

ISSN 2056-9890

Received 18 July 2016 Accepted 1 August 2016

Edited by H. Ishida, Okayama University, Japan

**Keywords:** crystal structure; quinoline; hydrogen bonding;  $\pi - \pi$  stacking.

CCDC reference: 1497073

**Supporting information**: this article has supporting information at journals.iucr.org/e

## Crystal structure of hexaaquanickel(II) bis{5-bromo-7-[(2-hydroxyethyl)amino]-1-methyl-6-oxidoquinolin-1-ium-3-sulfonate} monohydrate

# Hai Le Thi Hong, $^{\rm a}$ Vinh Nguyen Thi Ngoc, $^{\rm a}$ Anh Do Thi Van $^{\rm a}$ and Luc Van Meervelt $^{\rm b_{\ast}}$

<sup>a</sup>Chemistry Department, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and <sup>b</sup>KU Leuven – University of Leuven, Department of Chemistry, Celestijnenlaan 200F - bus 2404, B-3001 Heverlee, Belgium. \*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

The asymmetric unit of the title compound,  $[Ni(H_2O)_6](C_{12}H_{12}BrN_2O_5S)_2 \cdot H_2O$ , contains a half hexaaquanickel(II) complex cation with the Ni<sup>II</sup> ion lying on an inversion center, one 5-bromo-7-[(2-hydroxyethyl)amino]-1-methyl-6-oxido-quinolin-1-ium-3-sulfonate (**QAO**) anion and a half lattice water molecule on a twofold rotation axis. In the crystal, **QAO** anions are stacked in a column along the *c* axis by  $\pi$ - $\pi$  stacking interactions [centroid–centroid distances 3.5922 (10)–3.7223 (11) Å]. The columns are interlinked by hexaaquanickel(II) cations through O–H···O and N–H···O hydrogen bonds.

#### 1. Chemical context

Among heterocyclic rings, the quinoline ring system is of great importance due to its therapeutic and biological activities. Many new quinoline derivatives have been synthesized and used as new potential agents to treat HIV (Cecchetti et al., 2000; Tabarrini et al., 2008) and malaria (Navyar et al., 2006) or to inhibit human tumor cell growth (Rashad et al., 2010). Recently, a simple aminoquinoline derivative has been used in colorimetric sensors for pH (Wang et al., 2014). In addition, complexes of quinoline compounds with transition metals are also known to exhibit a wide variety of structures and possess profound biochemical activities which allow them to act as antimicrobial, anti-Alzheimer's (Deraeve et al., 2008) or antitumoral agents (Yan et al., 2012; Kitanovic et al., 2014). Some complexes of polysubstituted quinoline compounds have also been used in dye-sensitized solar cells or in efficient organic heterojunction solar cells (Li et al., 2012).



OPEN OF ACCESS

The new quinoline derivative (6-hydroxy-3-sulfoquinolin-7yloxy)acetic acid ( $\mathbf{Q}$ ) was synthesized from eugenol and its antibacterial activities have been reported (Dinh *et al.*, 2012). From  $\mathbf{Q}$ , a series of polysubstituted quinoline compounds has





**Figure 1** The structures of the molecular components in the title compound with ellipsoids drawn at the 50% probability level. [Symmetry code: (i)  $-x + \frac{1}{2}$ ,  $-y + \frac{3}{2}$ , -z + 1.]

been synthesized, including 5-bromo-6-hydroxy-7-[(2-hydroxyethyl)amino]-1-methyl-3-sulfoquinoline (QAO). As polysubstituted quinoline rings are known to coordinate to metal ions, the reaction between QAO and NiCl<sub>2</sub> was studied. The reaction product could not be characterized unambiguously by IR or <sup>1</sup>H NMR spectroscopy. Although the obtained spectroscopic data are different from those of free QAO, indicating the presence of a deprotonated hydroxyl group, no conclusion about complex formation was possible and further investigation by X-ray diffraction was necessary.

#### 2. Structural commentary

The structure determination shows that Ni<sup>II</sup> is not complexed directly with **QAO**, but is present as a hexaaqua complex,  $[Ni(H_2O)_6]^{2+}$ , located about an inversion center (Fig. 1). The 6-hydroxy group as well as the 3-sulfonic acid group of **QAO** are deprotonated. The substituent atom Br16 deviates most [0.125 (1) Å] from the best plane through the quinoline ring system (r.m.s. deviation = 0.009 Å). The 2-hydroxyethylamino substituent shows a +sc conformation [torsion angle N18– C19–C20–O21 = 57.0 (2)°].

#### 3. Supramolecular features

The crystal packing (Fig. 2) is characterized by columns of stacking **QAO** molecules running along the *c* axis through  $\pi$ - $\pi$  stacking interactions between the quinoline ring systems



#### Figure 2

Packing diagram of the title compound viewed along the a axis. Dashed lines represent hydrogen bonds.

| Table 1                |     |     |
|------------------------|-----|-----|
| Hydrogen-bond geometry | (Å, | °). |

| $D - H \cdots A$             | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $O21 - H21 \cdots O17^{i}$   | 0.83 (3) | 1.89 (3)                | 2.707 (2)    | 170 (3)                              |
| $C11-H11B\cdots Br16^{ii}$   | 0.98     | 3.02                    | 3.987 (2)    | 171                                  |
| $C19-H19A\cdots O13^{ii}$    | 0.99     | 2.59                    | 3.360 (3)    | 134                                  |
| N18-H18···O25 <sup>iii</sup> | 0.88     | 2.58                    | 3.422 (2)    | 159                                  |
| $O23-H23A\cdots O14^{iv}$    | 0.92     | 2.09                    | 2.971 (2)    | 161                                  |
| $O23-H23B\cdots O21^{v}$     | 0.91     | 1.72                    | 2.630 (2)    | 172                                  |
| $O24-H24A\cdots O13^{ii}$    | 0.90     | 1.90                    | 2.772 (2)    | 162                                  |
| $O24-H24B\cdots O17^{vi}$    | 0.90     | 1.83                    | 2.714 (2)    | 165                                  |
| $O25-H25A\cdots O15^{vii}$   | 0.92     | 2.16                    | 2.826 (2)    | 129                                  |
| $O25 - H25B \cdots O26$      | 0.91     | 1.86                    | 2.755 (2)    | 165                                  |
| $O26-H26\cdots O14^{ii}$     | 0.76 (3) | 2.03 (3)                | 2.783 (2)    | 175 (3)                              |
|                              |          |                         |              |                                      |

Symmetry codes: (i)  $-x + 2, y, -z + \frac{1}{2}$ ; (ii) -x + 2, -y + 1, -z + 1; (iii)  $-x + \frac{3}{2}, -y + \frac{3}{2}, -z + 1$ ; (iv)  $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (v)  $-x + 1, y, -z + \frac{1}{2}$ ; (vi) x - 1, y, z; (vii)  $x - \frac{1}{2}, y + \frac{1}{2}, z$ .

 $[Cg1\cdots Cg1^i = 3.5922 (10) \text{ Å}, Cg2\cdots Cg2^i = 3.5793 (11) \text{ Å}, Cg1\cdots Cg2^{ii} = 3.7223 (11) \text{ Å}; Cg1 and Cg2 are the centroids of the rings N1/C2-C6 and C5-C10, respectively; symmetry codes: (i) <math>-x + 2$ , y,  $-z + \frac{1}{2}$ ; (ii) -x + 2, -y + 1, -z + 1; Fig. 3]. Within these columns additional C-H···Br and C-H···O interactions occur (Table 1 and Fig. 3). The columns interact with the hexaaquanickel(II) cations through hydrogen bonding. The lattice water molecule interacts with two neighboring cations. One  $[Ni(H_2O)_6]^{2+}$  complex interacts in total with twelve **QAO** molecules and two water molecules through O-H···O and N-H···O hydrogen bonds (Table 1 and Fig. 4).

#### 4. Database survey

A search of the Cambridge Structural Database (Version 5.37; last update May 2016; Groom *et al.*, 2016) for 3-quinolinium sulfonic acids gives six hits of which four have a zwitterionic form [CSD refcodes PUSMOH (Le Thi Hong *et al.*, 2015), BAPBOK (Skrzypek & Suwinska, 2002), HIVHUQ (Skrzypek & Suwinska, 2007) and QUNREY (Dinh *et al.*,





Partial packing diagram of the title compound, showing  $\pi - \pi$  interactions between quinoline ring systems [grey dotted lines; Cg1 and Cg2 are the centroids of rings N1/C2–C6 and C5–C10, respectively; symmetry codes: (i) -x + 2, y,  $-z + \frac{1}{2}$ ; (ii) -x + 2, -y + 1, -z + 1], and C–H···Br and C–H···Br and C–H···Br and C–H···O hydrogen bonds (red dotted lines).

### research communications



Figure 4

Partial packing diagram of the title compound viewed along the *a* axis, showing the X-H···O hydrogen bonds (red dotted lines, see Table 1 for details) and C-H···Br interactions (brown dotted lines).

2012)]. The remaining two are *N*-methylated [CSD refcode HIVJEC (Skrzypek & Suwinska, 2007)] or *N*-ethylated [CSD refcode HIVJAY (Skrzypek & Suwinska, 2007)] and have a hydroxyl group at the 4-position.

#### 5. Synthesis and crystallization

The quinoline derivative (6-hydroxy-3-sulfoquinolin-7-yloxy)acetic acid ( $\mathbf{Q}$ ) was synthesized starting from the natural product eugenol and further transformed to 5-bromo-6hydroxy-7-[(2-hydroxyethyl)amino]-1-methyl-3-sulfoquinoline ( $\mathbf{QAO}$ ) according to a procedure described by Dinh *et al.* (2012).

A solution containing NiCl<sub>2</sub>·6H<sub>2</sub>O (262 mg, 1.1 mmol) in 10 mL water was added dropwise to 15 mL aqueous solution of **QAO** (754 mg, 2 mmol) and NH<sub>3</sub> (pH  $\simeq$  6–7). The obtained solution was stirred and refluxed at 313–323 K for three h. The brown precipitate was collected by filtration, washed consecutively with ethanol and dried *in vacuo*. The obtained crystals were soluble in water and DMSO, but insoluble in ethanol, acetone and chloroform. The yield was 60%. Single crystals suitable for X-ray investigation were obtained by slow evaporation from a ethanol–water (1:2 v/v) solution at room temperature.

IR (Impack-410 Nicolet spectrometer, KBr, cm<sup>-1</sup>): 3510, 3334 ( $\nu_{\text{NH}}$ ,  $\nu_{\text{OH}}$ ); 3080, 2942 ( $\nu_{\text{C-H}}$ ); 1588, 1540 ( $\nu_{\text{C=Cring}}$  or  $\nu_{\text{C=N}}$ ); 1190, 1036 ( $\nu_{\text{C-O}}$ ,  $\nu_{\text{S-O}}$ ), 632 ( $\nu_{\text{C-Br}}$ ). <sup>1</sup>H NMR (Bruker Avance 500 MHz,  $d_6$ -DMSO): 8.34 (1H, d, J =1.0Hz, Ar), 8.27 (1H, *s*, Ar), 6.51 (1H, *s*, Ar), 4.22 (3H, *s*, N-CH3); 3.69 (2H, *t*, *J* = 5.5Hz); 3.45 (2H, *q*, *J* = 5.5Hz), 7.34 (NH).

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms for N18, O21, O23, O24, O25 and O26 were located in difference Fourier maps. The coordinates of H21 and H26 were refined freely, while the other H atoms were refined as riding. All C-bound H atoms were placed at idealized positions and refined as riding, with C-H distances of 0.95 (aromatic), 0.99 (methylene) and 0.98 Å (methyl). For most H atoms,  $U_{\rm iso}({\rm H})$  values were

| Table 2   Experimental details.                                          |                                                                                                                                            |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Crystal data                                                             |                                                                                                                                            |
| Chemical formula                                                         | [Ni(H <sub>2</sub> O) <sub>6</sub> ](C <sub>12</sub> H <sub>12</sub> BrN <sub>2</sub> O <sub>5</sub> S) <sub>2</sub> -<br>H <sub>2</sub> O |
| $M_r$                                                                    | 937.23                                                                                                                                     |
| Crystal system, space group                                              | Monoclinic, C2/c                                                                                                                           |
| Temperature (K)                                                          | 100                                                                                                                                        |
| a, b, c (Å)                                                              | 8.7315 (4), 27.4581 (13),<br>13.7943 (6)                                                                                                   |
| β (°)                                                                    | 94.061 (4)                                                                                                                                 |
| $V(Å^3)$                                                                 | 3298.9 (3)                                                                                                                                 |
| Z                                                                        | 4                                                                                                                                          |
| Radiation type                                                           | Μο Κα                                                                                                                                      |
| $\mu \text{ (mm}^{-1})$                                                  | 3.22                                                                                                                                       |
| Crystal size (mm)                                                        | $0.4 \times 0.2 \times 0.1$                                                                                                                |
| Data collection                                                          |                                                                                                                                            |
| Diffractometer                                                           | Agilent SuperNova (single source<br>at offset, Eos detector)                                                                               |
| Absorption correction                                                    | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku<br>Oxford Diffraction, 2015)                                                                     |
| $T_{\min}, T_{\max}$                                                     | 0.546, 0.725                                                                                                                               |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 9171, 3372, 3041                                                                                                                           |
| R <sub>int</sub>                                                         | 0.020                                                                                                                                      |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                     | 0.625                                                                                                                                      |
| Refinement                                                               |                                                                                                                                            |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.024, 0.056, 1.08                                                                                                                         |
| No. of reflections                                                       | 3372                                                                                                                                       |
| No. of parameters                                                        | 235                                                                                                                                        |
| H-atom treatment                                                         | H atoms treated by a mixture of<br>independent and constrained<br>refinement                                                               |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$    | 0.41, -0.49                                                                                                                                |

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

assigned as  $1.5U_{eq}$  of the parent atoms ( $1.2U_{eq}$  for H2, H4, H10, H18, H19A/B and H20A/B).

#### Acknowledgements

The authors thank VLIR–UOS (project ZEIN2014Z182) for financial support and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/ 0035.

#### References

- Cecchetti, V., Parolin, C., Moro, S., Pecere, T., Filipponi, E., Calistri, A., Tabarrini, O., Gatto, B., Palumbo, M., Fravolini, A. & Palu', G. (2000). J. Med. Chem. 43, 3799–3802.
- Deraeve, C., Boldron, C., Maraval, A., Mazarguil, H., Gornitzka, H., Vendier, L., Pitié, M. & Meunier, B. (2008). *Chem. Eur. J.* **14**, 682– 696.
- Dinh, N. H., Co, L. V., Tuan, N. M., Hai, L. T. H. & Van Meervelt, L. (2012). *Heterocycles*, 85, 627–637.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
- Kitanovic, I., Can, S., Alborzinia, H., Kitanovic, A., Pierroz, V., Leonidova, A., Pinto, A., Spingler, B., Ferrari, S., Molteni, R., Steffen, A., Metzler-Nolte, N., Wölfl, S. & Gasser, G. (2014). *Chem. Eur. J.* 20, 2496–2507.

- Le Thi Hong, H., Nguyen Thi Ngoc, V., Tran Thi, D., Nguyen Bich, N. & Van Meervelt, L. (2015). *Acta Cryst.* E**71**, 1105–1108.
- Li, J.-Y., Chen, C.-Y., Ho, W.-C., Chen, S.-H. & Wu, C.-G. (2012). Org. Lett. 14, 5420–5423.
- Nayyar, A., Malde, A., Coutinho, E. & Jain, R. (2006). *Bioorg. Med. Chem.* 14, 7302–7310.
- Rashad, A. E., El-Sayed, W. A., Mohamed, A. M. & Ali, M. M. (2010). Arch. Pharm. Pharm. Med. Chem. 343, 440–448.
- Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Skrzypek, L. & Suwinska, K. (2002). Heterocycles, 57, 2035-2044.
- Skrzypek, L. & Suwinska, K. (2007). Heterocycles, 71, 1363-1370.
- Tabarrini, O., Massari, S., Daelemans, D., Stevens, M., Manfroni, G., Sabatini, S., Balzarini, J., Cecchetti, V., Pannecouque, C. & Fravolini, A. (2008). J. Med. Chem. 51, 5454–5458.
- Wang, Q., Li, R., Qui, S., Lin, Z., Chen, G. & Luo, L. (2014). Anal. Methods, 6, 5016–5019.
- Yan, L., Wang, X., Wang, Y., Zhang, Y., Li, Y. & Guo, Z. (2012). J. Inorg. Biochem. 106, 46–51.

# supporting information

### Acta Cryst. (2016). E72, 1242-1245 [doi:10.1107/S2056989016012408]

## Crystal structure of hexaaquanickel(II) bis{5-bromo-7-[(2-hydroxyethyl)amino]-1-methyl-6-oxidoquinolin-1-ium-3-sulfonate} monohydrate

### Hai Le Thi Hong, Vinh Nguyen Thi Ngoc, Anh Do Thi Van and Luc Van Meervelt

**Computing details** 

Data collection: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); cell refinement: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); data reduction: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Hexaaquanickel(II) bis{5-bromo-7-[(2-hydroxyethyl)amino]-1-methyl-6-oxidoquinoline-1-ium-3-sulfonate} monohydrate

Crystal data

[Ni(H<sub>2</sub>O)<sub>6</sub>](C<sub>12</sub>H<sub>12</sub>BrN<sub>2</sub>O<sub>5</sub>S)<sub>2</sub>·H<sub>2</sub>O  $M_r = 937.23$ Monoclinic, C2/c a = 8.7315 (4) Å b = 27.4581 (13) Å c = 13.7943 (6) Å  $\beta = 94.061$  (4)° V = 3298.9 (3) Å<sup>3</sup> Z = 4

Data collection

Agilent SuperNova (single source at offset, Eos detector) diffractometer Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 15.9631 pixels mm<sup>-1</sup> ω scans

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.024$  $wR(F^2) = 0.056$  F(000) = 1904  $D_x = 1.887 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5359 reflections  $\theta = 2.8-29.0^{\circ}$   $\mu = 3.22 \text{ mm}^{-1}$  T = 100 KPlate, orange  $0.4 \times 0.2 \times 0.1 \text{ mm}$ 

Absorption correction: multi-scan (*CrysAlis PRO*; Rigaku Oxford Diffraction, 2015)  $T_{min} = 0.546, T_{max} = 0.725$ 9171 measured reflections 3372 independent reflections 3041 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.020$   $\theta_{max} = 26.4^{\circ}, \theta_{min} = 2.5^{\circ}$   $h = -10 \rightarrow 10$   $k = -34 \rightarrow 32$   $l = -12 \rightarrow 17$  S = 1.083372 reflections

235 parameters

0 restraints

| Primary atom site location: structure-invariant | $w = 1/[\sigma^2(F_o^2) + (0.0207P)^2 + 5.2045P]$          |
|-------------------------------------------------|------------------------------------------------------------|
| direct methods                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| Hydrogen site location: mixed                   | $(\Delta/\sigma)_{\rm max} = 0.002$                        |
| H atoms treated by a mixture of independent     | $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$  |
| and constrained refinement                      | $\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      |              |             |              | IT */IT                  |  |
|------|--------------|-------------|--------------|--------------------------|--|
|      | X            | <u>y</u>    | Z            | $U_{\rm iso} V_{\rm eq}$ |  |
| N1   | 0.90237 (18) | 0.43668 (6) | 0.37155 (11) | 0.0110 (3)               |  |
| C2   | 0.9801 (2)   | 0.39411 (8) | 0.37514 (14) | 0.0132 (4)               |  |
| H2   | 0.9254       | 0.3642      | 0.3739       | 0.016*                   |  |
| C3   | 1.1379 (2)   | 0.39384 (8) | 0.38056 (14) | 0.0131 (4)               |  |
| C4   | 1.2182 (2)   | 0.43770 (8) | 0.38321 (13) | 0.0134 (4)               |  |
| H4   | 1.3273       | 0.4374      | 0.3877       | 0.016*                   |  |
| C5   | 1.1403 (2)   | 0.48189 (8) | 0.37930 (13) | 0.0108 (4)               |  |
| C6   | 0.9750 (2)   | 0.48132 (8) | 0.37471 (13) | 0.0104 (4)               |  |
| C7   | 1.2125 (2)   | 0.52820 (8) | 0.38177 (14) | 0.0119 (4)               |  |
| C8   | 1.1373 (2)   | 0.57248 (8) | 0.38109 (13) | 0.0122 (4)               |  |
| C9   | 0.9683 (2)   | 0.56934 (8) | 0.37556 (13) | 0.0110 (4)               |  |
| C10  | 0.8918 (2)   | 0.52466 (8) | 0.37301 (13) | 0.0113 (4)               |  |
| H10  | 0.7828       | 0.5238      | 0.3701       | 0.014*                   |  |
| C11  | 0.7332 (2)   | 0.43449 (8) | 0.36504 (14) | 0.0128 (4)               |  |
| H11A | 0.6923       | 0.4543      | 0.3101       | 0.019*                   |  |
| H11B | 0.6950       | 0.4470      | 0.4253       | 0.019*                   |  |
| H11C | 0.6999       | 0.4006      | 0.3553       | 0.019*                   |  |
| S12  | 1.23734 (6)  | 0.33760 (2) | 0.37750 (4)  | 0.01589 (12)             |  |
| 013  | 1.3871 (2)   | 0.34725 (7) | 0.42443 (13) | 0.0360 (5)               |  |
| O14  | 1.24175 (17) | 0.32666 (6) | 0.27422 (10) | 0.0200 (3)               |  |
| 015  | 1.1481 (2)   | 0.30278 (6) | 0.42858 (12) | 0.0323 (4)               |  |
| Br16 | 1.42949 (2)  | 0.53172 (2) | 0.38060 (2)  | 0.01722 (7)              |  |
| 017  | 1.19947 (16) | 0.61482 (5) | 0.38363 (10) | 0.0154 (3)               |  |
| N18  | 0.89569 (19) | 0.61215 (7) | 0.37205 (12) | 0.0136 (4)               |  |
| H18  | 0.9506       | 0.6391      | 0.3730       | 0.016*                   |  |
| C19  | 0.7298 (2)   | 0.61683 (8) | 0.35993 (15) | 0.0139 (4)               |  |
| H19A | 0.6846       | 0.6070      | 0.4208       | 0.017*                   |  |
| H19B | 0.6892       | 0.5947      | 0.3075       | 0.017*                   |  |
| C20  | 0.6831 (2)   | 0.66848 (8) | 0.33499 (15) | 0.0162 (4)               |  |
| H20A | 0.5699       | 0.6704      | 0.3248       | 0.019*                   |  |
| H20B | 0.7159       | 0.6902      | 0.3899       | 0.019*                   |  |
| O21  | 0.75070 (19) | 0.68455 (6) | 0.24924 (11) | 0.0229 (4)               |  |
| H21  | 0.760 (3)    | 0.6610 (11) | 0.213 (2)    | 0.034*                   |  |
| Ni22 | 0.2500       | 0.7500      | 0.5000       | 0.01747 (10)             |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| O23  | 0.35588 (18) | 0.75193 (6) | 0.37316 (12) | 0.0273 (4) |
|------|--------------|-------------|--------------|------------|
| H23A | 0.3304       | 0.7799      | 0.3392       | 0.041*     |
| H23B | 0.3270       | 0.7270      | 0.3322       | 0.041*     |
| O24  | 0.31091 (17) | 0.67782 (6) | 0.52289 (12) | 0.0237 (4) |
| H24A | 0.4136       | 0.6748      | 0.5315       | 0.036*     |
| H24B | 0.2816       | 0.6604      | 0.4695       | 0.036*     |
| O25  | 0.44976 (16) | 0.77588 (5) | 0.57273 (12) | 0.0196 (3) |
| H25A | 0.5337       | 0.7662      | 0.5414       | 0.029*     |
| H25B | 0.4680       | 0.7661      | 0.6357       | 0.029*     |
| O26  | 0.5000       | 0.73024 (9) | 0.7500       | 0.0218 (5) |
| H26  | 0.570 (3)    | 0.7142 (10) | 0.746 (2)    | 0.033*     |
| H26  | 0.570 (3)    | 0.7142 (10) | 0.746 (2)    | 0.033*     |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|------|--------------|--------------|--------------|---------------|---------------|---------------|
| N1   | 0.0109 (8)   | 0.0116 (9)   | 0.0102 (8)   | 0.0017 (7)    | 0.0001 (6)    | -0.0009 (7)   |
| C2   | 0.0169 (10)  | 0.0120 (10)  | 0.0106 (9)   | 0.0023 (8)    | -0.0005 (8)   | 0.0001 (8)    |
| C3   | 0.0151 (10)  | 0.0137 (11)  | 0.0102 (9)   | 0.0061 (8)    | 0.0001 (7)    | -0.0021 (8)   |
| C4   | 0.0125 (10)  | 0.0178 (11)  | 0.0098 (9)   | 0.0049 (8)    | 0.0007 (7)    | -0.0004 (8)   |
| C5   | 0.0103 (9)   | 0.0153 (11)  | 0.0070 (8)   | 0.0009 (8)    | 0.0010 (7)    | -0.0001 (8)   |
| C6   | 0.0118 (9)   | 0.0132 (11)  | 0.0064 (8)   | -0.0002 (8)   | 0.0014 (7)    | -0.0001 (8)   |
| C7   | 0.0075 (9)   | 0.0184 (11)  | 0.0099 (9)   | 0.0003 (8)    | 0.0009 (7)    | 0.0005 (8)    |
| C8   | 0.0109 (10)  | 0.0178 (11)  | 0.0078 (9)   | -0.0010 (8)   | 0.0003 (7)    | 0.0001 (8)    |
| C9   | 0.0111 (10)  | 0.0142 (11)  | 0.0077 (9)   | 0.0018 (8)    | 0.0003 (7)    | -0.0011 (8)   |
| C10  | 0.0079 (9)   | 0.0150 (11)  | 0.0111 (9)   | 0.0017 (8)    | 0.0007 (7)    | 0.0001 (8)    |
| C11  | 0.0079 (9)   | 0.0140 (11)  | 0.0166 (10)  | 0.0003 (8)    | 0.0005 (7)    | 0.0003 (8)    |
| S12  | 0.0176 (3)   | 0.0156 (3)   | 0.0141 (2)   | 0.0096 (2)    | -0.00095 (19) | -0.0023 (2)   |
| O13  | 0.0268 (9)   | 0.0349 (11)  | 0.0431 (11)  | 0.0212 (8)    | -0.0198 (8)   | -0.0210 (9)   |
| O14  | 0.0243 (8)   | 0.0199 (9)   | 0.0156 (7)   | 0.0105 (7)    | 0.0008 (6)    | -0.0038 (6)   |
| 015  | 0.0481 (11)  | 0.0194 (9)   | 0.0315 (9)   | 0.0170 (8)    | 0.0186 (8)    | 0.0112 (8)    |
| Br16 | 0.00740 (10) | 0.02418 (13) | 0.02029 (11) | 0.00080 (8)   | 0.00253 (7)   | 0.00294 (9)   |
| O17  | 0.0144 (7)   | 0.0140 (8)   | 0.0177 (7)   | -0.0023 (6)   | -0.0002 (6)   | 0.0003 (6)    |
| N18  | 0.0113 (8)   | 0.0107 (9)   | 0.0189 (9)   | -0.0004 (7)   | 0.0006 (7)    | 0.0002 (7)    |
| C19  | 0.0094 (10)  | 0.0138 (11)  | 0.0184 (10)  | 0.0013 (8)    | 0.0001 (8)    | 0.0003 (9)    |
| C20  | 0.0162 (10)  | 0.0160 (11)  | 0.0163 (10)  | 0.0034 (9)    | -0.0004 (8)   | -0.0003 (9)   |
| O21  | 0.0355 (9)   | 0.0159 (9)   | 0.0179 (8)   | 0.0045 (7)    | 0.0053 (7)    | 0.0017 (7)    |
| Ni22 | 0.00750 (18) | 0.0097 (2)   | 0.0349 (2)   | -0.00015 (14) | -0.00080 (16) | -0.00713 (17) |
| O23  | 0.0182 (8)   | 0.0217 (9)   | 0.0422 (10)  | -0.0036 (7)   | 0.0036 (7)    | -0.0123 (8)   |
| O24  | 0.0136 (7)   | 0.0140 (8)   | 0.0422 (10)  | 0.0032 (6)    | -0.0073 (7)   | -0.0106 (7)   |
| O25  | 0.0107 (7)   | 0.0148 (8)   | 0.0331 (9)   | -0.0003 (6)   | 0.0004 (6)    | -0.0042 (7)   |
| O26  | 0.0133 (11)  | 0.0133 (12)  | 0.0403 (14)  | 0.000         | 0.0117 (10)   | 0.000         |
|      |              |              |              |               |               |               |

### Geometric parameters (Å, °)

| N1—C2  | 1.351 (3) | S12—O15  | 1.4474 (18) |
|--------|-----------|----------|-------------|
| N1—C6  | 1.380 (3) | N18—H18  | 0.8806      |
| N1-C11 | 1.475 (2) | N18—C19  | 1.452 (2)   |
| С2—Н2  | 0.9500    | C19—H19A | 0.9900      |
|        |           |          |             |

## supporting information

| C2—C3                | 1.374 (3)   | C19—H19B                                | 0.9900      |
|----------------------|-------------|-----------------------------------------|-------------|
| C3—C4                | 1.393 (3)   | C19—C20                                 | 1.509 (3)   |
| C3—S12               | 1.774 (2)   | C20—H20A                                | 0.9900      |
| C4—H4                | 0.9500      | C20—H20B                                | 0.9900      |
| C4—C5                | 1.390 (3)   | C20—O21                                 | 1.429 (3)   |
| C5—C6                | 1.440 (3)   | O21—H21                                 | 0.83 (3)    |
| С5—С7                | 1.418 (3)   | Ni22—O23 <sup>i</sup>                   | 2.0366 (17) |
| C6—C10               | 1.394 (3)   | Ni22—O23                                | 2.0366 (17) |
| C7—C8                | 1.381 (3)   | Ni22—O24                                | 2.0704 (15) |
| C7—Br16              | 1.8983 (19) | Ni22—O24 <sup>i</sup>                   | 2.0704 (15) |
| C8—C9                | 1.474 (3)   | Ni22—O25                                | 2.0750 (14) |
| C8—O17               | 1.283 (3)   | Ni22—O25 <sup>i</sup>                   | 2.0750 (14) |
| C9—C10               | 1.397 (3)   | O23—H23A                                | 0.9191      |
| C9—N18               | 1.335 (3)   | O23—H23B                                | 0.9115      |
| С10—Н10              | 0.9500      | O24—H24A                                | 0.9003      |
| C11—H11A             | 0.9800      | O24—H24B                                | 0.9001      |
| C11—H11B             | 0.9800      | O25—H25A                                | 0.9163      |
| С11—Н11С             | 0.9800      | O25—H25B                                | 0.9128      |
| <u>\$12</u> —013     | 1.4420 (17) | O26—H26                                 | 0.76 (3)    |
| S12—014              | 1.4592 (15) |                                         |             |
|                      |             |                                         |             |
| C2—N1—C6             | 122.61 (17) | 015—\$12—014                            | 113.06 (10) |
| C2—N1—C11            | 117.74 (18) | C9—N18—H18                              | 118.8       |
| C6—N1—C11            | 119.64 (17) | C9—N18—C19                              | 123.35 (18) |
| N1—C2—H2             | 119.8       | C19—N18—H18                             | 117.7       |
| N1-C2-C3             | 120.4 (2)   | N18—C19—H19A                            | 109.4       |
| C3—C2—H2             | 119.8       | N18—C19—H19B                            | 109.4       |
| C2—C3—C4             | 119.84 (19) | N18—C19—C20                             | 111.15 (17) |
| $C_2 - C_3 - S_{12}$ | 119.61 (17) | H19A—C19—H19B                           | 108.0       |
| C4-C3-S12            | 120.46 (15) | C20—C19—H19A                            | 109.4       |
| C3—C4—H4             | 119.7       | C20—C19—H19B                            | 109.4       |
| C5-C4-C3             | 120.66 (19) | C19—C20—H20A                            | 109.4       |
| C5—C4—H4             | 119.7       | C19—C20—H20B                            | 109.4       |
| C4—C5—C6             | 118.55 (19) | H20A—C20—H20B                           | 108.0       |
| C4—C5—C7             | 124.51 (18) | 021-020-019                             | 111.00 (17) |
| C7—C5—C6             | 116.92 (18) | 021—C20—H20A                            | 109.4       |
| N1-C6-C5             | 117.92 (18) | 021—C20—H20B                            | 109.4       |
| N1-C6-C10            | 121.32(18)  | $C_{20} = 021 = H_{21}$                 | 109 (2)     |
| C10—C6—C5            | 120.76 (19) | $023^{i}$ Ni22 023                      | 180.00(4)   |
| C5-C7-Br16           | 119.16 (15) | 023 <sup>i</sup> —Ni22—024              | 88.36 (7)   |
| C8-C7-C5             | 125.37 (18) | $023$ —Ni22— $024^{i}$                  | 88.36 (7)   |
| C8—C7—Br16           | 115.42 (15) | 023—Ni22—024                            | 91.64 (7)   |
| C7—C8—C9             | 114.98 (19) | $O23^{i}$ Ni22 $O24^{i}$                | 91.64 (7)   |
| 017—C8—C7            | 126.71 (18) | O23 <sup>i</sup> —Ni22—O25 <sup>i</sup> | 89.39 (6)   |
| 017—C8—C9            | 118.31 (18) | 023—Ni22—025                            | 89.39 (6)   |
| C10—C9—C8            | 121.87 (19) | 023 <sup>i</sup> —Ni22—O25              | 90.61 (6)   |
| N18—C9—C8            | 114.94 (18) | O23—Ni22—O25 <sup>i</sup>               | 90.61 (6)   |
| N18—C9—C10           | 123.18 (18) | O24—Ni22—O24 <sup>i</sup>               | 180.0       |

| C6—C10—C9     | 120.10 (18)  | O24 <sup>i</sup> —Ni22—O25              | 86.79 (6)    |
|---------------|--------------|-----------------------------------------|--------------|
| С6—С10—Н10    | 120.0        | O24—Ni22—O25                            | 93.21 (6)    |
| С9—С10—Н10    | 120.0        | O24—Ni22—O25 <sup>i</sup>               | 86.79 (6)    |
| N1-C11-H11A   | 109.5        | O24 <sup>i</sup> —Ni22—O25 <sup>i</sup> | 93.21 (6)    |
| N1-C11-H11B   | 109.5        | O25 <sup>i</sup> —Ni22—O25              | 180.0        |
| N1—C11—H11C   | 109.5        | Ni22—O23—H23A                           | 110.6        |
| H11A—C11—H11B | 109.5        | Ni22—O23—H23B                           | 113.0        |
| H11A—C11—H11C | 109.5        | H23A—O23—H23B                           | 105.3        |
| H11B—C11—H11C | 109.5        | Ni22—O24—H24A                           | 110.6        |
| O13—S12—C3    | 105.03 (10)  | Ni22—O24—H24B                           | 109.2        |
| O13—S12—O14   | 112.98 (10)  | H24A—O24—H24B                           | 106.3        |
| O13—S12—O15   | 113.89 (12)  | Ni22—O25—H25A                           | 110.3        |
| O14—S12—C3    | 104.43 (9)   | Ni22—O25—H25B                           | 116.3        |
| O15—S12—C3    | 106.39 (10)  | H25A—O25—H25B                           | 105.9        |
|               |              |                                         |              |
| N1—C2—C3—C4   | 0.5 (3)      | C6—N1—C2—C3                             | -1.1 (3)     |
| N1—C2—C3—S12  | -176.06 (14) | C6—C5—C7—C8                             | 0.7 (3)      |
| N1-C6-C10-C9  | -179.52 (17) | C6—C5—C7—Br16                           | -176.56 (13) |
| C2—N1—C6—C5   | 1.8 (3)      | C7—C5—C6—N1                             | 179.55 (16)  |
| C2—N1—C6—C10  | -178.59 (17) | C7—C5—C6—C10                            | -0.1 (3)     |
| C2—C3—C4—C5   | -0.7 (3)     | C7—C8—C9—C10                            | 1.1 (3)      |
| C2—C3—S12—O13 | -156.31 (17) | C7—C8—C9—N18                            | -178.14 (17) |
| C2-C3-S12-O14 | 84.58 (17)   | C8—C9—C10—C6                            | -0.6 (3)     |
| C2—C3—S12—O15 | -35.24 (19)  | C8—C9—N18—C19                           | 175.77 (17)  |
| C3—C4—C5—C6   | 1.4 (3)      | C9—N18—C19—C20                          | -166.55 (18) |
| C3—C4—C5—C7   | 179.87 (18)  | C10-C9-N18-C19                          | -3.5 (3)     |
| C4—C3—S12—O13 | 27.10 (19)   | C11—N1—C2—C3                            | 179.54 (17)  |
| C4—C3—S12—O14 | -92.01 (17)  | C11—N1—C6—C5                            | -178.90 (16) |
| C4—C3—S12—O15 | 148.17 (17)  | C11—N1—C6—C10                           | 0.8 (3)      |
| C4—C5—C6—N1   | -1.9 (3)     | S12—C3—C4—C5                            | 175.84 (14)  |
| C4—C5—C6—C10  | 178.47 (17)  | Br16—C7—C8—C9                           | 176.19 (13)  |
| C4—C5—C7—C8   | -177.81 (18) | Br16-C7-C8-O17                          | -3.0 (3)     |
| C4—C5—C7—Br16 | 5.0 (3)      | O17—C8—C9—C10                           | -179.67 (17) |
| C5—C6—C10—C9  | 0.1 (3)      | O17—C8—C9—N18                           | 1.1 (3)      |
| C5—C7—C8—C9   | -1.1 (3)     | N18—C9—C10—C6                           | 178.53 (17)  |
| C5—C7—C8—O17  | 179.72 (18)  | N18-C19-C20-O21                         | 57.0 (2)     |
|               |              |                                         |              |

Symmetry code: (i) -x+1/2, -y+3/2, -z+1.

Hydrogen-bond geometry (Å, °)

| D—H···A                                 | <i>D</i> —Н | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|-----------------------------------------|-------------|----------|-----------|-------------------------|
| O21—H21···O17 <sup>ii</sup>             | 0.83 (3)    | 1.89 (3) | 2.707 (2) | 170 (3)                 |
| C11—H11 <i>B</i> ···Br16 <sup>iii</sup> | 0.98        | 3.02     | 3.987 (2) | 171                     |
| C19—H19A…O13 <sup>iii</sup>             | 0.99        | 2.59     | 3.360 (3) | 134                     |
| N18—H18····O25 <sup>iv</sup>            | 0.88        | 2.58     | 3.422 (2) | 159                     |
| O23—H23 <i>A</i> ···O14 <sup>v</sup>    | 0.92        | 2.09     | 2.971 (2) | 161                     |
| O23—H23 <i>B</i> ···O21 <sup>vi</sup>   | 0.91        | 1.72     | 2.630 (2) | 172                     |

# supporting information

| O24—H24A…O13 <sup>iii</sup>            | 0.90     | 1.90     | 2.772 (2) | 162     |
|----------------------------------------|----------|----------|-----------|---------|
| O24—H24 <i>B</i> ···O17 <sup>vii</sup> | 0.90     | 1.83     | 2.714 (2) | 165     |
| O25—H25A····O15 <sup>viii</sup>        | 0.92     | 2.16     | 2.826 (2) | 129     |
| O25—H25 <i>B</i> ···O26                | 0.91     | 1.86     | 2.755 (2) | 165     |
| O26—H26…O14 <sup>iii</sup>             | 0.76 (3) | 2.03 (3) | 2.783 (2) | 175 (3) |

Symmetry codes: (ii) -*x*+2, *y*, -*z*+1/2; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) -*x*+3/2, -*y*+3/2, -*z*+1; (v) -*x*+3/2, *y*+1/2, -*z*+1/2; (vi) -*x*+1, *y*, -*z*+1/2; (vii) *x*-1, *y*, *z*; (viii) *x*-1/2, *y*+1/2, *z*.