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ABSTRACT The gut microbiota is constituted by thousands of microbial interactions,
some of which correspond to the exchange of metabolic by-products or cross-feeding.
Inulin and xylan are two major dietary polysaccharides that are fermented by members of
the human gut microbiota, resulting in different metabolic profiles. Here, we integrated
community modeling and bidirectional culturing assays to study the metabolic interactions
between two gut microbes, Phocaeicola dorei and Lachnoclostridium symbiosum, growing in
inulin or xylan, and how they provide a protective effect in cultured cells. P. dorei (previ-
ously belonging to the Bacteroides genus) was able to consume inulin and xylan, while
L. symposium only used certain inulin fractions to produce butyrate as a major end product.
Constrained-based flux simulations of refined genome-scale metabolic models of both
microbes predicted high lactate and succinate cross-feeding fluxes between P. dorei and
L. symbiosum when growing in each fiber. Bidirectional culture assays in both substrates
revealed that L. symbiosum growth increased in the presence of P. dorei. Carbohydrate con-
sumption analyses showed a faster carbohydrate consumption in cocultures compared
to monocultures. Lactate and succinate concentrations in bidirectional cocultures
were lower than in monocultures, pointing to cross-feeding as initially suggested by
the model. Butyrate concentrations were similar across all conditions. Finally, super-
natants from both bacteria cultured in xylan in bioreactors significantly reduced tu-
mor necrosis factor-a-induced inflammation in HT-29 cells and exerted a protective
effect against the TcdB toxin in Caco-2 epithelial cells. Surprisingly, this effect was
not observed in inulin cocultures. Overall, these results highlight the predictive value
of metabolic models integrated with microbial culture assays for probing microbial
interactions in the gut microbiota. They also provide an example of how metabolic
exchange could lead to potential beneficial effects in the host.

IMPORTANCE Microbial interactions represent the inner connections in the gut micro-
biome. By integrating mathematical modeling tools and microbial bidirectional cultur-
ing, we determined how two gut commensals engage in the exchange of cross-feeding
metabolites, lactate and succinate, for increased growth in two fibers. These interactions
underpinned butyrate production in cocultures, resulting in a significant reduction in
cellular inflammation and protection against microbial toxins when applied to cellular
models.
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The gut microbiota is represented by a complex network of microorganisms occupying
different niches in the human gut (1, 2). Their abundances change dynamically accord-

ing to age and perturbations such as antibiotic administration (3–5). The composition and
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activity of the gut microbiota are influenced by the diet, especially by molecules that
escape digestion in the small intestine, rendering them available for fermentation in the
large intestine (6).

Soluble dietary fibers are fermented by the gut microbiota and include structurally
diverse polysaccharides found in plant cell walls. Inulin is a class of fructan, i.e., a polymer
of fructose linked by b-2,1 bonds with a degree of polymerization of 10 to 30 (7). Inulin is
a well-reported prebiotic, promoting the growth of Bifidobacterium species in in vivo stud-
ies (8). However, other species from the Bacteroides and Lachnospiraceae groups can also
ferment inulin (9, 10). Additionally, inulin shapes the gut microbiota decreasing the num-
ber of undesirable microorganisms such as Bilophila wadsworthia (8).

Other fermentable fibers include pectin, resistant starch, and xylan (11). Xylan is the sec-
ond most abundant component in plant cell walls, especially in grains and seeds (12). It is
composed of linear chains of xylose from 10 to 100 monomers, with side chains consisting
of glucuronic acid, acetyl groups, and arabinose (12). The mechanisms for xylan degrada-
tion and fermentation have been described in certain Bacteroides species such as B. ovatus
(13). Both inulin and xylan are fermented by complex networks of microorganisms (14),
where some species act as degraders accessing the complex linkages in these molecules.
This process releases intermediate degradation products such as smaller carbohydrate
chains, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, and other
organic acids such as lactate and succinate (15–17). These SCFAs are produced in a 3:1:1 ra-
tio, reaching fecal concentrations of 70 to 140 mM (18). Butyrate is the primary energy
source for the colonocytes (19). In addition, SCFAs have been increasingly involved in phys-
iological host responses (16, 18). Indeed, butyrate is a critical epigenetic regulator inhibiting
histone deacetylases in colonocytes, suppressing proinflammatory pathways (20).

Gut microorganisms have evolved sophisticated mechanisms for interacting with each
other, for example, by exploitative competition (21) or the metabolic exchange of by-products
(cross-feeding) (22). Metabolic cross-feeding is a common interaction in the gut microbiota
(23). Polysaccharide remnants released by certain Bacteroides or Bifidobacterium species can
be used by other species (24, 25). Other exchanged molecules are fermentation by-products
such as acetate, lactate, and succinate (26–28). Butyrate-producing bacteria such as Roseburia
sp., Faecalibacterium prausnitzii, and Eubacterium rectale preferentially use these organic acids
as a carbon source for butyrate production (29, 30). Anaerostipes caccae releases 5-fold more
butyrate from lactate than glucose (31). Among four main metabolic pathways leading to bu-
tyrate production in the gut microbiota, the 4-aminobutyrate pathway in certain clostridia has
been less studied (32).

Cross-feeding interactions are critical to understand and eventually predict the impact of
dietary fibers on the gut microbiota. The availability of genome and metagenome data as
well as increasing biochemical information for microorganisms has enabled the construction
of Genome-Scale Metabolic Models (GSMMs) (33, 34). These model structures can be
employed to explore the potential of cellular metabolism. Particularly in the case of microbial
communities, they can readily suggest metabolic interactions betweenmembers of the micro-
biome (35, 36). Metabolic modeling and literature reconstructions predict a dense cross-feed-
ing network between dietary substrates and, most notably, exploitative competition and
metabolic cross-feeding as the two most common interactions in the gut microbiota (37–39).
Constructing accurate GSMMs for poorly studied gut microbes remains a challenge as there
are several knowledge gaps in their genetic makeup, pathways, and overall metabolic capabil-
ities (40, 41). However, comprehensive metabolic network reconstruction resources such as
AGORA and BIGG, accompanied by constraint-based modeling methods and algorithms, have
proved effective for suggesting and understanding complex microbial interactions in the gut
microbiota (36, 42, 43). Among the most useful algorithms, SteadyCom (44) stands out as a
scalable linear optimization method for predicting microbial composition assuming a fast and
fixed community growth, which has been theoretically proven to hold true under balanced
growth (45). In addition, this computation predicts the required metabolic exchanges to sus-
tain such growth, thereby revealing likely cross-feeding interactions under growth optimality.
Importantly, this framework can be readily combined with other constraint-based methods
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such as Flux Variability Analysis (FVA) (46) and even Monte Carlo flux sampling (47), for the
assessment of the metabolic flexibility under a defined community state.

Previous studies have shown that two gut commensals, Phocaeicola dorei (previously
assigned to the Bacteroides genus) and Lachnoclostridium symbiosum, are key species in
butyrate production within a 15-species synthetic consortium (48), showing an anti-inflam-
matory effect in human intestinal epithelial cells when supplemented with the culture su-
pernatant (49). Yet, the cross-feeding mechanisms underpinning microbial growth and
butyrate production remain poorly understood, and metabolic modeling could provide sig-
nificant insights into microbial interactions leading to butyrate production. Here, we used a
combination of metabolic modeling and bidirectional cross-feeding assays to unravel the
metabolic interactions supporting their growth on different dietary fibers (inulin and xylan)
in cocultures. The protective effect of their metabolic production profile in coculture was
again demonstrated by the anti-inflammatory effect exerted on intestinal epithelial cells.

RESULTS

A summary of the approaches followed in this study is depicted in Fig. 1. First, met-
abolic reconstructions were employed to simulate in silico the combined growth and
metabolite exchange by P. dorei and L. symbiosum during inulin and xylan utilization.
Then, in vitro cocultures were performed to determine the potential for simultaneous
bidirectional exchange of metabolites. Finally, both microorganisms were cultured in
bioreactors and their spent supernatant was applied to intestinal cells to evaluate their
protective effect. Our main results are next presented following the aforementioned
workflow.

Adaptation of genome-scale metabolic network reconstructions of P. dorei and
L. symbiosum for flux simulations under inulin and xylan utilization. To probe possi-
ble mechanisms of metabolic cross-feeding between the studied microorganisms, ge-
nome-scale network reconstructions (GENREs) of P. dorei 5_1_36 and L. symbiosum
WAL16173 were obtained from the AGORA v3.0 database and adapted before their use.
Reconstructions were manually refined to include known information about their capabil-
ities for degrading inulin and xylan. For instance, inulin and xylan have different chain
lengths, and the average carbon amounts were normalized to allow proper comparison
(Table S1 in the supplemental material). The capabilities of the curated model reconstruc-
tions were assessed by comparing the predicted and experimental substrate utilization
and metabolic production of various compounds reported in the literature (Tables S2 to S3
and S5 to S6). Overall, the models displayed high accuracy in these tests with F-score val-
ues (max. 1.0) of 0.70 for L. symbiosum and 0.83 for P. dorei (Table S4, respectively). As a
final measure of quality, both models were evaluated with the MEMOTE tool (50) (refer to
Materials and Methods) displaying a score above 92% in the consistency test (Table S7),
pointing to a reasonably high model quality in both cases. These models were subse-
quently employed to simulate the metabolic behavior of the studied consortium.

Flux simulations of L. symbiosum and P. dorei cocultures revealed tight lactate
and succinate cross-feeding under inulin and xylan utilization. We first aimed to
identify which metabolites are predicted to be exchanged within the community under the
assumption of optimal (maximum) balanced growth on the two fibers. For this task, the exper-
imentally observed community growth rates on inulin (0.35 h21) and xylan (0.09 h21) were
constrained in the models (Fig. S1 in the supplemental material). The minimal fiber consump-
tion rates of inulin and xylan were computed using the SteadyCom formulation. The last cal-
culation is equivalent to determining the maximum community growth under a fixed inulin
or xylan consumption acting as main carbon sources. We note that the experimentally deter-
mined community growth rates are consistent with the balanced growth assumption of the
SteadyCom formulation, as both the community growth rate and microbial abundances
remained constant over time (midexponential growth phase) for this calculation.

Under optimal community growth on each fiber, L. symbiosum was predicted to reach
a greater abundance than P. dorei, which was substantially higher when growing on xylan
(Fig. 2). Under inulin growth, P. dorei showed an approximately 7.2-fold higher inulin con-
sumption than L. symbiosum (Fig. 2A), whereas only P. dorei consumed xylan in the other
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scenario (Fig. 2B). This could be explained by L. symbiosum targeting small fractions or
showing a lower efficiency toward inulin utilization. Notably, flux simulations under opti-
mal fiber growth showed no butyrate nor propionate production, albeit there was a rela-
tively high exchange of succinate, lactate, and acetate between P. dorei and L. symbiosum
(Fig. 2). This exchange supported a faster growth of L. symbiosum in the presence of
P. dorei, which was later confirmed experimentally (see next section).

To explore the metabolic flexibility in the community, we simulated suboptimal uti-
lization of both carbon sources by allowing a higher inulin or xylan consumption ena-
bling a 5% higher community growth rate under each condition and then again fixing
the latter to the experimental values. Application of FVA in these scenarios revealed
that the abundances of P. dorei and L. symbiosum ranged, respectively, from 0.113 to
0.558 and 0.442 to 0.887 under inulin growth and from 0.003 to 0.210 and 0.789 to

FIG 1 General integrated workflow for identifying cross-feeding interactions. Initial GSMMs for P. dorei and L. symbiosum
were obtained from the AGORA database and manually curated with literature information, especially for inulin and xylan
utilization reactions. Their metabolic interactions on these substrates were simulated using SteadyCom and Monte Carlo
random sampling. Both bacteria were cultured in bidirectional and monodirectional assays and screened for substrate
consumption, SCFA production, and changes in gene expression. Finally, the effect of their supernatants was evaluated in
cell cultures in markers of inflammation and cell permeability.

Modeling and Bidirectional Study of Cross-Feeding mSystems

September/October 2022 Volume 7 Issue 5 10.1128/msystems.00646-22 4

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00646-22


0.996 under xylan utilization (Fig. 2). Notably, the predicted abundance ranges con-
tained the observed values for P. dorei (0.159 on inulin and 0.091 on xylan, Fig. S1) and
L. symbiosum (0.841 on inulin and 0.909 on xylan, Fig. S1), allowing the production of
propionate and butyrate. More importantly, analysis of the flux variabilities for meta-
bolic exchanges pointed to a unidirectional cross-feeding of succinate from P. dorei to
L. symbiosum under both conditions (as indicated by the negative flux values in P. dorei
and positive values in L. symbiosum) and a bidirectional cross-feeding of acetate and
lactate (Fig. 2).

To further investigate these interactions, Monte Carlo sampling was employed to
explore the distribution and coupling between exchanged metabolites under subopti-
mal conditions (Fig. 3). Under inulin growth, the P. dorei lactate flux exchange was signif-
icantly greater than zero, i.e., it was produced (P, 0.01, Wilcoxon rank sum test), while it
was significantly lower than zero for L. symbiosum, i.e., it was consumed (P , 0.01,
Wilcoxon rank sum test) (Fig. 3A). This was also supported by the perfect anticorrelation

FIG 2 Flux exchanges of major metabolites between P. dorei and L. symbiosum predicted by SteadyCom under (sub)optimal growth on inulin and xylan.
Experimental community growth rates observed on inulin (A) and xylan (B) were constrained in the models (Fig. S1 in the supplemental material), and the
minimal fiber consumption rates of inulin and xylan were computed using SteadyCom. The resulting flux distribution represents the optimal flux
distribution growing on each fiber, and it is shown in the upper value of each box. Suboptimal growth under each condition was also simulated by
constraining the previous community growth rates allowing for a higher fiber consumption. Minimum and maximum flux values for each variable are
shown in the lower values of each box. Finally, blue boxes represent absolute fluxes (in mmol/h), whereas as gray boxes represent microbial abundances.
Arrow heads represent the direction of flux exchanges. Arrow thickness is proportional to the absolute flux value.
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FIG 3 Metabolic coupling of exchanged metabolites in cocultures of P. dorei and L. symbiosum predicted by random sampling of the flux solution space. (A
and C) Density plots for exchanged metabolites during simulations of inulin (A) or xylan (C) consumption by P. dorei and L. symbiosum. Plots represent
200,000 flux solutions that match the experimentally observed community growth rate in the suboptimal fiber consumption scenario. (B and D) Pairwise
correlation between metabolite exchanges under inulin (B) and xylan (D) growth.
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(21.0) between the exchanges of both microbes (Fig. 3B). The case of acetate was the
opposite; P. dorei consumed the acetate produced by L. symbiosum, albeit with a slightly
lower absolute (negative) correlation (20.95, Fig. 3B). On the other hand, under xylan
growth, only acetate followed the previous trend (Fig. 3C). Lactate could be either pro-
duced or consumed by L. symbiosum or P. dorei, although it required full coupling (anti-
correlation of21.0) between the exchanges of both microbes (Fig. 3D). Finally, while bu-
tyrate production by L. symbiosum showed the highest absolute cross-feeding
correlation with lactate produced by P. dorei under inulin utilization (0.12, Fig. 3B),
succinate showed the highest absolute cross-feeding correlation (0.12, Fig. 3D) under
xylan utilization. Overall, these results suggest that both lactate and succinate are
actively exchanged and play important roles in community growth and butyrate pro-
duction under the studied conditions.

Bidirectional and unidirectional culture assays suggest synergistic effects caus-
ing increased growth in cocultures. The metabolic exchange between P. dorei and
L. symbiosumwas experimentally assessed in bidirectional assays. In this setup, microorgan-
isms are cultured either in the bottom well or top insert of a Transwell plate, separated by
a 0.1-mm membrane filter. The filter allows the exchange of small and medium-sized
metabolites that reach chemical equilibrium.

P. dorei reached moderate biomass concentration values in inulin and xylan, similar
to lactose (Fig. 4A). The presence of L. symbiosum did not significantly alter the growth
of P. dorei in this assay (P . 0.05 by t test). On the other hand, L. symbiosum presented
a moderate basal growth, which correlates with the ability of clostridia to ferment
amino acids (51). However, as opposed to P. dorei, L. symbiosum reached higher growth
in the presence of P. dorei in both xylan and inulin (Fig. 4B; P , 0.05 by t test).
Particularly, L. symbiosum growth using inulin was higher than the basal, suggesting
partial fructans utilization (Fig. 4 and Fig. S2; P, 0.05 by t test).

FIG 4 Maximum growth value (OD600) reached by P. dorei (A) and L. symbiosum (B) in bidirectional assays.
Bacteria were cultured in inulin (I) or xylan (X). Lactose (L) was used as positive control, and Z represents
medium with no carbon source. Vertical line in the x axis (j) represents the separation by the membrane.
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In unidirectional experiments, similar growth values were observed for P. dorei in inulin
alone or using the spent supernatant from L. symbiosum in inulin (Fig. S2). Further, unidirec-
tional P. dorei growth was comparable to its monoculture and when it used the supernatant
of L. symbiosum cultured in xylan (Fig. S2; P. 0.05 by t test). This suggests that P. dorei does
not see a major impact on its growth in the presence of L. symbiosum, probably consuming
the spent substrates not used by L. symbiosum. Supernatants after 48 h of growth of P. dorei
inoculated with inulin or xylan did not stimulate the growth of L. symbiosum in the unidirec-
tional assay (Fig. S2; P. 0.05 by t test). This suggests that the growth increase of L. symbio-
sum in the presence of P. dorei depends on the synergistic growth of both microorganisms.

Increased growth in cocultures is supported by faster fiber consumption. To
better understand the mechanisms underpinning the higher growth in cocultures on
inulin and xylan, we screened the supernatants from bidirectional assays for carbohy-
drate consumption (Fig. 5). For P. dorei, thin-layer chromatography (TLC) plates and
carbohydrate quantification showed a reduction in total inulin concentration after 48 h
(P , 0.05 by t test), especially the intermediate and smaller fractions. L. symbiosum also
reduced the concentration of inulin in the medium, albeit to a lesser extent (Fig. 5A
and C). The P. dorei-L. symbiosum coculture showed an important reduction in inulin
concentration, larger than each individual consumption (Fig. 5C; P , 0.05 by t test).
TLC showed that this pair consumed all inulin fractions after 48 h. These results indi-
cate an accelerated consumption of inulin in coculture, reaching almost total con-
sumption at 24 h.

P. dorei monoculture in xylan resulted only in partial substrate consumption after
48 h, leaving degradation products as shown by TLC (Fig. 5B and D). On the other
hand, L. symbiosum was unable to degrade xylan. The coculture of both microorgan-
isms showed a reduction in total carbohydrates in the medium (Fig. 5D; P , 0.05 by
t test) but no visible degradation products (Fig. 5B). Xylan-derived glycans generated

FIG 5 Carbohydrate analyses of coculture supernatants. Thin layer chromatography of all the conditions in mZMB with inulin (A) or xylan (B) in the
bidirectional assays. Each rectangle represents one condition in the well of the bacteria (e.g., “Ls j Z” indicates the insert with L. symbiosum). Wider
rectangles indicate first the insert and then the lower well. Samples of 24 h and 48 h were marked in different colors, while standards are colorless.
(C) Fructose quantification in inulin supernatants using the phenol-sulfuric acid method after 48 h. (D) Xylose quantification of xylan supernatants
after 48 h.
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in monoculture might be consumed faster in coculture, as suggested by the reduction
of carbohydrates (Fig. 5D).

Metabolite exchanges in bidirectional culture assays are consistent with mod-
eling predictions. SCFAs, lactate, and succinate concentrations were quantified in
bidirectional assays and compared to the amounts observed in monocultures (Fig. 6).
L. symbiosum monoculture supernatants did not contain lactate in any sample. Single
cultures of P. dorei produced 17 mM lactate in inulin and 7 mM lactate in xylan after 48
h. The presence of L. symbiosum reduced lactate amounts in both compartments
(P , 0.05 by t test). This corresponds to an approximate reduction of lactate of 15% (in
inulin) and 80% (in xylan) with respect to total lactate produced by P. dorei alone.
Similarly, only P. dorei produced succinate. Its concentration was higher after growing
in xylan than inulin after 48 h (Fig. 6; P . 0.05 by t test). A reduction in succinate was
also observed in xylan cocultures (P . 0.05 by t test), pointing to the presence of L.
symbiosum as possibly being responsible (Fig. 6). These results are overall consistent
with the previous modeling predictions.

Higher acetate production was observed in cocultures than in monocultures, both
in inulin and xylan (Fig. 6; P, 0.05 by t test). Xylan utilization resulted in higher acetate
concentrations, confirming previous modeling results. Propionate was produced by
P. dorei at much lower concentrations in media with no carbon source or xylan, but
not inulin (Fig. 6). Propionate produced by P. dorei was reduced by about half in the
presence of L. symbiosum.

Finally, concentrations between 20 and 30 mM butyrate were detected in L. symbio-
sum monocultures in the tested carbon sources and control medium (Fig. 6). Butyrate
concentrations in the L. symbiosum compartment were not modified by the presence
of P. dorei in the basal compartment (P . 0.05). These results indicate that butyrate
production is independent of the substrate under these conditions.

Gene expression changes explain differential fiber utilization of P. dorei and
L. symbiosum in cocultures. Next, relative expression changes of relevant genes or
pathways were analyzed in order to contrast the observed fiber utilization patterns.

FIG 6 Concentrations of SCFAs and organic acids in bidirectional assays measured after 48 h. Acids are indicated in the
right, and concentrations (mmol/liter) are in the left axis. Inulin (I) experiments include Ls as monoculture, Ls j Pd 1 I as
the coculture, and Pd 1 I as P. dorei monoculture. Xylan experiments (X) follow the same terminology. Z bars indicate
the controls with no culture medium.
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P. dorei monoculture in inulin showed the induction of a levanase (Fig. 7A). However,
its expression was reduced in coculture, leading to an increase in the relative expres-
sion of a fructofuranosidase (Fig. 7A). Similar gene functions in L. symbiosum were
induced in the presence of P. dorei in inulin (Fig. 7B). These results help to explain the
higher inulin degradation observed in coculture compared to monocultures. In the

FIG 7 Relative expression of genes of interest of P. dorei and L. symbiosum growing on inulin and xylan. Each column represents the
culture conditions, whereas the rows represent the corresponding gene expression fold change. Right labels indicate the pathways to
which each gene belongs, while the number and color represent the expression ratio. Ratios over 1.5 and under 0.5 are colored as
the limits of the ratio’s legend, indicating overexpression or repression.
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presence of L. symbiosum, P. dorei showed an increase in the expression of three puta-
tive xylan-utilization genes, especially an endo-1-4-beta-xylanase (Fig. 7A). These
observations support increased consumption of xylan in coculture.

Putative genes participating in SCFA production by P. dorei (such as acetate kinase) were
more active in coculture in xylan. This correlates with the higher acetate production reported
above. A reduction in butyrate-producing enzymes in L. symbiosum in the xylan coculture was
found when comparing the growth in basal medium or L. symbiosum alone. Finally, genes
potentially contributing to succinate and propionate production in the P. dorei genome were
induced in xylan coculture correlating with concentration data (Fig. 7A).

Supernatants of P. dorei and L. symbiosum co-cultures in inulin and xylan con-
fer various anti-inflammatory and protective effects on model human cell lines. To
evaluate the impact of the supernatants from co-cultures growing on xylan or inulin, anaer-
obic fermentations were carried out in bioreactors to obtain the former. As expected, inulin
cultures showed a higher cell density and faster growth (Fig. S1). Co-cultures in xylan only
reached a maximum optical density (OD) of 1.5, and fermentation took longer to reach the
stationary phase. In both fermentations, L. symbiosum dominated the cultures with up to
90% of total bacteria, as predicted by metabolic modeling (Fig. S1). Acetate and butyrate
reached a higher concentration in the inulin co-culture, whereas lactate concentrations
were similar in both fermentations (Fig. S2). Propionate and succinate were not detected in
the supernatants.

Supernatants were recovered at the end of each fermentation (26 h for inulin and
48 h for xylan), filtered, and used to evaluate their anti-inflammatory and protective
potential in human intestinal cell lines. Confluent HT-29 Glc2/1 cells were exposed to
25 ng/ml of the pro-inflammatory cytokine tumor necrosis factor-a (TNF-a). This con-
centration was chosen after an optimization assay (Fig. S3). In a dose-dependent man-
ner, sodium butyrate reduced the interleukin-8 (IL-8) expression induced by TNF-a in
HT-29 Glc2/1 cells (P , 0.05 by t test). This effect was abolished at a higher butyrate
concentration (30 mM). In this model, adding supernatants from bacteria cultured in
xylan exerted an anti-inflammatory effect, as evidenced by a significant 50% reduction
in IL-8 expression (Fig. 8A; P , 0.05 by t test). This effect was not observed with the
inulin supernatant (t test; P. 0.05).

Finally, confluent Caco-2 cells (transepithelial electrical resistance [TEER] .600 X�cm2)
seeded in a Transwell system were apically exposed to different TcdB concentrations for 6
h (100 to 350 ng/ml; Fig. S3). TcdB is an enterotoxin produced by Clostridioides difficile that
disrupts tight junctions in the intestinal epithelium (52). Accordingly, cells exposed to TcdB
significantly diminished their TEER values (Fig. 8B; P , 0.05 by t test). In this model, only a
lower butyrate concentration (1.65 mM) showed a significant protective effect, preventing
the permeability increase induced by 100 ng/ml of TcdB (Fig. S3; P . 0.05 by t test).
Interestingly, the bacterial supernatants from the xylan fermentation showed a modest but
significant protective effect against TcdB action on the epithelial permeability (P , 0.05 by
t test). This effect was not observed for the inulin supernatant with P. dorei and L. symbio-
sum (Fig. 8B).

DISCUSSION
In silico predictions of metabolic interactions using GSMMs. In this work, we

used metabolic models and bidirectional coculturing to analyze the cross-feeding
interactions between two gut commensals, P. dorei and L. symbiosum. The strains used
in this study are part of the Human Microbiome Project (53), considered commensals.
Still, they have been regarded as markers of type 1 diabetes in children and progres-
sion of colorectal cancer, respectively (54, 55).

There was a fairly good agreement between GSMMs predictions and microbial culture
assays. GSMMs are extensively curated mathematical models of cellular metabolism (56,
57). Some studies have previously used GSMMs to understand butyrate production in the
gut. For example, a mutualistic interaction between Bifidobacterium adolescentis and
F. prausnitzii was explored in silico using GSMMs and validated using in vitro models (58).
This analysis suggested that acetate was cross-fed between both microorganisms, resulting
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in butyrate production (58). Similarly, the presented GSMMs provided valuable insights
into the mechanisms underpinning the cross-feeding between P. dorei and L. symbiosum,
which could be later verified experimentally. While there are several assumptions made
when using these models, some might not be even valid in vivo (56), GSMMs are valuable
tools for probing the often enormous interaction space and guiding experimentation
efforts that enable the formulation and evaluation of more precise hypotheses.

Mechanism and effects of metabolic cross-feeding in P. dorei and L. symbiosum
cocultures growing on inulin and xylan. Bidirectional assays provide an experimental
platform where both microorganisms grow and interact simultaneously without physical
contact. This is key to consider in microbial interactions and different from other setups.
Unidirectional assays provide all metabolites left by one microorganism to another, which
might contain molecules that would be of use but also several inhibitors. Exchanged
metabolites are also produced dynamically, which could explain the different stimulatory
effects of P. dorei on L. symbiosum in uni and birectional assays. The plates used in bidirec-
tional assays provide a separation between bacteria that allows the exchange of multiple
metabolites reaching, in theory, chemical equilibrium. We indirectly observed that inulin
readily equilibrated on both sides of the membrane, but only certain xylan fractions did.

L. symbiosum appeared to increase its fitness by the presence of P. dorei, with the
latter being unaffected. P. dorei acted as a primary degrader of dietary fibers, releasing
monosaccharides and organic acids used by L. symbiosum. Commensalism interactions
between primary fermenters and butyrate producers are common, and several exam-
ples have been described previously (27, 28, 30, 59). While P. dorei did not see its
growth modified by the presence of L. symbiosum, it indeed showed an accelerated
substrate consumption (Fig. 5) and evident changes in gene expression (Fig. 7), dem-
onstrating it is not neutral to the presence of L. symbiosum.

Xylan is a highly complex polysaccharide, with a few members of the microbiota being
able to degrade it (60). Moreover, its degradation process is complex and dynamic, as
shown in B. ovatus (13). Inulin is a more accessible and simple chain of fructose (7). We
observed that P. dorei grew well in inulin and xylan, supporting the growth of L. symbiosum
in coculture. As L. symbiosum has a limited ability to utilize inulin and rather consumes the

FIG 8 Effect of L. symbiosum-P. dorei supernatants in cell inflammation and permeability. (A) Inflammatory response of HT-29 Glc2/1 cells exposed to TNF-a
for 6 h and to L. symbiosum-P. dorei supernatants. Inflammation was estimated by IL-8 relative expression. Gene expression was normalized to the basal
condition (cells with no TNF-a). Bars represent the average 6 SD of the fold change in expression of IL-8. (B) Permeability of Caco-2 exposed to TcdB and
L. symbiosum-P. dorei supernatants for 6 h. Dots represent the percentage of the initial TEER value (X�cm2) in time (average 6 SD).
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smaller chains present in the medium, the results here suggest it benefits from smaller
fructans produced by P. dorei crossing through the membrane. This result was supported
by the overexpression of b-fructofuranosidases in both species (Fig. 7). In contrast, L. sym-
biosum does not have the machinery for xylan or xylose fermentation as opposed to P.
dorei, which released xylan-degradation products.

Interestingly, cocultures on both substrates resulted in an accelerated substrate
consumption (Fig. 5). Competition for resources between both bacteria could help to
explain the increased expression of consumption pathways where each bacterium is
more efficient. Bacteroides thetaiotaomicron expands the range of carbohydrates it can
consume in the presence of Bifidobacterium longum in an animal model (61). Other
Bifidobacterium species appear to be competitive against B. thetaiotaomicron during
inulin consumption, but this effect depends on the length of the inulin chain (62).
Interactions shown here are contact independent, indicating they rely exclusively on
metabolic exchange.

Xylan TLC plates showed no degradation products in coculture, and xylan utilization
genes in P. dorei were overexpressed in the xylan coculture. This indicated that xylan was
consumed by the enhanced activity of both microorganisms. For instance, Bacteroides ova-
tus shows a cooperative behavior during xylan utilization, providing xylan degradation
products for other gut microbes while benefiting from the microbial community (25). It is
likely that P. dorei engages in a similar interaction as shown in this study.

Lactate and succinate concentrations in bidirectional culture assays suggested
cross-feeding interactions between P. dorei and L. symbiosum in xylan and inulin.
Previous studies have reported that some species from Lachnospiraceae can consume
lactate and acetate to produce butyrate (30). Another finding of interest is the different
SCFA profiles obtained after inulin or xylan fermentation by P. dorei cocultures. In ac-
cordance with previous studies (26), inulin fermentation resulted in higher concentra-
tions of lactate and fructose, but xylan utilization showed enrichment in acetate and
succinate (49). These metabolic differences are probably explained by the chemical na-
ture of the monomers of these fibers (fructose versus xylose), which are metabolized
by different microbial pathways.

Metabolic interactions and cross talk with host cells. Butyrate has received spe-
cial attention for being the primary energy source of colonocytes and for maintaining
intestinal homeostasis (63). It has a considerable physiological relevance, boosting
immune responses and exerting anti-inflammatory effects (64). However, it has been
described as exerting paradoxical effects that depend mainly on its concentration (65).
Butyrate and sodium butyrate are well recognized for decreasing permeability and
enhancing the intestinal barrier (66, 67).

The effect of microbial supernatants of butyrate-producing bacteria on inflammatory pa-
rameters and intestinal epithelial permeability has been reviewed and the results strengthen
these findings (68, 69). Supernatants of microbiota from Crohn’s disease patients supple-
mented with Butyricicoccus pullicaecorum 25-3T, or a mix of six butyrate-producing bacteria,
improved the integrity of the epithelial barrier evaluated through increased TEER and
decreased IL-8 expression in Caco-2 cells (69, 70). Strain 25-3T is safe and a next-generation
probiotic (71). Butyrate concentrations in the supernatants evaluated in these studies were
not high (0.3 to 7.9 mM), suggesting that butyrate is not the only microbial factor that
explains the improvement in barrier function.

Similarly, oral treatment with the butyrate-producer Clostridium butyricum superna-
tant (19.9 mM butyrate) decreased dextran sulfate sodium-induced damage in mice
colonic mucosa (72). It has also been shown to enhance intestinal barrier function in
antibiotic-associated diarrhea and protect against C. difficile, in an effect partially medi-
ated by the bacteriocin CBP22 (73–75). Thomson et al. (49) observed that the superna-
tant of P. dorei and L. symbiosum cultured in xylan (added to 10% vol/vol) reduced IL-8
expression and NF-kB activation. These results are consistent with our data. Our super-
natants were added at 10% vol/vol, so the butyrate concentration administered to the
cells ranged between 1 and 3 mM.
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In a recent study, the addition of 1.5 mM sodium butyrate significantly increased
TEER in Caco-2 cell monolayers (67). This would explain the increase in TEER observed
as improvements in the integrity of the epithelial barrier and the reduction in IL-8
expression following treatment with sodium butyrate and microbial supernatants grew
in the presence of xylan. However, it is important to note that the presence of the
supernatants did not result in a major improvement in the integrity of the barrier func-
tion. This suggests that butyrate per se may not be as effective as the restoration of bu-
tyrate-producing bacteria or the relevance of dietary fibers to produce this or other fer-
mentation products. It is important to highlight that in this study, in vitro bioreactor
samples were taken at the end of the exponential phase. Besides butyrate, superna-
tants might contain a variety of molecules such as ammonia that might hinder the pos-
itive effect of butyrate on epithelial cells. Future studies are needed to elucidate the
mechanism of these bacterial supernatants and identify other metabolites or bioactive
compounds that exert a protective role in intestinal cells.

Conclusions. The metabolic interactions between two gut commensal microorgan-
isms, P. dorei and L. symbiosum, were studied by applying a combined approach of
metabolic modeling and experimental cell culture assays. Experimental results were
consistent with metabolic modeling predictions, pointing to cross-feeding of lactate
and succinate in co-cultures growing on inulin or xylan. Both bacteria showed different
characteristics in single culture and in the presence of the other partner, both in inulin
and xylan. These changes were observed in terms of their growth, substrate consump-
tion, gene expression, and SCFA production. This study provides an example of the
capabilities of metabolic models for predicting microbial interactions and how these
predictions could be tested in an experimental setup that evaluates bidirectional inter-
actions. Finally, this work suggests that metabolites differentially produced in xylan
provide a protective effect against toxin damage in vitro.

MATERIALS ANDMETHODS
Metabolic models. Genome-scale metabolic models (GSMMs) were obtained from AGORA v3.0 (37)

for P. dorei DSM 17855 and L. symbiosum WAL-14673 and cured manually with literature data (9, 25, 48,
76–80). For the curation, an initial analysis of the number of metabolites, number of reactions, and qual-
ity of the models was made using MEMOTE v0.9.13 (50, 81). MEMOTE is a tool that evaluates the quality
of the reconstructions by checking a set of tests related to stoichiometric consistency, annotation, and
biomass reaction. After it was checked that both models had a good score on MEMOTE’s test (.90%), a
manual curation step was carried out for each model to verify that the main metabolic pathways were
incorporated. We also checked special pathways of interest, such as the incorporation and degradation
of inulin and xylan by P. dorei and the butyrate production pathways of L. symbiosum, in accordance
with the literature (13, 25, 32, 76). The energetic requirements and the biomass reaction of the original
AGORA reconstructions were kept due to the lack of experimental information. The predictive capabil-
ities of the reconstructions were tested by their capacity to utilize known substrates and produce partic-
ular fermentation products (Tables S2 to S6). Precision, accuracy, and F-score values for model validation
were calculated according to Mendoza et al. (82). Finally, various exchange constraints were introduced
to the models to simulate growth in the tested conditions. These and the refined models are available in
the Supplemental File S1, which contains the employed MATLAB scripts.

Computational growth simulations. Flux simulations were performed in MATLAB 2019b using the
COBRA Toolbox v3.0 (81) and GUROBI v9.0.3 optimizer. The media used for the simulations were defined
based on a modified version of ZMB (mZMB) (83), the medium used in the experiments. mZMB is a com-
plex media, so the uptake rate bounds of minerals, ions, and vitamin compounds for in silico simulations
were set to values that ensured they were in excess. The bounds definition for the amino acids uptake
rates followed a similar approach. Xylan and inulin are polysaccharides without a fixed chain length;
therefore, the formulas described in the Virtual Metabolic Human database were employed for simplicity
(84). These formulas enabled definition of appropriate uptake reactions for each fiber. The above meth-
odology ensured that growth simulations used inulin or xylan as main carbon source.

Community modeling. The metabolic behavior of cocultures was simulated using the SteadyCom algo-
rithm from COBRA Toolbox, which seeks to determine the maximum community steady-state growth rate
assuming balanced growth (44). This approach not only enables the computation of the metabolic flux distri-
bution of the community in a defined environment but also calculates the relative abundance of each spe-
cies. Importantly, by means of computing the metabolic exchanges for each microorganism (a subset of the
metabolic fluxes), we can readily identify cross-feeding metabolites in the community. To determine the
cross-feeding direction, Flux Variability Analysis (46) and Monte Carlo random sampling (47) of the steady-
state flux space were employed. The first method determines the range of flux variation under a given (sub)
optimal state. The second method generates a random sample of the flux solution space of a linear model
defined over a convex region, here defined by the mass balances and capacity constraints in the community.
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In the context of the SteadyCom formulation, once the community growth rate is known, the mathematical
representation of the community optimization problem becomes linear and it is suitable for the above
method. Monte Carlo sampling was performed generating 200,000 random flux solution points choosing 1
point every 100 steps (thinning). Finally, an exchanged metabolite was deemed to be consumed if the me-
dian flux distribution was significantly less than zero. For exchanged metabolites being produced, the oppo-
site was true.

Strains and culture media. Phocaeicola dorei 5_1_36 and Lachnoclostridium symbiosum WAL-14673
were obtained from BEI Resources (HM-29 and HM-319). For inoculations and initial tests, both microorgan-
isms were cultured in Reinforced Clostridium Media (RCM; Becton, Dickinson, Franklin Lakes, NJ) supple-
mented with 0.5 g/liter of L-cysteine (RCM-cys; Loba Chemie, India). All incubations were performed at 37°C
for 24 to 48 h in an anaerobic jar (Anaerocult; Merck, Darmstadt, Germany) with anaerobic packs (Gaspak EM;
Becton, Dickinson, Franklin Lakes, NJ, USA). mZMB medium was prepared as in reference 48.

Monoculture assays. Single cultures of both microorganisms were carried out in 96-well plates to eval-
uate the consumption of different metabolites, such as inulin, xylan, succinate, and lactate. As mentioned
before, microorganisms were reactivated for 48 h as mentioned before, in 4 ml of RCM-cys at 37°C under an-
aerobic conditions. They were centrifuged at 5,000 � g and washed with blank prereduced mZMB media.
Each bacterium was inoculated in 1 ml mZMB with 2% inulin (Piping Rock, Ronkonkoma, NY) or 2% xylan
from birchwood (Sigma-Aldrich, St. Louis, MO, USA). Substrates were previously filtered using 0.22-mm filters
(Jet Biofil, China), and microorganisms were inoculated at 5% vol/vol. Samples were transferred to 96-well
plates, covered with a mineral oil layer, and cultured in triplicates for 48 h. OD600 was measured in a Synergy
H1 spectrophotometer (BioTek, Agilent Technologies) at 0, 24 and 48 h. Similarly, each microorganism was
cultured in 4 ml of mZMB supplemented with 2% xylan or 2% inulin for 48 h and anaerobic conditions.
Tubes were centrifuged at 10.000 � g for 5 min, and each supernatant was recovered and filtered as above.
100 ml of each supernatant were added to a well in a 96-well plate that had 100 ml of prereduced mZMB,
resulting in a 1:1 mixture. Then, each well with supernatant from one microorganism was inoculated with the
other at 5% vol/vol for 24 and 48 h. Absorbance was measured at 600 nm in a Synergy H1 spectrophotome-
ter (BioTek, Agilent Technologies). A paired Student’s t test assuming equal variances was performed on the
maximum OD value for each condition.

Bidirectional assays. Both bacteria were cultured in Tissue Culture Plate Inserts (JetBiofil, China;
Fig. 1). L. symbiosum was always cultured in the upper insert and P. dorei in the lower well. The bacteria
were separated by the permeable membrane of the insert (0.1 mm), which allowed the passage of small
carbohydrates and metabolites. Cocultures were performed in 250 ml mZMB in the insert and 1 ml in
the bottom well. Nine conditions of mono and coculture were tested in duplicate, using 2% of lactose
(Sigma-Aldrich), inulin (Piping Rock, Ronkonkoma, NY), or xylan from birchwood (Sigma-Aldrich, St.
Louis, MO, USA) as the sole carbon source. The plate was preincubated in an anaerobic jar under anaero-
bic conditions at room temperature for 48 h to reduce the medium.

Bacteria were reactivated in RCM for 48 h, centrifuged at 10,000 � g for 1 min, and washed with
blank mZMB. Inoculations were performed at 5% vol/vol. The plates were incubated in an anaerobic jar
with anaerobic packs at 37°C for 24 and 48 h. OD600 was measured at 0, 24, and 48 h by resuspending
the content of each well or insert and transferring 200 ml to a new 96-well plate. Measurements were
carried out in a Synergy H1 spectrophotometer (BioTek, Agilent Technologies). Later, samples were
transferred to Eppendorf tubes and centrifuged at 10,000 � g for 2 min, and the supernatant was sepa-
rated from pellets. Both were stored at 280°C until use. For the final OD values, the mean of each basal
medium without bacteria was subtracted according to the carbon source. A paired Student’s t test
assuming equal variances was performed on the maximum OD value for each condition.

Carbohydrate profiling and consumption. Thin-layer chromatography (TLC) was performed in
silica gels F-60 (Merck, Germany), using 1-butanol/ethanol/water 10:8:5 vol/vol as running buffer and 1%
orcinol in 10% H2SO4 in ethanol as the detecting reagent (48, 85). Two microliters of each sample were
spotted in the plates, and the chromatogram was developed in one run and left to dry. After the detec-
tor was poured and dried, the silica gel was heated at 100°C until the bands were visually detectable.
Carbohydrates were also quantified using the phenol-sulfuric acid method (86), quantifying the total
amounts of fructose and xylose from inulin and xylan in the supernatants. A paired Student’s t test
assuming equal variances was performed on the carbohydrate concentrations.

SCFA quantification. Acetic, butyric, lactic, propionic, and succinic acids of select supernatants and
bioreactor samples from 26 and 48 h were measured in a Lachrom liquid chromatograph (Merck-
Hitachi), using an Aminex HPX-87H Ion exclusión column (300 mm � 7.8 mm; Bio-Rad). Thirty microliters
of supernatants was injected at a flux of 0.45 ml/min, at 35°C for 35 min. Standard curves were created
by measuring nine dilutions of 30 g/liter to 0.155 g/liter of each acid in HPLC grade water. Ten condi-
tions plus a sample of mZMB at hour 48 were tested in biological duplicates. The control of the chroma-
tograph and data analysis was done using Multi-HSM Manager software (Hitachi). A paired Student’s
t test assuming equal variances was performed on the SCFA data.

RNA extraction. RNA was extracted from the pellets of the samples analyzed by HPLC. Total nucleic
acids were extracted using a modified version of the phenol-chloroform/isoamyl alcohol method (87).
Purity was determined through a 260/280 absorbance ratio in a Tecan Infinite M200 Pro plate reader
(Tecan, Austria). After extraction, samples were immediately treated with DNase I (New England BioLabs)
using the manufacturer’s protocol for 15 min.

Reverse transcription. RNA was converted into cDNA with the AffinityScript QPCR cDNA Synthesis
kit (Agilent Technologies, Texas), using the manufacturer’s protocol and random primers and negative
control with free nuclease water (Sigma-Aldrich) and an RNase block control for two of each bacterial
sample. The final quality of cDNA was assessed by measuring the 260/280 absorbance ratio in a Tecan
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Infinite M200 Pro plate reader, and absorbance curves from 230 nm to 300 nm were obtained to rule
out chemical contamination. All cDNA samples were stored at 220°C until use.

Quantitative PCR and gene expression. Primers for calculating changes in gene expression were
designed using Primer-BLAST for select genes (see supplementary material). Six genes were chosen
for L. symbiosum, related to fructan metabolism and butyrate production pathways. Ten genes were
selected for P. dorei related to short-chain fatty acids (SCFA) production and inulin and xylan con-
sumption. 16S rRNA genes were used for both microorganisms as the reference gene. Quantitative
PCRs (qPCRs) were prepared using the SensiFAST SYBR No-ROX kit (Bioline, USA) under the manufac-
turer instructions and 1 ml of each cDNA. Amplification was performed in an AriaMx real-time PCR
system (Agilent Technologies), using 96-well optical plates MicroAmp Fast Optical (ThermoFisher,
USA).

Reactions were carried out in a three-step cycling format, with an initial cycle at 95°C for 2 min,
and 40 cycles at 95°C for 5 s (denaturation), 60°C for 10 s (annealing), and 72°C for 10 s (extension).
All conditions had two biological replicates with three technical replicates. A standard curve was
included by loading 10-fold dilutions of genomic DNA, and a negative control was included for
each pair of primers. Threshold cycle (CT) values and efficiency of the reactions were calculated
using the Agilent Aria 1.7 software. Changes in gene expression were calculated using the effi-
ciency-corrected method (88). We separated the effect of the carbon source from the culture with
the other bacteria, so the monoculture was used as the basal condition for the cocultures in each
carbon source, and the monoculture in mZMB was used as the basal condition for the monocul-
tures. The efficiency of each PCR was obtained from the standard curve and considered equal to all
samples for that gene. Technical replicates were averaged, but the ratio was calculated independ-
ently for biological replicates and then averaged. The ANOVA test was used to evaluate global sig-
nificance under all conditions and paired t test between each pair of conditions when the ANOVA
P value was smaller than 0.1.

Experimental design and bioreactor operation. Both bacteria were cocultured in a 250-ml Minibio
bioreactor connected to a MyControl system (Mini-bio Applikon Biotechnology, Netherlands), using
xylan or inulin at 20 g/liter as the sole carbon source. Microorganisms were cultured using mZMB with a
fixed pH of 5.5, and each fermentation/condition was made in duplicate. Before inoculation, both
microbes were grown individually for 48 h at 37°C in an anaerobic jar in mZMB using lactose (20 g/liter)
as carbon source. The optical density at 600 nm (OD600) was measured, cultures were centrifuged at
3,000 � g for 5 min, and the supernatant was discarded. The pellet was resuspended in the fixed groups
of mZMB without a carbon source so that the final OD600 was equal to 1 for each microorganism before
being inoculated to the bioreactor. The bioreactor was autoclaved for 15 min at 121°C, with a 34.2 g/liter
of tryptone (Becton, Dickinson, Franklin Lakes, NJ), 1 g/liter of L-cysteine, and 70 ml of distilled water for
each experiment. Xylan (20 g/liter) was also autoclaved in the bioreactor, while inulin (20 g/liter) was
sterilized with the remaining components of the medium using 0.22-mm filters and inoculated in the
bioreactor after being autoclaved (48). Two-hundred microliters of silicone antifoam (polydimethylsilox-
ane) and nitrogen (99.99% purity grade) were injected at the beginning of the experiment to control
foam levels and to generate an anaerobic environment. Fermentation was carried out for 26 to 48 h for
inulin or xylan, respectively, at 37°C and stirring at 90 rpm. Automatic injection of 3 M NaOH and 3 M
HCl was used to maintain pH at 5.5. Samples were obtained every 4 h, centrifuged at 10,000 � g for
2 min, separated into supernatant and pellet, and stored at 220°C until analysis. Pellets were used for
DNA extraction and relative abundance determination, while supernatants were used to quantify SCFA
production and cellular assays.

Determination of relative bacterial abundances. An adapted phenol-chloroform-isoamyl protocol
(87) was used to extract total DNA from cell pellets, which was quantified using a NanoQuant Plate in a
Tecan Infinite M200 Pro microplate reader. Samples were diluted to 10 ng/mL, and relative abundance
was determined by qPCR, with specific primers and protocol previously defined (48). Each sample was
quantified in triplicate, and raw data were analyzed using Agilent Aria 1.7 software (Agilent). CT values
were converted into genome copy numbers per ml as in reference 89.

Cell culture and inflammation assays. The anti-inflammatory effect of cell supernatants was eval-
uated in the human colonic adenocarcinoma cell line HT-29 Glc2/1 (90). This culture type is created from
an HT-29 cell culture that grows in a medium without glucose during 36 passages, and then glucose is
added, developing a colonic-type differentiation (91). Cells were grown in 25-cm2

flasks using 5 ml of
Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% vol/vol heat-inactivated fetal bo-
vine serum and 1% penicillin/streptomycin (HyClone, USA). Cells were cultured at 37°C in a humidified
incubator with 5% CO2 and were subcultured using 0.05% trypsin at 60% to 90% confluence. To stand-
ardize the inflammation model, HT-29 Glc2/1 cells (passages 47 to 50) were seeded at 4 � 105 cells per
well in a 24-well polystyrene plate. When cells reached confluence, TNF-a (R&D Systems, Inc., USA) was
added at final concentrations of 0.5, 2.5, 5, 10, 25, and 50 ng/ml. Cultures were incubated for 6 h.
Subsequently, cells were washed with phosphate buffer saline (1� PBS, Corning), rapidly detached from
the plate with 1� trypsin, and centrifuged at 13,000 � g for 2 min at 4°C. Cell pellets were preserved in
RNA-Later (Sigma-Aldrich, USA) at 4°C until use.

To measure the protective effect of sodium butyrate, cells in passages 51 to 54 were treated with
25 ng/ml of TNF-a and sodium butyrate (Sigma-Aldrich) at final concentrations of 3.25, 7.5, 15, and
30 mM for 6 h. After incubation, cells were washed with PBS, trypsinized, centrifuged at 13,000 � g for
2 min at 4°C, and pellets were preserved in RNA-later until use. As high concentrations of butyrate stimu-
late IL-8 expression, cells exposed to 30 mM sodium butyrate were used as a positive control, while cells
untreated with TNF-a were used as the negative control.
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To evaluate the anti-inflammatory effect of the bioreactor supernatants, cells in passages 55 to 59 were
seeded at 3 � 105 cells per well in a 48-well plate. Confluent cells were treated with 25 ng/ml of TNF-a and
30ml of the supernatant of each bioreactor (10%). After 6 h of incubation, cells were separated and preserved
as described before.

Relative gene expression in HT-29 cells. Total RNA from HT-29 Glc2/1 cells was extracted using
E.Z.N.A. total RNA kit (Omega Bio-Tek, USA), according to the manufacturer’s protocol and reference 49. Each
sample was treated with DNA-Free DNase Treatment and Removal Reagents kit (Ambion, Life Technologies)
and transcribed to cDNA using the High-Capacity cDNA Reverse Transcription kit (Applied Biosystems). Real-
time PCR (qPCR) was used to quantify the expression of the IL-8 gene as a marker of inflammation. Brilliant II
SYBR Green QPCR Master Mix (Agilent Technologies) was used with a total reaction volume of 20 ml, using
an AriaMx Realtime PCR System (Agilent Technologies). Samples were initially incubated for 2 min at 50°C
and later 2 min at 95°C. Amplification consisted of 40 cycles of 95°C for 3 s, 63°C for 30 s, and 20 s at 72°C. A
final extension cycle was included at 95°C 3 s, 63°C 30 s, and 95°C 30 s. Similar to as described above, CT val-
ues were automatically determined, and changes in gene expression were determined by the Relative
Standard Curve method (88). Serial dilutions (1:10) of 10 ng/ml of cDNA of cells unexposed to TNF-a (nega-
tive control) were used to create relative standard curves for IL-8 (target gene) and b-actin (ACTB) (endoge-
nous control, housekeeping gene). Primer sequences for IL-8 and b-actin were obtained from references 92,
93. All experiments were performed in triplicate, and the final results were expressed as IL-8/ACTB and nor-
malized by the basal condition.

Permeability assays. Permeability assays were carried out in Caco-2 cells, considering its similitude
to the small intestine epithelium and its high transepithelial electrical resistance (TEER) (.500 to
600 Ohm�cm2) (94). Cells were grown in 25-cm2

flasks using 5 ml of DMEM/F12 (Gibco, USA) supple-
mented with 10% vol/vol heat-inactivated fetal bovine serum (Gibco, USA), 1% penicillin/streptomycin
(HyClone, USA) and 1% (vol/vol) of nonessential amino acids (Corning). Cells were cultured at 37°C in a
humidified incubator with 5% CO2 and then subcultured using 0.05% trypsin at 60% to 90% confluence.
For standardization, Caco-2 cells (passages 16 to 19) were cultured at a density of 1 � 105 cells per well
in polycarbonate Transwell filters of 12-mm diameter and 0.4-mm pore size (Costar 3460, Corning), previ-
ously treated with rat tail collagen (Gibco). Apical and basolateral compartments were filled with 1.5 and
0.5 ml of medium, respectively. The medium was changed three times per week until cells were differen-
tiated (15 to 21 days). When basal TEER reached values higher than 600 X�cm2, the apical medium was
removed, and TcdB toxin was added to the medium without inactivated fetal bovine serum, at final con-
centrations of 100, 250, and 350 ng/ml. Monolayers were incubated for 6 h with regular measurement of
the TEER.

To evaluate the protective effect of sodium butyrate, monolayers of Caco-2 were exposed for 6 h to
100 ng/ml of TcdB and sodium butyrate at final concentrations of 1.65, 3.25, 7.5, 15, and 30 mM. Cells
unexposed to TcdB and cells exposed to 30 mM sodium butyrate were used as the negative and positive
control, respectively. The TEER was regularly measured at 0, 90, 120, 240, and 360 min during the experi-
ment. The protective effect of the supernatants from inulin and xylan bioreactors was evaluated using
monolayers of Caco-2 cells (passages 24 to 28) treated apically with 100 ng/ml of TcdB (10%) of the su-
pernatant of the reactors that showed a good anti-inflammatory response. Cells unexposed to TcdB and
cells exposed to 10% of mZMB were used as controls. The TEER was regularly measured, as mentioned
below.

TEER measurements. Transepithelial electrical resistance was measured according to reference 95,
using an ohm/voltmeter (EVOM2, WPI) connected to Ag-AgCl electrodes. Briefly, a monolayer of Caco-2
cells was grown in Transwell plates, and two electrodes were located on each side of the monolayer. A
current was transmitted through the monolayer, and the voltage difference and resistance were meas-
ured. The voltage difference is a measurement of the effectiveness of the monolayer as a protective bar-
rier, reflecting its integrity. According to preliminary tests, cells were considered confluent when the
baseline TEER was higher than 600 X�cm2. The results of TEER (X�cm2) are expressed as percentages of
the initial value: TEER = (TEERexp � 100)/TEERbasal.

Data availability. All raw data, code, tables, calculations, and primer sequences are included in the
supplemental material.
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