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abstract

PURPOSE With deeper insight into precision medicine, more innovative oncology trial designs have been
proposed to contribute to the characteristics of novel antitumor drugs. Bayesian information borrowing is an
indispensable part of these designs, which shows great advantages in improving the efficiency of clinical trials.
Bayesianmethods provide an effective framework when incorporating information. However, the key point lies in
how to choose an appropriate method for complex oncology clinical trials.

METHODS We divided the borrowing information scenarios into concurrent and nonconcurrent scenarios
according to whether the data to be borrowed are observed at the same time as in the current trial or not. Then, we
provided an overview of themethods in each scenario. Performance comparison of different methods is carried out
with regard to the type I error and power.

RESULTS As demonstrated by the simulation results in each borrowing scenario, the Bayesian hierarchical model
and its extensions are more appropriate for concurrent borrowing. The simulation results demonstrate that the
Bayesian hierarchical model shows great advantages when the arms are homogeneous. However, such a method
should be adopted with caution when heterogeneity exists. We recommend the other methods, considering
heterogeneity. Borrow information from informative priors is more suggested for nonconcurrent borrowing sce-
narios. Multisource exchangeability models are more suitable for multiple historical trials, while meta-analytic-
predictive prior should be carefully applied.

CONCLUSION Bayesian information borrowing is useful and can improve the efficiency of clinical trial designs.
However, we should carefully choose an appropriate information borrowing method when facing a practical
innovative oncology trial, as an appropriate method is essential to provide ideal design performance.
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INTRODUCTION

Recently, with the development of cancer molecular
biology, antitumor therapy has entered the era of pre-
cision medicine. A number of innovative therapies have
emerged, including immunotherapies, targeted thera-
pies, and cancer vaccines.1-5 The emergence of these
innovative drugs has introduced new challenges to the
design of oncology clinical trials.6 More innovative
methods have been proposed, and some of them are
also encouraged by the US Food and Drug Adminis-
tration (FDA), such as master protocol trials7 and
Complex Innovative Trial Designs,8 which raised several
discussions.

In contrast to traditional trial designs, these innovative
methods encourage the use of Bayesianmethods.9 One
of the most common scenarios is borrowing information
when multiple parallel arms exist. For example, we
designed amaster protocol clinical trial that encourages
borrowing information within multiple substudies. The

I-SPY2 trial is a success story for a platform trial that
uses a Bayesian hierarchical model (BHM) to adaptively
borrow information between running arms.10 Another
innovative paradigm is that historical information from
external data forms the design of the current trial. Using
large-scale real-world clinical data sets and high-quality
completed medical data has become a new trend in
clinical trials. By incorporating historical information,
these methods offer the possibility of a substantially
reduced sample size because of the efficient usage of
external data.

Information borrowing is an innovative technique of
great importance in current clinical trials. It can ac-
celerate the trial process and reduce the cost, thus
ultimately improving the efficiency of clinical trials.11

According to the needs of current cancer clinical tri-
als, information borrowing strategies can be divided into
two strategies according to when the information to be
borrowed is observed, similar to the division of the
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control group in ICH-E10.12 The first strategy is concurrent
borrowing that is applied in the master protocol. Concurrent
borrowing occurs when multiple parallel arms exist, such as
basket and platform trials. Arms under these circumstances
are of equal importance and are analyzed simultaneously
without a chronologic order. We focus on the estimation of all
these parameters by using all arm information. Another
strategy for incorporating external data is nonconcurrent
borrowing. For nonconcurrent borrowing, there is only one
primary trial and others are recognized as supplementary
trials, which are not of main interest. Analyses were con-
ducted in proper sequence, and we mainly focused on
estimation of parameters in the primary trial. In this case,
these supplementary trials can be regarded as external or
historical data. In some seamless clinical trial designs,
borrowing information between different stages also belongs
to this situation.

Several Bayesian information borrowing methods have
been developed, including concurrent and nonconcurrent
borrowing. However, the proper method should be adopted
to improve the efficiency of our trial. On the basis of the
existing research, we conduct a more in-depth comparison
and recommendation for application scenarios on methods
for borrowing information.

METHODS

As discussed above, there are two scenarios for information
borrowing: concurrent borrowing and nonconcurrent bor-
rowing. The Bayesian method shows nonsubstitutable
advantages because it naturally incorporates historical
information through the setting of prior distribution. Some
FDA guidelines also encourage the use of the Bayesian
method in this situation.9 Ibrahim first proposed the power
prior (PP) method, which is a pioneering work in this field.13

Since then, a large number of methods have been pro-
posed. The PP raises the likelihood of historical data to the
prespecified power α. Many similar methods have been
developed under this framework, such as the modified
power prior (MPP),14 calibrated power prior (CPP),15 P
value–based power prior (PvPP),16 commensurate power

prior (CP),17 meta-analytic-predictive prior (MAP),18 robust
meta-analytic-predictive prior (RMAP),19 and multisource
exchangeability models (MEMs).20 These methods mainly
borrow information from informative priors, which are used
for nonconcurrent borrowing to a great extent. Another
important method of borrowing information is BHM,21

proposed by Berry, using variance in a hierarchical
model to control the extent of borrowing. BHM has been
developed into different variants, such as the calibrated
Bayesian hierarchical model (CBHM),22 Bayesian hierar-
chical classification and information sharing (BaCIS),23 and
Bayesian cluster hierarchical model (BCHM).24 Although
MEMs are not variants of BHM, MEMs have been extended
to basket trials.25-26 Application scenarios and the features
of each method are listed in Table 1. In addition, the details
of these methods are described in the Data Supplement.

Concerning a novel clinical trial to evaluate the efficacy of
an anticancer drug candidate, the primary end point was
assumed to be the objective response rate (ORR) as de-
termined by RECIST version 1.1. First, we investigated the
scenarios in which concurrent borrowing occurs, along with
other drug candidates to compose a parallel multiarm trial.
A basket trial was hypothesized in this situation. By con-
trast, assuming that external data or supplementary trials
exist, the efficacy was studied through nonconcurrent
borrowing, including single historical trials and multiple
historical trials.

Detailed configurations of competing scenarios are pro-
vided in the Data Supplement. We examined eight sce-
narios of concurrent borrowing, as shown in the Data
Supplement. Scenarios 1, 2, and 7 denote homogeneous
efficacy between the four arms, and scenarios 3, 4, 5, 6,
and 8 denote heterogeneous efficacy to different extents.
For a single historical trial in nonconcurrent borrowing, the
continuous change in type I error and power was investi-
gated with regard to different response rates. The other six
scenarios with manifold heterogeneity modes are consid-
ered in multiple historical trials, as shown in the Data
Supplement. The number of simulated trials is 10,000.

CONTEXT

Key Objective
How do we choose an appropriate information borrowing method with so many methodologies when conducting a complex

innovative oncology trial?
Knowledge Generated
Borrowing information can increase power, reduce type I error, and improve the efficiency when trials are homogeneous.

However, borrowing methods should be applied with caution when heterogeneity exists.
Relevance
When designing new clinical trials which can borrow external information to accelerate the drug development, clinical in-

vestigators can refer to this study to select more efficient and appropriate methods.
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RESULTS

Concurrent Scenarios

The methods to be compared include independent analysis,
BHM, CBHM, BaCIS, BCHM, andMEMs. The probabilities of
rejecting the null hypothesis for each indication are shown in
Table 2 and the Data Supplement. Furthermore, additional
sensitivity analyses can be found in the Data Supplement.

Compared with independent analysis, all five hierarchical
models can control type I error and increase power when
the arms are homogeneous (scenario 1, 2, and 7). BHM
gives better results, followed by MEMs. However, in het-
erogeneous scenarios (scenarios 3-8), BHM is inferior to
other models. For example, in scenarios 4 and 6, where
most arms are effective and there is only one ineffective
arm, BHM reveals unacceptable type I error inflation, up to
0.2825 and 0.2497, respectively. When the number of ef-
fective arms is dominant (scenarios 4, 6, and 8),MEMs show
great advantages as MEMs reach a high performance in
power similar to BHM, while type I error ismuch smaller than
BHM. However, in scenario 5 where most arms are inef-
fective, information borrowing from ineffective arms does not
bring power advantages to MEMs. BaCIS and CBHM show
higher efficiency, exhibiting high power while maintaining
type I error in a relatively acceptable range, which is followed
by BCHM. CBHM tends to maintain the lowest type I errors.
This is caused by the parameter calibrating for a and b in exp
{a + b × log(χ2)}. The control can also be relaxed by a
different parameter setting according to risk preference. In
scenario 3, where the number of effective and ineffective
arms is balanced, BaCIS is the most effective, reflecting the
advantage of dichotomous clustering. It is worth mentioning
that, with regard to indications 2 and 4 in scenario 6, bor-
rowing information simultaneously from arms with response

rates of 0.15 and 0.4, the biases in both arms offset each
other, leading to an unbiased result. This is unreasonable
and requires special attention in practice. The results for
BCHM lie in between BaCIS and CBHM. Theoretically,
BCHM allows adaptive determination of the number of
clusters. However, dividing the arms into effective and in-
effective arms by a hypothesis test is actually a dichotomous
result. Under such a hypothesis test, more clustering shows
no advantages. Detailed results for the root mean square
error of estimation for ORR for each indication can be found
in the Data Supplement.

Single Historical Trial in Nonconcurrent Scenarios

The operating characteristics of each method are shown in
Figure 1. Additional sensitivity analyses can be found in the
Data Supplement.When the ORR in the current control arm is
the same as the ORR in the historical trial (30%), borrowing
information can result in a reduced type I error (Fig 1A),
increased power (Fig 1C), and an unbiased estimation of the
effect size (Figs 1B and 1D). This means that in case of
homogeneity between the current control arm and the his-
torical trial, all information borrowing methods are favorable.

However, when trials were heterogeneous, the operating
characteristics differed between the methods. Taking PP
(α = 0), that is, independent analysis, as the benchmark,
PP with α ≥ .5 can lead to a sharp change in type I error,
power, and bias. The range of change was positively cor-
related with α. In themost extreme cases, PP (α = 1), that is,
pooled analysis, can produce a type I error higher than 0.3
(Fig 1A) and a power lower than 0.6 (Fig 1C). The PP
method is too sensitive to heterogeneity, which is unac-
ceptable in practice. In the other five methods that consider
the assessment of heterogeneity, the curves are typically
S-shaped and control type I/II errors within an acceptable

TABLE 1. Comparison of Typical Borrowing Information Methods
Application Scenarios Methods Features

Concurrent borrowing BHM Variance in hierarchical model reflects heterogeneity and estimate it using fully Bayesian method

CBHM Variance is a function of heterogeneity measurement

BaCIS Dichotomous cluster between arms and borrow information within each cluster

BCHM Nonparametric clustering method is used to dynamically determine the number of clusters

MEMs Specify all possible pairwise exchangeability models among arms by a symmetric matrix and weight above models

Nonconcurrent
borrowing

PP Downweigh the historical trial by a prespecified power α

MPP α follows a vague prior and is estimated by combined data

CPP α is a function of heterogeneity measurement

CP Parameter in the current trial centers around the historical trial

MAP Parameters in historical trials and the current trial come from the same normal distribution with variance reflecting
heterogeneity

RMAP A hybrid prior is constructed by weighted noninformative prior and MAP

MEMs Specify all possible pairwise exchangeability models among trials by a vector and weight above models

Abbreviations: BaCIS, Bayesian hierarchical classification and information sharing; BCHM, Bayesian cluster hierarchical model; BHM, Bayesian
hierarchical model; CBHM, calibrated Bayesian hierarchical model; CP, commensurate power prior; CPP, calibrated power prior; MAP, meta-analytic-
predictive prior; MEM, multisource exchangeability model; MPP, modified power prior; PP, power prior; RMAP, robust meta-analytic-predictive prior.
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range. This is because these methods can reduce the
amount of borrowed information when the current trial data
show great heterogeneity from that of historical trials.
Concerning bias, the changes in these curves are similar to
those of the type I/II error. The curve of bias in PP, except
PP with α = 0, has a linear relationship with pc, whereas the
curves of bias in the five methods that consider hetero-
geneity are S-shaped and the estimation bias will not be
outrageous, reflecting a tradeoff between precision gains
and bias loss.

As for the five models that consider heterogeneity, differ-
ences were detected between them in this simulation. First,
in MPP, α is estimated by only one historical trial and one

current control arm and will not be accurate in most cases.
As a result, MPP does not have a strong control on type I/II
error when heterogeneity exists; so, type I error continu-
ously increases, as shown in Figure 1. By contrast, MPP is a
data-driven method that restricts researchers’ opinions on
information borrowing. CP has a smaller Type I error than
MPP and finally reaches a plateau in that it introduces
commensurability parameters to measure heterogeneity. In
CPP, PvPP, and MEMs, ideal statistical performance can
be achieved as long as we carefully set those design pa-
rameters. Theoretically, these three methods can achieve
very similar tradeoff profiles after sufficient calibrations of
the parameters. When the ORR in the current control arm is

TABLE 2. Rejection Rate of the Null Hypothesis for Concurrent Scenarios

Scenario Method

ORR of Each Indication

Scenario Method

ORR of Each Indication

1 2 3 4 1 2 3 4

1 0.15 0.15 0.15 0.15 5 0.15 0.15 0.15 0.3

Independent 0.0499 0.0477 0.0483 0.0480 Independent 0.0499 0.0477 0.0483 0.7887

BHM 0.0215 0.0212 0.0214 0.0229 BHM 0.0789 0.0755 0.0761 0.5584

CBHM 0.0603 0.0591 0.0594 0.0594 CBHM 0.0625 0.0605 0.0595 0.7866

BaCIS 0.0487 0.0461 0.0465 0.0470 BaCIS 0.0680 0.0652 0.0664 0.7819

BCHM 0.0346 0.0346 0.0355 0.0354 BCHM 0.0605 0.0594 0.0614 0.7304

MEMs 0.0544 0.0536 0.0544 0.0538 MEMs 0.0850 0.0884 0.0803 0.7691

2 0.3 0.3 0.3 0.3 6 0.4 0.3 0.15 0.3

Independent 0.7868 0.7880 0.7922 0.7887 Independent 0.9851 0.7880 0.0483 0.7887

BHM 0.9562 0.9574 0.9605 0.9587 BHM 0.9931 0.8814 0.2497 0.8842

CBHM 0.8353 0.8351 0.8419 0.8360 CBHM 0.9866 0.7910 0.0624 0.7924

BaCIS 0.8623 0.8623 0.8650 0.8631 BaCIS 0.9909 0.8709 0.1053 0.8712

BCHM 0.8494 0.8523 0.8554 0.8529 BCHM 0.9887 0.8170 0.0898 0.8141

MEMs 0.9187 0.9170 0.9161 0.9185 MEMs 0.9935 0.8553 0.1421 0.8612

3 0.3 0.15 0.15 0.3 7 0.1 0.1 0.15 0.15

Independent 0.7868 0.0477 0.0483 0.7887 Independent 0.0025 0.0023 0.0483 0.0480

BHM 0.7784 0.1490 0.1520 0.7825 BHM 0.0002 0.0002 0.0055 0.0080

CBHM 0.7941 0.0655 0.0657 0.7960 CBHM 0.0044 0.0041 0.0494 0.0495

BaCIS 0.8152 0.0815 0.0855 0.8184 BaCIS 0.0023 0.0023 0.0404 0.0410

BCHM 0.7983 0.0695 0.0731 0.8004 BCHM 0.0016 0.0015 0.0263 0.0282

MEMs 0.8322 0.1245 0.1221 0.8320 MEMs 0.0035 0.0035 0.0442 0.0479

4 0.15 0.3 0.3 0.3 8 0.3 0.3 0.25 0.35

Independent 0.0499 0.7880 0.7922 0.7887 Independent 0.7868 0.7880 0.5293 0.9324

BHM 0.2825 0.8855 0.8931 0.8892 BHM 0.9466 0.9447 0.8488 0.9881

CBHM 0.0938 0.8038 0.8069 0.8044 CBHM 0.8217 0.8234 0.5875 0.9512

BaCIS 0.0937 0.8466 0.8507 0.8483 BaCIS 0.8634 0.8651 0.6617 0.9595

BCHM 0.0925 0.8240 0.8289 0.8225 BCHM 0.8393 0.8458 0.6325 0.9535

MEMs 0.1718 0.8807 0.8844 0.8889 MEMs 0.9070 0.9066 0.7376 0.9804

NOTE. Bold values represent power in effective arms, whereas others represent type I error. The results are computed on the basis of 10,000 simulated
trials under each of the eight scenarios shown in the Data Supplement. The maximum sample size is 43 for each arm.
Abbreviations: BaCIS, Bayesian hierarchical classification and information sharing; BCHM, Bayesian cluster hierarchical model; BHM, Bayesian

hierarchical model; CBHM, calibrated Bayesian hierarchical model; MEM, multisource exchangeability model; ORR, objective response rate.
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substantially larger than that in the historical arm, they can
identify the difference and reduce the borrowing, resulting
in decreased type I error. Among these methods, CPP
poses more control on type I error, whereas PvPP andMEMs
achieve higher power. It should be pointed out that, when
using CPP, it is sometimes difficult to specify the boundaries
between fully homogeneous and fully heterogeneous situ-
ations. Therefore, CPP is more suitable for bioequivalence
trials, in which we have an equivalence boundary usually
defined by regulators [0.8, 1.25]. In a single historical trial,
the performance of MEMs is similar to that of PvPP. How-
ever, the difference between them is more obvious in
multiple historical trials, owing to the different borrowing
mechanism.

Multiple Historical Trials in Nonconcurrent Scenarios

For multiple historical trials, the performance metrics were
the same as those in the simulation of a single historical
trial. The simulation results are presented in Table 3.
Additional sensitivity analyses can also be found in the Data
Supplement.

PP, MPP, PvPP, and CP produced compromise results
between independent and pooled analysis, similar to those
in single historical trials. In most scenarios (Data Supple-
ment), the type I error and power curves for MEMs, CPP,
MAP, and RMAP are bounded by independent analysis
and pooled analysis, reflecting the nature of borrowing

information as a discounting of historical data, except for
scenario 6 (Data Supplement), as well as scenarios 2 and 5
(Data Supplement). Considering scenario 6, MAP and
RMAP have a larger type I error than the independent
analysis. One possible interpretation is that the prior mean
for scenario 4 is closer to 0.3 than that in scenario 5, which
is an asymmetric mapping (Table 4). Therefore, for sce-
nario 6, MAP and RMAP borrow more from historical trials
that are lower than 0.3, which results in type I error inflation.
For scenario 2, CPP outperforms independent analysis
because the parameter settings in CPP allow it to regard a
difference of 0.1 as almost totally heterogeneous (Data
Supplement). Therefore, in scenario 2, CPP can exclude
historical trials 1 and 2, and only borrow information from
historical trial 3, making higher power than the indepen-
dent method. MEMs fail to identify a difference of 0.1, so
they tend to borrow information and have a relatively low
power in scenario 2. Regarding scenario 5, where the
difference can reach up to 0.2, MEMs successfully identify
homogeneous trials and exclude the heterogeneous one
(Data Supplement). This scenario is more meaningful for
practical applications, as it is difficult to statistically explain
whether a smaller difference (such as 0.1) should be
borrowed. As a result, MEMs have an excellent perfor-
mance in scenario 5, which is significantly better than the
independent analysis, along with CPP. In the other sce-
narios in the Data Supplement, the methods mainly lie
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FIG 1. Simulation results for scenarios of a
single historical trial. (A) Type I error under
the null hypothesis against different ORR in
current control arm. (B) Bias under the null
hypothesis against different ORR in current
control arm. (C) Power under the alternative
hypothesis against different ORR in current
control arm. (D) Bias under the alternative
hypothesis against different ORR in current
control arm. CP, commensurate prior; CPP,
calibrated power prior; MAP, meta-analytic-
predictive prior; MEMs, multisource ex-
changeability models; MPP, modified
power prior; ORR, objective response rate;
PP, power prior; PvPP, P value–based
power prior.
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between independent and pooled analysis. In conclusion,
pairwise comparison strategies (such us MEMs) are more
effective in multiple historical trials than combined com-
parisons (such us PP and PvPP).

No significant advantages were observed for MAP or
RMAP compared with other methods in these scenarios.
One possible reason is the bias of the prior mean. The
other reason is that MAP is not sensitive to the standard

TABLE 3. Results for Scenarios of Multiple Historical Trials

Scenario Method

PT = .3 PT = .5

Scenario Method

PT = .3 PT = .5

Type I Error Bias Power Bias Type I Error Bias Power Bias

1 PP (α = 0) 0.046 0.000 0.803 0.001 4 PP (α = 0) 0.046 0.000 0.803 0.001

PP (α = .2) 0.039 0.000 0.832 –0.003 PP (α = .2) 0.059 0.009 0.859 0.006

PP (α = .5) 0.035 0.000 0.864 –0.002 PP (α = .5) 0.070 0.020 0.921 0.017

PP (α = .8) 0.033 0.001 0.887 –0.002 PP (α = .8) 0.086 0.027 0.954 0.025

PP (α = 1) 0.032 0.001 0.899 –0.001 PP (α = 1) 0.098 0.031 0.966 0.029

MPP 0.035 0.000 0.863 –0.002 MPP 0.067 0.016 0.903 0.014

CPP 0.048 0.000 0.860 –0.002 CPP 0.047 0.001 0.847 –0.002

PvPP 0.043 0.001 0.881 –0.001 PvPP 0.087 0.005 0.874 0.003

CP 0.040 0.002 0.862 0.000 CP 0.074 0.019 0.888 0.017

MEMs 0.033 0.001 0.899 –0.001 MEMs 0.052 0.006 0.886 0.004

MAP 0.042 0.002 0.835 0.000 MAP 0.089 0.018 0.915 0.015

RMAP 0.050 0.002 0.844 –0.001 RMAP 0.091 0.017 0.916 0.014

2 PP (α = 0) 0.046 0.000 0.803 0.001 5 PP (α = 0) 0.046 0.000 0.803 0.001

PP (α = .2) 0.026 –0.012 0.790 –0.014 PP (α = .2) 0.028 0.010 0.800 –0.012

PP (α = .5) 0.013 –0.023 0.779 –0.025 PP (α = .5) 0.016 0.019 0.798 –0.021

PP (α = .8) 0.009 –0.031 0.771 –0.033 PP (α = .8) 0.011 0.025 0.795 –0.028

PP (α = 1) 0.007 –0.035 0.767 –0.037 PP (α = 1) 0.009 0.029 0.795 –0.031

MPP 0.014 –0.022 0.780 –0.025 MPP 0.019 0.017 0.800 –0.019

CPP 0.046 –0.002 0.825 –0.005 CPP 0.047 0.001 0.846 –0.002

PvPP 0.037 –0.023 0.795 –0.024 PvPP 0.035 0.005 0.810 –0.008

CP 0.024 –0.018 0.790 –0.019 CP 0.025 0.015 0.804 –0.017

MEMs 0.021 –0.028 0.776 –0.030 MEMs 0.032 –0.008 0.843 –0.009

MAP 0.035 –0.007 0.803 –0.010 MAP 0.038 –0.004 0.807 –0.007

RMAP 0.038 –0.007 0.808 –0.010 RMAP 0.040 –0.004 0.809 –0.006

3 PP (α = 0) 0.046 0.000 0.803 0.001 6 PP (α = 0) 0.046 0.000 0.803 0.001

PP (α = .2) 0.059 0.009 0.859 0.006 PP (α = .2) 0.039 0.000 0.832 –0.003

PP (α = .5) 0.070 0.020 0.921 0.017 PP (α = .5) 0.035 0.000 0.864 –0.002

PP (α = .8) 0.086 0.027 0.954 0.025 PP (α = .8) 0.033 0.001 0.887 –0.002

PP (α = 1) 0.098 0.031 0.966 0.029 PP (α = 1) 0.032 0.001 0.899 –0.001

MPP 0.070 0.019 0.912 0.017 MPP 0.038 0.001 0.842 –0.003

CPP 0.073 0.002 0.836 0.001 CPP 0.047 0.001 0.831 –0.003

PvPP 0.087 0.020 0.874 0.018 PvPP 0.043 0.000 0.881 –0.002

CP 0.074 0.019 0.888 0.017 CP 0.040 0.002 0.862 0.000

MEMs 0.095 0.026 0.925 0.025 MEMs 0.056 –0.001 0.812 –0.002

MAP 0.090 0.020 0.928 0.017 MAP 0.081 0.006 0.883 0.004

RMAP 0.093 0.019 0.928 0.016 RMAP 0.083 0.006 0.886 0.004

NOTE. The results are computed on the basis of 10,000 simulated trials under the six scenarios whose specific details are shown in the Data Supplement.
Assume there are three historical trials with the sample size of each historical trial being 20. Again, the maximum sample size for the current trial is 72.
Abbreviations: CP, commensurate power prior; CPP, calibrated power prior; MAP, meta-analytic-predictive prior; MEM, multisource exchangeability

model; MPP, modified power prior; PP, power prior; PvPP, P value–based power prior; RMAP, robust meta-analytic-predictive prior.
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deviation in case of different heterogeneous scenarios
owing to the smaller number of historical trials, and
mutual transformation of binary variables and continuous
variables (Table 4). Taking scenario 1 and 3 as an ex-
ample, we expected that MAP would have a smaller
standard deviation than RMAP, but the truth is the op-
posite. We could not obtain a precise variance because
there were only three historical trials. By contrast, when
the binary variable ORR is converted into continuous
variable and hierarchical models for meta-analysis are
constructed, the logit function has a natural property that
logit(p) varies in a relatively small range, although p has
significantly changed. The possibility of detecting het-
erogeneity was further compressed after the transfor-
mation. Compared with MAP, RMAP can solve this
problem to some extent by introducing a noninformative
part of the prior. As a result, we can see a smaller bias in
RMAP than in MAP as shown in Table 3, when the his-
torical trials are not completely homogeneous.

DISCUSSION

In conclusion, Bayesian information borrowing is very useful
in improving the performance of oncology clinical trial de-
signs. Given the above results, we arrive at the decision-
making conclusion summarized in Figure 2. For multiple
parallel arm trials, such as master protocol trials, because
subtrials are conducted simultaneously and the efficacy in all
running arms is considered, it is recommended to choose a
BHM and its extensions. When all arms are homogeneous
(either effective or ineffective), the BHM method gains
greater power than other methods. However, in practice, it is
more common that we are not sure whether all arms are
homogeneous, and methods with dynamic clustering are
recommended, such as BaCIS and MEMs, to avoid type I
error inflation. Furthermore, when the majority of the arms
are expected to be effective, MEMs are recommended
because of their excellent power performance. When the
end point is ordinal or the division of the effective population
is more refined, BCHM is recommended. For trials in which

TABLE 4. MAP Prior Generated in Each Scenario
Scenarios PH1 PH2 PH3 MAP Prior Prior Mean Prior Standard Deviation

1 .3 .3 .3 0.010Beta(1.66, 45.1) + 0.990Beta(3.67, 7.93) 0.305 0.114

2 .42 .42 .3 0.010Beta(2.04, 45.2) + 0.990Beta(3.88, 5.94) 0.384 0.126

3 .2 .2 .3 0.761Beta(6.65, 21.9) + 0.239Beta(1.07, 2.45) 0.242 0.112

4 .1 .3 .3 0.685Beta(4.88, 16.7) + 0.315Beta(0.90, 2.03) 0.244 0.129

5 .5 .3 .3 0.013Beta(1.67, 45.26) + 0.987Beta(3.17, 5.05) 0.372 0.138

6 .1 .3 .5 0.547Beta(2.90, 7.52) + 0.453Beta(0.86, 1.48) 0.311 0.176

Abbreviation: MAP, meta-analytic-predictive prior.
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FIG 2. Decision-making diagram for how to choose an appropriate borrowing information method. BaCIS, Bayesian hierarchical classification and in-
formation sharing; BCHM, Bayesian cluster hierarchical model; BHM, Bayesian hierarchical model; CBHM, calibrated Bayesian hierarchical model; CP,
commensurate prior; CPP, calibrated power prior; MAP, meta-analytic-predictive prior; MEM, multisource exchangeability model; MPP, modified power
prior; PP, power prior; PvPP, P value–based power prior; RMAP, robust meta-analytic-predictive prior.
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external data or supplementary trials exist, nonconcurrent
borrowing methods are more appropriate, because historical
data are available and we are mainly concerned with the
current trial. PP and MPP failed to control type I errors when
heterogeneity existed; thus, they were not appropriate for
most scenarios. Methods other than PP take heterogeneity
into consideration and gain an advantage in power. Spe-
cifically, the choice of method depends on the tradeoff
between bias and variance. CPP provides a stricter criterion
for controlling type I error, whereasMEMs place more weight
on power gains. The performance of other methods lies
between that of CPP and MEMs. In particular, CPP is nat-
urally suitable for bioequivalence trials, whereas MEMs show
an advantage in multiple historical trials. MAP and RMAP
should be used with caution when the number of multiple
historical trials is small.

In addition, sometimes, patient covariates are different,
leading to heterogeneity in efficacy. This is more common
in nonconcurrent scenarios, which usually have a large
time span. Some methods, which have characteristics
similar to those of nonconcurrent borrowing, have been
proposed on the basis of covariate adjustment.27-31

Regarding the borrowing strength parameters of eachmethod,
we used the recommended values in the literature. In fact,
there are two common ways to determine these parameters:
empirically specifying and objectively estimating. For the
empirically specifying method, we can communicate with

clinical investigators to know how much power they intend to
borrow. In addition, we can refer to sensitivity analysis in
published articles to obtain the recommended values or select
particular settings according to the required performance of
the new trial. For the objectively estimating method, we can
either estimate these parameters25 or use model averaging/
model selection to fit the most likely value.32 The above are
general suggestions. For more details on the setting of key
parameters in each method, we can refer to Viele’s work.33

It is worth noting that the difference between concurrent and
nonconcurrent borrowing in our study is the information
source. Methods commonly applied in two scenarios are
listed in Table 1. However, in terms of statistical models, their
use is not so strictly differentiated. Some methods can be
applied to both concurrent and nonconcurrent scenarios,
such as the MEMs in Table 1. In fact, other methods such as
MAP and BHM are not only applicable to the recommended
scenario, but can also be applied to the other scenario in
terms of modeling construction when the source of infor-
mation is properly explained. The specification of statistical
models is actually flexible as long as it satisfies the practical
clinical requirements.

In conclusion, whatever method one finally chooses when
conducting an oncology trial, sufficient simulations should
be performed to explore the statistical performance under
various scenarios, and adequate communication should be
performed to obtain the regulator’s approval.
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