with downstream genetic regulation in the skeletal muscle is
still elusive. Herein, a physiologically based computational model of skeletal muscle comprising
energy metabolism, Ca2+, and AMPK (AMP-dependent protein kinase) signaling pathways and the
expression regulation of genes with early and delayed responses was developed based on a modular
modeling approach and included 171 differential equations and more than 640 parameters. The
integrated modular model validated on diverse including original experimental data and different
exercise modes provides a comprehensive in silico platform in order to decipher and track cause–
effect relationships between metabolic, signaling, and gene expression levels in skeletal muscle.

Keywords: mathematical model; skeletal muscle; physical exercise; Ca2+-dependent signaling
pathway; transcriptome; RNA sequencing; regulation of expression; BioUML

1. Introduction

Skeletal muscle tissue comprises about 40% of total body mass in lean adult humans
and plays a crucial role in the control of whole-body metabolism and exercise tolerance.
Regular low-intensity exercise (aerobic or endurance training) strongly increases vascu-
lar and mitochondrial density and oxidative capacity, improving fat and carbohydrate
metabolism. These adaptations lead to an enhancement of muscle endurance performance
and reduce the risk associated with the morbidity and premature mortality of chronic
cardiovascular and metabolic diseases [1,2].

Acute aerobic exercise induces significant metabolic changes in the working skeletal
muscle, which in turn activate numerous signaling molecules. Changes in the content of
Ca2+ ions in skeletal muscle play a fundamental role in the regulation of the activity of
contractile proteins and enzymes involved in energy metabolism. In addition, a contraction-
induced increase in the content of Ca2+ ions in the myoplasm significantly affects the
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activation of some signaling proteins: Ca2+/calmodulin-dependent kinases (CaMKs),
calcineurin, Ca2+-dependent protein kinase C, etc. [3]. Increasing the intensity of contractile
activity more than 50% of maximal pulmonary O2 consumption rate (V′O2max) induces
a linear increase in the activity of AMPK, the key energy sensor of the cell activated by
an increase in the AMP/ATP ratio, Ca2+-dependent kinase CaMKKII, and a decrease in
the level of muscle glycogen [4]. In muscle cells, activated AMPK changes the level of
phosphorylation of several dozens of different signaling proteins [5–7]. Thus, Ca2+ and
AMPK play a key role in the regulation of various intracellular signaling cascades, as well
as the gene expression induced by exercise.

Dramatic changes in the expression of hundreds of genes were observed during
the first hours of recovery after acute intensive aerobic exercise in untrained skeletal
muscle [8–10] as well as in muscle adapted to regular exercise training [8,10,11]. These
changes are associated with muscle contraction per se and with system factors, e.g., humoral
factors, neuronal activity, feeding mode, and circadian rhythms. On the basis of the analysis
of differentially expressed genes between exercised and contralateral non-exercised vastus
lateralis muscle, the contractile activity-specific transcriptome responses at 1 and 4 h
after the one-legged exercise were identified in our previous study [12]. It was shown
that the most enriched biological process for the transcriptome response is transcription
regulation, i.e., an increase in the expression of genes encoding transcription factors and
co-activators. The study demonstrated that genes encoding transcription factors such as
NR4A, AP-1, and EGR1 were actively expressed 1 h after the termination of the exercise,
while other transcription regulators such as PPARGC1A, ESRRG, and VGLL2 were highly
expressed at 4 h. Both sets of transcription factors modulate muscle metabolism. We
suggest that gene expression in early and late stages of the recovery after the termination of
the exercise can be regulated in different ways [13]. Obviously, these molecular mechanisms
are complex, but we assume that each considered gene has a constitutive transcription
rate independent of the presence of considered transcription factors, while fine-tuning
regulation by them ensures diverse expression dynamics of genes with early and delayed
responses to an exercise and recovery. For example, the activation of CREB- and CRTC-
like transcription factors by the upstream Ca2+-dependent signaling pathway enables the
expression increase of early response genes such as NR4A2, NR4A3, while the transcription
activation of genes with delayed response such as PPARGC1A is provided through initial
transcription regulation by the same CREB- and CRTC-like factors and translation of the X
factor, which is an intermediate regulator. Moreover, conducted bioinformatics analysis
of the transcriptomics [12] and ChIP-seq data from the GTRD database revealed potential
candidates for this X factor regulating expression of the PPARGC1A gene.

It is worth noting that although advancement in the development of high-throughput
experimental techniques and generation of diverse omics data for human skeletal muscle
during endurance exercise enabled us to unveil key participants of the cellular response
and adaptation to stress/various stimuli [8–12], the systematic understanding of signaling–
metabolic pathway relationships with downstream genetic regulation in exercising skeletal
muscle is still elusive. Detailed mechanistic and multiscale mathematical models have
been constructed to provide a powerful in silico tool enabling quantitative investigation of
the activation of metabolic pathways during an exercise in skeletal muscle [14–16]. Here,
we propose a modular model of exercise-induced changes in metabolism, signaling, and
gene expression in human skeletal muscle. The model includes different compartments
(blood, muscle fibers with cytosol and mitochondria) and allows one to quantitatively
interrogate dynamic changes of metabolic and Ca2+- and AMPK-dependent signaling
pathways in response to aerobic cycling or knee extension exercises of various intensity in
slow- and fast-twitch vastus lateralis muscle fibres (type I and II, respectively), as well as
downstream regulation of genes with early and delayed responses in a whole/mixed fiber
type skeletal muscle.

The model modules are hierarchically organized and presented according to metabolic,
signaling, and gene expression levels. To build the model, we used the BioUML plat-
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form [17] that is designed for modular modelling of complex biological systems. The
effectiveness of both this approach and the BioUML platform was previously confirmed
by the development of complex modular models of apoptosis [18] and the cardio-vascular
system [19].

2. Materials and Methods

This section consists of two subsections. Firstly, the suggested approach for modular
construction of complex biological models, their reproducibility, and practical applications
using the BioUML platform are described. Afterwards, the main points of the integrated
model construction are presented.

2.1. BioUML Platform

BioUML (Biological Universal Modeling Language, https://ict.biouml.org accessed
on 8 June 2021) [17] is an integrated platform for modeling and analysis of complex
biological systems. It supports main standards in systems biology, modular and visual
modelling, fast simulation, parameter estimation, and a number of numerical methods, as
well as integration with Jupyter Notebook for reproducible research. Together, these cover
all needs for modeling complex biological systems.

2.1.1. Systems Biology Standards

It is very important to provide interoperability and reproducibility of mathematical
models of complex biological systems [20,21]. For this purpose, the BioUML platform
supports the main standards used in systems biology.

• SBML—Systems Biology Markup Language [22] serves for a formal description of
mathematical models. BioUML supports all versions of SBML from l1v2 to the latest
l3v2, including “comp” [23].

• SBGN—Systems Biology Graphical Notation [24] is used for visual description of
model elements (complexes, compartments, molecule types, reactions, etc.). BioUML
completely supports SBGN Process Description diagrams and uses them to visually
represent SBML models. We also support the XML markup language SBGN-ML
(https://github.com/sbgn/sbgn/wiki/SBGN_ML accessed on 8 June 2021), which
facilitates the exchange of SBGN diagrams between tools.

• Antimony—human-readable text format, which supports most of the SBML fea-
tures [25]. BioUML automatically processes it into an SBML diagram in SBGN notation.
BioUML supports import and export into antimony format.

However, these standards are not sufficient for some tasks. Thus, we suggest extension
of the SBGN Process Description diagram type and Antimony format and demonstrate how
they can improve the construction of complex biological models using visual modelling.
These extensions supported by the BioUML platform will be described below.

2.1.2. Visual Modelling

Representation of investigated systems as graphical diagrams by means of software
supporting visual modeling can significantly facilitate the procedures of the model recon-
struction.

Following a paradigm of visual modelling, a user creates mathematical models as
visual diagrams. Each component of the diagram corresponds to a particular mathematical
object of the model (variable, reaction, metabolite, equation, etc.). Users may additionally
edit those elements by changing their properties (i.e., initial value of a variable, kinetic law
for the reaction, etc.). Based on this visual representation as well as on defined properties
of diagram elements, BioUML automatically generates a program code that is employed to
simulate the model dynamics. The current BioUML version generates highly optimized
Java code and uses its own state-of-the-art simulation engines.

https://ict.biouml.org
https://github.com/sbgn/sbgn/wiki/SBGN_ML


Int. J. Mol. Sci. 2021, 22, 353 4 of 30

2.1.3. SBGN Process Diagrams Extension

Graphical notation is a crucial component of visual modeling that allows one to
formally and completely build a model. A visual model can be presented by some types
of diagrams enabling the description of diverse aspects of the structure and function of a
complex system with different levels of details. This formal graphical representation is a
basis for automatic code generation by specialized tools to simulate the model.

We devised an extension (Table 1) for the Process Diagram type from the SBGN stan-
dard [24] to provide the possibility of graphical representation of mathematical elements
used in SBML format: equations, events, functions, and constraints [22]. We also added
glyphs to represent tabular data that are used for defining the dynamics of the mathemati-
cal variables of the model. Tabular data may be translated into spline curves or a constant
piecewise function. Furthermore, tabular data may be used, for example, for defining
experimental conditions—training regimen for physical exercises.

Although SBGN notation already has tag elements that denote the module interface
(ports in SBML terminology), in our diagrams we have three different types of ports
(see below).

Table 1. Glyphs for new entities for the SBGN Process Diagram.

Element Name Glyph Description

Equation
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2.1.4. Modular Diagrams

Modularity could be considered a principle of biological organization [26,27]. There-
fore, a modular approach to the modeling of complex biochemical systems has been actively
developing in the last decades [28,29].

In the framework of a modular approach, the investigated system is viewed as a set
of interconnected subsystems (modules). Each module is a mathematical model that can
be considered and simulated independently. Integration of these modules constitutes a
more complex model of the whole system. Modules may leverage different mathematical
formalisms and scales. They can be created, validated, and improved independently and
may be viewed as replaceable parts.

For visual modelling of modular models, we developed a special diagram type that
allows us to specify connections between modules. For this purpose, each module specifies
variables that can be used to connect it with other modules. This subset of variables is
called the module interface and is represented by ports (Table 2).

Ports can be of three types:

• Input—mathematical variable associated with input ports that is calculated outside of
the module and used in the module.

• Output—mathematical variable associated with contact ports can be modified inside
the module as well as outside (e.g., using differential equations).

• Contact—mathematical variable associated with output ports calculated inside the
module and may be used in other modules. In other words, it is a shared variable that
can be simultaneously changed by several modules.

Besides this, modular diagrams can include all mathematical elements and tabular
data suggested in Table 1.

Table 2. Glyphs and arcs for modular diagrams.

Element Name Glyph Description

Module
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• when creating model that will be used as a part of another model (i.e., module),
a modeler specifies the module inputs, outputs, and contacts and links them to
corresponding module entities or variables;
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• on a modular diagram, a modeler links several modules together using previously
defined ports.

Let us consider a simple example demonstrating this approach (Figure 1). First, we
will develop a simple module M1 that consists of one biochemical reaction where two
molecules A and B form the complex A:B. We are suggesting that the concentration of
entity A can be changed in other reactions due to participation in other modules. To specify
this, we will create port A of type “contact” (grey pentagon). The concentration of the
A:B complex is solely defined in module M1, and we will create a port A:B of type “output”
(red pentagon) that is represented as input in module M2.

Then, we will create module M2 that will also include one reaction where complex
A:B catalyzes the phosphorylation of protein C (C{p}). Herein, we will define port A:B as
input (green pentagon) for this module and port C{p} as output.

Module M3 also comprises one bimolecular reaction where C{p} catalyzes the trans-
formation of A into A_1. X and Z are chemical substances that are the reactant and product,
respectively. Similarly, we will specify C{p} as input, and A port will be a contact while the
A concentration is also changed in the reaction from module M1.

Finally, let us form these three modules into a modular model (Figure 1b,c). We will
connect corresponding ports to each other (Figure 1b).

• inputs and outputs: A:B for M1 and M2, C{p} for M2 and M3; this is a directed
connection so it is depicted by an arrow;

• contacts—A for M1 and M3; this is an undirected connection while concentration A is
changed simultaneously by two reactions from these modules and so it is depicted by
the line.
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Figure 1. Modular model example. (a)—inner structure of modules (SBGN). M1-M3 designate
corresponding modules; two green rectangles A and B in M1 correspond to molecules A and B
which form the complex A:B, while grey and red pentagons in M1 designate contact port for A and
output port for A:B, respectively; two green rectangles C and C_p in M2 correspond to protein C
and phosphorylated form of the protein, while green and red pentagons in M2 designate input port
for A:B and output port for C_p, respectively; two green rectangles A and A_1 in M3 correspond
to molecules A and A_1, while green and grey pentagons in M3 designate input port for C_p and
contact port for A, respectively; two purple circles X and Z in M3 mean the additional substrate and
product of the bimolecular reaction, correspondingly that is catalyzed by phosphorylated form of
the protein C (green rectangle), (b,c)—modular diagram in two equivalent variants: without or with
buses (white circles). Buses serve for cosmetic purposes only.
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More complex modular diagrams may contain a large number of connections that
form many intersections. To skip this intersection, we introduce the concept of a bus
(white circle in Figure 1c): a port is connected to the named bus, and a diagram may
contain several clones of such a bus. Figure 1c demonstrates how the connection of two A
ports can be replaced by a connection with two clones of bus A.

Numerical calculations for modular models may be performed in two ways:

• Flattening—a modular model may be transformed into a non-modular model by aggre-
gating all elements of all modules with automatic resolving of established connections
between variables [18].

• Agent-based simulation. Each module is simulated independently with its own
simulator and formalism. The implemented scheduler coordinates the interactions by
sending and receiving the numerical values of connected variables [19].

To simulate the presented integrated modular model, we employ a flattening approach
while all modules use the same mathematical formalism and contain sets of ordinary
differential equations (ODEs) and discrete events (i.e., hybrid models). The BioUML
platform automatically transforms the modular model into a “flat” hybrid model with the
same formalism by aggregating all equations and events from all modules and resolving
connections. For more details, see [18,19].

2.1.6. Antimony—Extension and Synchronization with Visual Depiction

Antimony provides a convenient human-readable text format that supports most of
the SBML features. Herein, we suggest an extension for the Antimony format to specify
reaction components to which type of SBGN Process Diagram they correspond, as well as
some other properties.

The suggested format is as follows:

@entity_id.property = value

The proposed extension is quite similar to the idea of annotations in SBML format
where SBML-enabled software can store any auxiliary information. Similar to Java annota-
tions, we suggest sign @ for this purpose.

Currently, the BioUML platform supports the following properties in annotations:

• sbgnType—defines the SBGN entity type (unspecified, macromolecule, nucleic acid
feature, perturbing agent, simple chemical or complex). All those entities correspond
to mathematical variables in the model.

• sbgnViewTitle—defines additional properties of an SBGN entity such as whether it is
multimer if it has units of information or state variables. If an entity is a complex, it
also defines the inner elements of the said complex. We used Transpath conventions
to denote entities and complexes in text formats. Here are some examples:

# Complex comprising two entities A and B is denoted as “A:B”.
# Entity A with state variable p (phosphorylated) is denoted as “A{p}”.
# Multimer entity A is denoted as “(A)3”.
# A more advanced example: “(A{p})3:B{r}{p}:C”.

More information can be found in part 2.6 of Transpath documentation at https://
genexplain.com/wp-content/uploads/2017/04/TRANSPATH-Documentation_2012.2.pdf
(accessed on 8 June 2021).

Depending on the context/tasks, it can be more suitable to present a model of a
biological system either as a graph using the extended version of the SBGN Process
diagram type or as a program code using Antimony language.

Antimony+ and PD+ are seamlessly integrated in the frame of the BioUML platform.
Due to this integration, a user can simultaneously view and edit textual and graphical
representations of a biological system model. Figure 2 demonstrates how the chemical
reaction is represented using SBGN Process Diagram Type (2a) and extended Antimony
format (2b).

https://genexplain.com/wp-content/uploads/2017/04/TRANSPATH-Documentation_2012.2.pdf
https://genexplain.com/wp-content/uploads/2017/04/TRANSPATH-Documentation_2012.2.pdf
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Figure 2. Representation of the simple chemical reaction (a) using the SBGN Process Diagram type and Antimony with
annotations (b). Three green rectangles α2, β2, γ2 inside the dark green octagon AMPK_2_2_3 designate corresponding
subunits of the AMPK, while green rectangle CAMKKII mean the kinase catalyzing the phosphorylation reaction.

It is noteworthy that if a user edits textual model representation then graphical
representation is updated synchronously by the BioUML platform and vice versa. Similarly,
if a user selects some object on a diagram, then corresponding text items are highlighted in
the text document and vice versa.

2.1.7. Model Simulations

Numerical solutions of the model represented by a system of ordinary differential
equations have been obtained on the basis of the VODE method [30] using a JVode simula-
tion engine implemented in the BioUML tool [17]. Each submodule of the modular model
can be represented as an independent SBML file [22], while the integrated modular model
can be exported as a COMBINE archive [31] to use the model and reproduce simulations,
resulting in alternative software supporting current standards of the systems biology.

2.1.8. Jupyter Notebook

BioUML is integrated with Jupyter (https://jupyter.org, accessed on 8 June 2021)
for interactive data and model analysis as well as an essential and user-friendly tool
for the reproducibility of the simulation results (Figure 3). The notebook that provides
reproducibility of results presented in the article can be started on the BioUML server as
well as using Binder technology.

2.2. Integrated Modular Model
2.2.1. The Model Overview

The general structure of the developed model linking metabolism, Ca2+-dependent
signaling transduction, and regulation of gene expression in human skeletal muscle is
demonstrated in Figure 4.

The model has a hierarchical structure. At the top level, the model describes the
physiology of capillary blood flow through muscles during exercise to provide oxygen
and substrate delivery and metabolite removal from the skeletal muscle. It is worth
noting that many physiological details are lumped in the current version of the model
(e.g., cardiorespiratory system elements), and the dynamic change of the capillary blood
flow elicited by the exercise is considered a linear function of the exercise intensity [32].
In the muscle model, we consider Type I and Type II fibers. Their modules have the same
structure but differ in some parameter values.

https://jupyter.org
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Figure 3. A fragment of Jupyter notebook reproducing the results presented in the current study: (A)
Exercise power and fiber recruitment pattern: total power (orange), power generated by type I (red)
and II (blue) fibers; (B) ATP concentration in type I (red, dotted) and II (blue, dotted) fibers and in the
muscle tissue (orange, solid) during the incremental ramp exercise until exhaustion.

On the next level (cellular level), we consider biological processes that occur in human
skeletal muscle cells. These processes can also be divided into three sublevels that are
described by the corresponding modules of the model:

• Metabolic—the main metabolic processes that occur in the skeletal muscle during
physical exercises: glycolysis, glycogenolysis, tricarboxylic acid cycle, β-oxidation, and
oxidative phosphorylation. This part of the model is based on a detailed mathematical
model of muscle metabolism developed by Li and coauthors [32]. We have redesigned
this model according to the methodology described above and changed some model
parameters to reproduce more experimental data (see below).

• Signalling— the main signal transduction pathways that are activated by physical
exercises are related to Ca2+-dependent signaling [33] and AMPK activation [34]. For
each of them we developed a special module.

• Gene expression regulation—changes in gene expression were divided into early (up
to 1–3 h after exercises) and late (3–6 h after exercises) responses. We selected the
most well-known genes for each group—NR4A2 and NR4A3 for the first group and
PPRGC1A for the second as described in the “Gene expression level” section. The
corresponding modules that describe the expression of these genes have also been
developed.

Oxygen delivery and metabolite transport between cellular compartments (mito-
chondria and cytoplasm) as well as between muscle cells and capillary blood are very
important parts of the model. Therefore, we developed special modules considering all
these transport processes.

An activation mechanism that enhances energy metabolism via transport and reaction
fluxes due to physical exercise was harnessed as the stress function depending on the
general work rate parameter [32]:

Function(W) = 1 + αi ×W × (1− e
tstart−t

τi )

where αi is the activation coefficient, W is the work rate value, τi indicates the time constant
of changes in the metabolic reaction rates in response to exercise, and tstart is the simulation
time when an exercise is started. The work rate parameter defines the power of the
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physical exercise and varies depending on the mode of the exercise. In our model, the
muscle volume was 5 L, which corresponds to that involved in exercise using a cycling
ergometer [14,32].
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Figure 4. General structure of the integrated modular model linking metabolism, Ca2+-dependent signaling transduction,
and regulation of gene expression in human skeletal muscle. Grey arrows on the physiological and cellular levels represent
transport reactions, red and blue dashed lines from each fiber type to the cellular level indicate duplicated submodules
for the corresponding fiber type, while black arrows indicate activation mechanisms related to an exercise response in the
corresponding module. The metabolic sublevel consists of submodules “Cytosol” and “Mitochondria”, which in turn contain
equations describing enzymatic reactions inside the certain compartment as well as of the Transport submodule comprising
transport reactions between them. The signaling sublevel includes Ca2+- and AMPK-dependent signaling pathways, while the
Gene expression regulation sublevel incorporates submodules describing the expression regulation of genes with early and
delayed responses. For a detailed description of all modules and diagrams, see the Supplementary Material.
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All details on the general description of each module, representation of the module
diagram using extended SBGN Process Description notation, corresponding Antimony
code for the module as well as reaction rates and ordinary differential equations to describe
the species concentrations, the module parameters, their values, and references to the
literature from which they were extracted are presented in the Supplementary Materials.

Overall, the model includes:

• 25 modules;
• 238 species;
• 185 reactions;
• 171 ordinary differential equations;
• 647 parameters.

2.2.2. Physiological (or Organism) Level

On this level (Figure 5), we model capillary blood flow for oxygen and substrate deliv-
ery to the muscle and for removal of metabolites produced by the muscle including: CO2—
carbon dioxide; O2—oxygen; Lac—lactate; Ala—alanine; Pyr—pyruvate; H—hydrogen;
Glr—glycerol; Glc—glucose; FFA—free fatty acid.
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It should be noted that those species are present in six different modules and have
different subscripts. We explain this using the example of CO2. In the module “Capil-
lary_Blood_Flow”, CO2c is the concentration of CO2 in the capillary blood. It is connected
via connections and buses with CO2b in modules “Cytosol_Capillary Transport R” and
“Cytosol_Capillary Transport W”, where CO2b is also the CO2 concentration in the capillary
blood. In those modules, transport of CO2 from blood to the muscle tissue is presented,
where CO2c is the concentration in the tissue. Finally, CO2c is connected with the CO2 vari-
ables in the “Fiber R” and “Fiber W” modules (corresponding to Type I and Type II fibers,
respectively), where the metabolism of CO2 in tissues is considered. Bus elements (white cir-
cles in Figure 5) are used to prevent too many intersections between connections.

Skeletal muscle volume (Vmus) is represented by the sum of the effective volumes of
blood (Vbl): Vmus = Vtis + Vbl—the skeletal muscle volume (5 kg w.w.). In skeletal muscle,
recruitment of muscle fibers due to the transition from rest to exercise enhances active
muscle volume and blood flow. According to the original metabolic model [32], we also
assume that these physiological variables dynamically change as linear functions of the
work rate parameter or power of the physical exercise:

Vmus = Vmus0 × (1 + αi ×W × (1− e
tstart−t

τV ))

Q = Q0 × (1 + αi ×W × (1− e
tstart−t

τQ ))

where Q is the blood flow, Q0 = 0.9 L/min is the muscle blood flow at rest for two legs;
Vmus0 is the skeletal muscle volume at rest (5 kg w.w.); αi is the activation coefficient; while
τV = τQ = 0.4 min is the time constant of the muscle volume and blood flow changes,
respectively, in response to exercise; and tstart is the simulation time when an exercise is
started [32].

The muscle consists of two compartments (modules) that correspond to Type I and
Type II fibers. They have the same structure but differ in some parameters (see details in
corresponding tables of the Supplementary Materials).

2.2.3. Transport Level

The inter-compartmental metabolite transport is described as passive or facilitated
(carrier mediated) fluxes according to the original paper [32]. By analogy with metabolic
rates, all transport flux equations are multiplied by a linear function to consider the exercise
effect on transport processes. The basic transport flux equation for passive (superscript p)
diffusion of species i between the blood and cytosol is:

Tp
bl〈−〉cyt,type, i = λbl〈−〉cyt,type, i × (Cbl, i − Ccyt,type,i)× (1 + αi ×W × (1− e

tstart−t
τi ))

where λbl〈−〉cyt,type, i is the permeability-surface area coefficient, Cbl, i and Ccyt,type,i are
concentrations of species i in the blood and cytosol, respectively; i ∈ (CO2, O2, Ala, Glr)
and type ∈ (type I f iber, type I I f iber), while for facilitated (superscript f ) transport:

T f
bl〈−〉cyt, type,i = Rmaxtransportbl〈−〉cyt, type,i ×

(
Cbl, i

KMbl〈−〉cyt,i
+Cbl, i

− Ccyt,type,i
KMbl〈−〉cyt,i+

Ccyt,type,i

)

×(1 + αi ×W × (1− e
tstart−t

τi ))

where Rmaxtransportcyt〈−〉mit, type,i is the maximal flux rate for facilitated transport, Cbl, i and
Ccyt,type,i are concentrations of species i in the blood and cytosol, respectively;
i ∈ (Glc, Pyr, Lac, FFA, H+) and type ∈ (type I f iber, type I I f iber).
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The basic transport flux equation for passive (superscript p) diffusion of species i
between the cytosol and mitochondria is:

Tp
cyt〈−〉mit,type, i = λcyt〈−〉mit,type, i × (Ccyt,type, i − Cmit,type,i) ∗ (1 + αi ×W × (1− e

tstart−t
τi ))

where λcyt〈−〉mit,type, i is the permeability-surface area coefficient, Ccyt,type, i and Cmit,type,i
are concentrations of species i in cytosol and mitochondria, respectively; i ∈ (CO2, O2) and
type ∈ (type I f iber, type I I f iber), while for facilitated (superscript f ) transport:

T f
cyt<→mit, type,i = Rmaxtransportcyt<→mit, type,i

×
(

Ccyt,type, i
KMcyt〈−〉mit,i

+Ccyt,type, i
− Cmit,type,i

KMcyt〈−〉mit,i+
Cmit,type,i

)

×(1 + αi ×W × (1− e
tstart−t

τi ))

where Rmaxtransportcyt〈−〉mit, type,i is the maximal flux rate for facilitated transport, Ccyt,type, i
and Cmit,type,i are concentrations of species i in the cytosol and mitochondria, respectively;
i ∈ (H+, Pyr, FAC, CoA, Pi) and type ∈ (type I f iber, type I I f iber).

2.2.4. Cellular (Metabolic) Level

The diagram of the modular model describing the metabolism of human skeletal
muscle is presented in Figure 6. The cytosol includes metabolic reactions of the glycolysis,
glycogenolysis, and lipid metabolism, while the tricarboxylic acid (TCA) cycle, ß-oxidation,
and oxidative phosphorylation reactions occur in the mitochondria. The intermediate com-
partment between those is a transport module that contains passive and facilitated transport
reactions for model intracellular species. Kinetic laws presenting metabolic and transport
flux expressions exactly match the initial model developed by Li and coauthors [32].

According to the model, a dynamic mass balance of metabolites (i) is based on the
structural and functional organization and is expressed by equations:

Vcyt,type
dCcyt, type,i

dt = Rcyt,type,i + Tk
bl〈−〉cyt, type,i − Tk

cyt〈−〉mit, type,i

in the cytosol and :

Vmit,type
dCmit, type,i

dt = Rmit,type,i + Tk
cyt〈−〉mit, type,i

in the mictochondria.

where Vcyt, Vmit indicate the volume of the corresponding module or compartment in
kg wet weight (kg w.w.), type ∈ (type I f iber, type I I f iber). Vcyt,R = 0.88 × VR and
Vcyt,W = 0.92×VW are volumes of the cytosol for type I and II fibers, respectively, while
Vmit,R = 0.12×VR and Vmit,W = 0.08×VW are the volumes of mitochondria for type I and
II fibers, respectively, where VR = Vw = 0.5×Vtis = 2 kg w.w., VR—the type I fiber volume,
VW—the type II fiber volume, and Vtis—the volume of muscle cells in the tissue. Ccyt, type,i,
Cmit, type,i is the concentration of metabolite i in a certain compartment of the corresponding
fiber type (mmol/kg w.w.); Rx,type,i, x ∈ {cyt, mit} is the net metabolic reaction rate in a
certain compartment of the corresponding fiber type (mmol/min/kg w.w.); Tk

cyt〈−〉mit, type,i,

Tk
bl〈−〉cyt, type,i are the respective transport fluxes between the cytosol and mitochondria

compartments and cytosol and blood compartments (mmol/kg w.w.), where superscript k
indicates f (facilitated) or p (passive) transports.
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In order to describe a dynamic mass balance of metabolites (i) in the blood compart-
ment, the next equation is used:

Vbl
dCbl,i

dt
= Q× (Cart,i − Cbl,i)− T f or p

bl〈−〉cyt,R, i ×VR − T f or p
bl〈−〉cyt,W, i ×VW

where Vbl is the total effective volume of the capillary blood and interstitial fluid compart-
ments. Vbl = 0.2×Vmus, Vtis = 0.8×Vmus, where Vmus = Vtis + Vbl—the skeletal muscle
volume (5 kg w.w.); Cart,iCbl,i is the concentration of metabolite i in the respective arterial
and capillary blood compartments (mmol/kg w.w.).
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It is worth noting that such modules as capillary blood and interstitial fluid are
assumed to be in equilibrium with each other, which allows us to consider species concen-
trations in these compartments as equal and combine them into the blood compartment.
The comprehensive description including visual representation, corresponding Antimony
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code, and mathematical equations for reaction rates and the dynamic mass balance in each
module of the integrated model as well as values and units of the used kinetic parameters
is presented in the Supplementary material.

In comparison with the original model of Li and coauthors [32], we introduced a
following changes:

1. Values of activation coefficients associated with ATPase [35–38] and pyruvate de-
hydrogenase reaction fluxes for type I and type II fibers [39–41] as well as the time
constant of the ATPase flux rate coefficient in response to exercise were modified (See
Data availability and Supplementary material) according to recently published data
and estimations [42,43].

2. Despite overall net glycogen breakdowns during muscle contraction, exercise in-
creases the activity of glycogen synthase (GS) [44–47] and ATP consumption related
with the reaction. Therefore, GS reaction fluxes were modified according to [44,46,48].
The rates of muscle glycogen synthesis during exercise assumed to be equal in type I
and type II fibres were estimated from average post-exercise glycogen synthesis
data [49].

3. To consider the allosteric regulation of AMPK activity (in corresponding modules),
concentrations of free ADP and AMP in the cytosol were calculated using intra-
cellular Cr, PCr, ATP, and H+ concentrations as well as the equilibrium constants
for creatine phosphokinase and adenylate kinases in each fiber type as described
previously [50–52].

2.2.5. Signaling Level

The mean concentration of Ca2+ ions in the myoplasm increases in proportion to
the intensity of exercise. Ca2+ binds to calmodulin, thereby activating CaMKs and phos-
phatase calcineurin [33]. CaMKII is the most abundant isoform in human skeletal muscle,
whereas CaMKI and CaMKIV are not expressed at detectable levels [53]. An increase in
CaMKII activity results in CREB1 Ser133 phosphorylation (and likely some other CREB-like
factors), leading to the activation of the transcription factor [54,55]. Calcineurin can de-
phosphorylate (and activate) CRTCs at Ser171 (CREB-regulated transcription coactivators),
playing a key role in regulating the transcriptional activity of CREB1 [56]. Another target
of calmodulin is Ca2+/calmodulin-dependent protein kinase kinase 2 (CAMKK2) that
phosphorylates AMPK Thr172, thereby activating the kinase [57]. In turn, activated AMPK
can phosphorylate CREB1 Ser133 [58]. Collectively, these findings drove us to include in
our model the Ca2+-dependent regulation of calmodulin, CREB1 (via CaMKII), CRTC (via
calcineurin), and AMPK (via CaMKK2) (Figure 7). The amount of these proteins in human
skeletal muscle was estimated using published proteomics and transcriptomics data [12,59]
(see Supplementary data in [60]).

There are three different heterotrimeric complexes of AMPK in the human skeletal
muscles: α2β2γ1, α2β2γ3, and α1β2γ1 [61]. Distinct kinetic properties (an intrinsic enzyme
activity, binding affinities of AMP, ADP, and ATP to the specific isoform, sensitivity to de-
and phosphorylation of AMPK heterotrimers) [62,63] and their subcellular localization [64]
cause a differential regulation of the AMPK heterotrimers in vivo. The α2β2γ3 complex is
phosphorylated and activated during moderate- to high-intensity aerobic exercise, while
the activity associated with the other two AMPK heterotrimers is almost unchanged [65].
However, the baseline activity of the α2β2γ3 complex is significantly lower than others.
The general AMPK activity at baseline and during/after exercise is a sum of isoform
activities; hence, we considered all isoforms separately (in the corresponding module)
to quantitatively fit experimental data obtained at baseline and after an exercise [65,66].
AMPK is regulated in various ways: an up-stream kinase LKB1 can phosphorylate AMPK
at Thr172 [67,68]. On the other hand, an exercise-induced decrease in intramuscular ATP
increases its activity, while an increase in AMP activates it [69,70]. Hence, in our model,
AMPK is regulated via AMP, ATP, and LKB1, as well as CaMKK2 (as mentioned above)
(Figure 7).
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It was demonstrated that the localizations of AMPK and CaMKII kinases have a
pronounced effect on their activities [34,53,71–73], implying the necessity to consider the
impact in the model. However, an extended analysis of the published data on this issue
demonstrates some contradictions in the data and the lack of quantitative data on this issue.
For instance, the vast majority of CaMKII (~80%) expressed in human skeletal muscle
is localized to the soluble cytosolic fraction. However, most of the major estimations
and measurements on the functional properties and substrates have been obtained for
membrane-associated CaMKII [53]. Moreover, the mobile fraction of the kinases or their
substrates has a limited diffusion rate in the tightly packed myocyte structure and is
dependent on the molecular weight that can affect the kinetics of their interaction. Such
diffusion rate data have not been found.

2.2.6. Gene Expression Level

An aerobic exercise induces the expression of several hundreds of genes regulating
many cell functions: energy metabolism, transport of various substances, angiogenesis,
mitochondrial biogenesis, etc. Regulation of the transcriptomic response to acute exer-
cise includes dozens of transcription regulators [12] and seems to be extremely complex.
Therefore, to consider the response at a gene expression level, we selected exercise-induced
genes based on the next criterion comprising two points: (1) a functional role of this gene in
the regulation of skeletal muscle metabolism is known; (2) its expression in human skeletal
muscle markedly changes in response to an exercise and has one of the expression patterns—
early or delayed response since gene expression in early and late stages of the recovery
after the termination of the exercise can be regulated in different ways [13]. According
to the criterion, the PPARGC1A gene, known as the major regulator of exercise-induced
phenotypic adaptation and substrate utilization [74], was chosen as the gene with delayed
response, while NR4A2 and NR4A3 genes were chosen as early response genes [75]. NR4A
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nuclear receptors induce DNA demethylation in skeletal muscle [76], regulate genes in-
volved in glycogenolysis, fatty acid oxidation, and pyruvate use and apparently play a role
in the regulation of the skeletal muscle fiber phenotype [77,78]. Significantly, all members
of the NR4A nuclear receptor subfamily (NR4A1, NR4A2, NR4A3) are the three most highly
induced genes in response to acute endurance exercise [79,80]. We selected both genes
from one family since they have different temporal patterns of mRNA expression that are
likely associated with different methylation profiles of their promoters [81,82].

Expression of NR4A2 and NR4A3 mRNA rapidly increases during the first hour
after an aerobic exercise (early response genes) [12] due to activation of Ca2+\calcineurin-
dependent signaling [75]. We included in our model the Ca2+-dependent regulation
(Ca2+\calcineurin-CaMKII-CREB1) of NR4As genes using data of contractile activity-
specific mRNA responses of these genes [12]. Expression of PPARGC1A mRNA rises 3 to 4 h
after an exercise (gene with delayed response) [12]. The transcription regulation of
PPARGC1A via the canonical (proximal) and inducible (distal) promoters is very com-
plicated and includes Ca2+- and AMPK-dependent signaling, as well as CREB1 and its
co-activator CRTC [10,83]. The phosphorylation level of many signaling kinases drops
to basal levels within the first hour after an aerobic exercise. Moreover, in a genome-
wide study on various human tissues, it was shown that the phosphorylation level of
CREB Ser133 does not always correlate with its transcriptional activity [81]. Therefore,
we suggested that the expression of genes with delayed response (including PPARGC1A)
is regulated by increasing the expression of one of the early response genes encoding
transcription factors leading to a rapid increase in the corresponding protein [60]. A de-
tailed description of our results on the identification of transcription factors as potential
candidates for the role of X factor is presented below in the section Results and Discussion.
Analysis of contractile activity-specific transcriptomic data [12] showed that a rapid in-
crease in the expression of genes encoding various TFs is observed already in the first hour
after an exercise. It turned out that the binding motifs of some TFs (CREB-like proteins,
as well as proteins of the AP-1 family: FOS and JUN) are located and intersect with each
other both in the alternative and in the canonical promoters of the PPARGC1A gene [60],
i.e., these TFs can act as potential regulators of this gene. This is consistent with the fact
that these TFs can bind to DNA and regulate the expression of target genes as homo-
and heterodimers [84,85]. Based on these considerations, we included in the model the
regulation of gene expression of early (NR4A2, NR4A3) and delayed (PPARGC1A) genes:
early response genes are regulated via the activation of existing TFs (e.g., CREB1) and their
co-activators (e.g., CRTC), while delayed response genes are regulated via an increase in
the expression of early response genes encoding transcription factors (transcription factor
X in our model, Supplementary Material, Module “Gene expression regulation”).

3. Results and Discussion
3.1. Model Validation
3.1.1. Simulation of Metabolic Changes Induced by Incremental and Interval Exercises

To validate the metabolic part of the model, we investigated the dynamic behaviour
of the system in response to diverse acute aerobic exercises and compared them with
published experimental data. It is worth noting that qualitative validation of the model
was conducted on the basis of the comparison of the simulation and experimental data for
three indicators: time period to achieve the maximal level of the species concentrations
(e.g., PCr, ATP, glycogen) at the corresponding value of the exercise intensity and time to
reach the steady-state value in recovery as well as the multiplicity of concentration changes
(fold changes). We used the last indicator due to quantitative differences in measured
concentrations for the same species by different experimental approaches (e.g., biochem-
ical and 31P MRS measurements). Initially, we quantitatively estimated the biochemical
responses of the key metabolic variables (ATP, ADP, PCr, lactate concentrations, and pH
in muscle fibers type I and II) in the incremental ramp exercise to exhaustion, which is a
commonly used approach to evaluate aerobic performance. Increasing the power during



Int. J. Mol. Sci. 2021, 22, 353 18 of 30

the ramp exercise affects various physiological variables such as the number/volume of
recruited muscle fibre type I and II, blood flow as well as the transport and metabolic
fluxes in both fibre types (Figure 8 and see data availability). In our simulation, muscle
fibres type I start to be recruited after the beginning of exercise, while fibre type II if only
recruited at a power higher than 24% of VO2max (6 min after the ramp exercise onset,
Figure 8A). Recruiting all muscle fibres during the test leads to exhaustion and termination
of the exercise [35,86,87]; the peak power at exhaustion in our simulation was 250 W,
which corresponds to the value for an untrained male performing the ramp exercise until
exhaustion using a cycling ergometer. The model simulations correspond reasonably well
to experimental measurements [88–90] obtained in studies with the incremental exercise
(Supplementary Figure S1). It is worth noting that the current version of the model does
not take into account the effect of muscle fatigue during the incremental ramp exercise
observed in exercised muscle in vivo (see below). This fact may partially explain the lack
of exponential changes in muscle lactate concentration and pH during the last part of the
incremental exercise.
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For additional validation of the metabolic part of the model, we simulated responses
to various interval exercises (Figures 9 and 10). Figure 9 shows that the model qualitatively
reproduces the dynamics of PCr concentration during the interval exercises with different
patterns (duration of an exercise bout 16 s to 64 s and recovery period 32 s to 128 s) and
with peak power comparable with maximal aerobic power obtained in the incremental
ramp test (250 W) [91].
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High-intensity interval exercise has been shown to rapidly decrease the PCr level
followed by slow recovery of the PCr concentration during the last part of the exercise [92].
There are no data on the exercise power in the study; hence, we used the constant value
(500 W) for each bout (Figure 10A). The power was markedly higher than the peak power in
the incremental cycling test because the duration of each exercise bout is short; the energy
supply of such short exercise bouts is related mainly to PCr reactions as well as glycolysis.
Our model precisely simulated the rapid decline in PCr, but showed no slow recovery
of the PCr during the last part of the high-intensity interval exercise (Figure 10B). We
suggested that this discrepancy may be related to the lack of the fatigue-induced decline in
exercise power. We tried to roughly simulate the fatigue-induced decline in exercise power
by the decline in power generated by muscle fibers type II (Figure 10C). As a result, the
model much better reproduced the experimental dynamics of PCr than simulations with
constant maximal power in each bout (Figure 10D,E, Supplementary Figure S2). However,
the PCr dynamics during the recovery process indicated that the model still requires further
modifications and numerical study. We assume that the potential point for the update is
related to the pH changes during the recovery.

3.1.2. Simulation of Signaling and Gene Expression Changes Induced by Low- and
Moderate Intensity Continuous Exercises

At the next step of the model validation, we predicted the responses of biochemical
variables, signaling molecules (AMPK and Ca2+-dependent proteins), transcription fac-
tor (CREB1), as well as expression of genes with early and delayed responses (NR4A3,
NR4A2, PPARGC1A) to low (50% VO2max) and moderate intensity (70% VO2max) continu-
ous aerobic exercises (Figure 11). Moderate intensity exercise recruits more muscle fibers
type II than low intensity exercise, thereby additionally modulating the exercise-induced
metabolic fluxes and molecular response. A comparison of our simulations with experi-
mental data [43,90,93–95] showed that the model well reproduces the metabolic changes in
various fiber types and in the whole muscle induced by exercises with various intensity
(Supplementary Figure S1).

According to the literature data on the human vastus lateralis muscle [53,65,96], our
simulation showed an intensity-dependent increase in the phosphorylation of CAMKII and
AMPK α2 and γ3 (Figure 12A–C,F–H). Importantly, the phosphorylation (as a marker of
activity) of AMPK α2 and γ3 consisted of 10% and 30% of the AMPK isoforms containing α2
and γ3, respectively (Figure 12B–C,G–H), which is in line with the experimental data [65]. In
contrast to experimental data at a signaling level, we found transcriptomics data concerning
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intensity-dependent gene expression for 1 h exercise only [10,12]. In our model, exercise-
induced activation of CAMKII and AMPK induced CREB- and CRTC-related expression
of early response genes that is in line with the experimental data [12] on exercise-induced
expression of early response genes (for example, of NR4A2, NR4A3) in the human vastus
lateralis muscle (Figure 12K).
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Figure 10. Simulation results for high-intensity intermittent exercise (each bout of 30 s exercise
separated by 20 s recovery; [92]). (A,C) Exercise power and fiber recruitment pattern: total power
(A: Wpeak = 500; C: Wpeak = 500), W (orange), power generated by type I (red, A–C: Wpeak = 125) and
II (blue, A: Wpeak = 375; C: Wpeak = 375 and successive power decline) fibers; (B,D) PCr concentration
in type I (red) and type II fibers (blue); (E) Changes in PCr concentration (% initial): the orange line is
the simulation result for PCr in the muscle tissue, while black dots with the corresponding line are
the experimental data from [92] (mean ± SD for some dots).
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Figure 12. Simulation results for low and moderate intensity (50% (A–E) and 70% (F–K) VO2max, respectively) continuous
exercises (30 min for signaling and 60 min for gene expression) with intermediate X factor regulating the expression of the
PPARGC1A gene. (A,F) Ratio of CAMKII phosphorylated protein in type I (red) and type II (blue) fibers (corresponds to [53]);
(B,C,G,H) Percentage of all α2 phosphorylated proteins (dashed) and of the phosphorylated γ3 heterotrimers (solid) in type
I fibers and type II fibers, respectively (corresponds to [65,96]); (D,I) Expression (in fold changes) of NR4A3 (thunderbird
solid), NR4A2 (orange solid), PPARGC1A (red solid) in type I fibers and (E,J) in type II fibers, where NR4A3—sapphire solid,
NR4A2—azure solid, PPARGC1A—blue solid; (K) Expression (in fold changes) of NR4A3 (green solid), NR4A2 (magenta
solid), and PPARGC1A (purple solid) in the muscle tissue during moderate intensity exercise.
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Numerical analysis of the model demonstrated the necessity of considering additional
transcription factors showing activity 1 to 2 h after exercise for the simulation of genes
with a delayed response to exercise (for example, PPARGC1A; [60]). Introducing in the
model transcription factor X that is up-regulated immediately after exercise in a CREB- and
CRTC-dependent manner allowed us to reproduce the expression of the PPARGC1A gene
(Figure 12K). Our bioinformatics analysis [60] of the transcriptomics data [12], in turn,
allowed us to suggest that proteins from the AP-1 family (e.g., FOS and JUN) forming
heterodimer complexes with CREB-like transcription factors served as these intermediate
regulators (factor X; see details in Supplementary Figure S3 and Table S1). Moreover, an
analysis of the transcriptomic [12,80] and ChIP-seq data from the GTRD database [97]
revealed that the expression of PPARGC1A via the alternative promoter may be regulated
by EGR1 and MYC. Both EGR1 and MYC markedly induced expression 30 to 60 min after
an aerobic exercise and had binding motifs in the alternative promoter. Our prediction
is supported by experimental data showing that EGR1 expression leads to an increase
in PPARGC1A expression in human aortic smooth muscle cells [98,99], while the EGR1
expression promptly and dramatically increased after the stretching of skeletal muscle cells,
leading to an increase in the concentration of the EGR1 protein in 3–4 h [100]. On the one
hand, MYC positively regulates the expression of all active genes through transcriptional
amplification [101–103] and chromatin modifications [104,105]. However, an enhancement
of its expression negatively impacts PPARGC1A expression [106,107], in particular, in
cardiomyocytes [108] and other types of cells where MYC acts as a repressor [109].

3.2. The Integrated Modular Model Comprises Three Hierarchical Levels (Metabolic, Signaling,
and Gene Expression)

We previously developed a multi-compartmental mathematical model describing
the dynamics of intracellular species concentrations and fluxes in human muscle at rest
and intracellular metabolic rearrangements in exercising skeletal muscles during aerobic
exercise on a cycle ergometer [16]. As an initial model for this study, we used a complex
model of energy metabolism in the human skeletal muscle developed by Li and coauthors
and considered two types of muscle fibers [32]. We proposed a modular representation
of the complex model using the BioUML platform [17]. The modular representation pro-
vides the possibility of rapid expansion and modification of the model compartments to
account for the complex organization of muscle cells and the limitations of the rate of
diffusion of metabolites between intracellular compartments. This feature allowed us to
integrate modules of signaling pathways modulating downstream regulatory processes
of early response genes and genes with delayed response during exercise and recovery.
The validation of the modular model based on a higher number of published experimen-
tal data [43,89,90,93,94] (see Supplementary Figure S1) than were used in the original
metabolic model [32] showed the validity of the modular modeling approach implemented
in BioUML. Furthermore, the integrated modular model provides an absolutely novel in
silico platform to predict molecular responses of human skeletal muscle cells to diverse
modes of exercise on three hierarchical levels (metabolic, signaling, and gene expression),
experimental precise measurements of which are currently methodologically limited or
even remain elusive.

In the current state, the model is suitable for testing the plausibility of some physi-
ological hypotheses. For example, the existence of intermediate X factor regulating the
expression of the PPARGC1A gene as the example of a delayed response gene in human
skeletal muscle has been numerically investigated using different versions of the model:
considering direct regulation via the CREB-like factor or taking into account the X factor
regulatory role as an intermediate activator of PPARGC1A expression.

3.3. Model Constraints and Further Ways for Development

Despite the complexity of the developed modular model, the current version does not
consider the influence of many system factors such as hormonal regulation [56,110], the
influence of processes in the central nervous system [111,112], feeding mode [113,114], and
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exercise-induced temperature drift in skeletal muscle [115,116], which hampers the precise
quantitative reproduction of abrupt changes at different physiological levels during initial
stages of physical exercise. It can be overcome by means of significant modifications on the
muscle fiber recruitment model in order to simulate the transient process due to exercise.
Some other constraints are described in detail below.

GS activity is regulated through multiple mechanisms, including feedbacks mediated
by glycogen, blood glucose concentration, rate of glucose uptake, insulin, epinephrine, and
the GS phosphorylation state [46,48,117,118]. However, in the current model, GS activity
depends on the glycogen content only. In our model, post-exercise glycogen synthesis is
lower than that estimated in the majority of studies [49,119,120] because many factors are
omitted, such as feeding and associated rises in blood glucose concentration, rate of glucose
uptake, sensitivity to and changes in insulin, etc. At the same time, in our model, glycogen
synthesis is higher than that observed during exercise recovery in a fasted state [121].

Additionally, our model does not take into account the effect of muscle fatigue related
to the decline in power generated by type II muscle fibres and recruitment of new type
II fibres as well as the depletion of muscle glycogen and other substrates. This may play
an important role in the simulation of moderate and high intensive and/or long-lasting
exercise. Moreover, the focus of this study is related to the recruitment of vastus lateralis
muscle fibers and their activation at metabolic, signaling, and gene expression regulation
levels as a response to the exercise performed according to a cycle-ergometer or knee-
extensor exercises only. These limitations provide a direction for model improvements and
should be considered in further works.

Furthermore, the modular nature of the presented model allows the introduction of
multiple positive and negative feedbacks between different considered levels: for instance,
the impact of kinases altering the activity of enzymes that catalyze reactions of the gly-
colysis, TCA cycle, and fatty acid oxidation in skeletal muscle [122,123], Ca2+-dependent
enhancement of glycolytic enzyme activity and mitochondrial respiration [33], and PGC1α-
dependent regulation of the expression of genes encoding glycolysis and malate–aspartate
shuttle enzymes [124].

Our model provides a proof of concept of how dynamic changes at the metabolic
level can be linked to gene expression regulation via signaling transduction pathways
in skeletal muscles during physical exercises. The modular approach used in the study
has demonstrated a methodological basis for qualitative and quantitative development
of the complex model including different hierarchical levels of the system organization.
The analysis completed during this study allows us to refine the roadmap for further
model improvements, linking this in silico version to in vivo skeletal muscle. The roadmap
includes an improvement of the motor unit recruitment model, considering the impact
of the muscle fatigue on power decrease, and extension of the model by new modules
representing system factors, e.g., hormonal regulation and the central nervous system
taking into account multiple relationships and feedbacks between different modules of the
integrated model.

4. Conclusions

We developed, for the first time, an integrated model of human skeletal muscle
incorporating metabolic, signaling, and gene expression modules. The model enables us to
simulate the most important exercise-related signaling (Ca2+ and AMPK-related signaling)
and RNA expression of early response genes (as a result of the activation of transcription
factors existing in the cell), as well as the expression of delayed response genes (as a
result of the expression of intermediate transcription factors induced immediately after an
exercise). The molecular response of skeletal muscle to contractile activity is related to the
high number of signaling molecules and genes. The modular nature of the model enables
us to add new variables and modules, thereby increasing both the complexity and quality
of the model.
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