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Abstract: This paper presents a design for temperature and pressure wireless sensors made of
polymer-derived ceramics for extreme environment applications. The wireless sensors were designed
and fabricated with conductive carbon paste on an 18.24 mm diameter with 2.4 mm thickness
polymer-derived ceramic silicon carbon nitride (PDC-SiCN) disk substrate for the temperature
sensor and an 18 × 18 × 2.6 mm silicon carbide ceramic substrate for the pressure sensor. In the
experiment, a horn antenna interrogated the patch antenna sensor on a standard muffle furnace and a
Shimadzu AGS-J universal test machine (UTM) at a wireless sensing distance of 0.5 m. The monotonic
relationship between the dielectric constant of the ceramic substrate and ambient temperature is the
fundamental principle for wireless temperature sensing. The temperature measurement has been
demonstrated from 600 ◦C to 900 ◦C. The result closely matches the thermocouple measurement
with a mean absolute difference of 2.63 ◦C. For the pressure sensor, the patch antenna was designed
to resonate at 4.7 GHz at the no-loading case. The sensing mechanism is based on the piezo-dielectric
property of the silicon carbon nitride. The developed temperature/pressure sensing system provides
a feasible solution for wireless measurement for extreme environment applications.

Keywords: extreme environments; passive wireless sensors; patch antenna design; polymer-derived
ceramic; radio frequency identification; temperature sensor; pressure sensor

1. Introduction

Wireless passive sensors for ultra-harsh conditions are greatly needed to help with
structural integrity, health monitoring, and proximate environment monitoring. Com-
pared to physical wires, wireless devices are relatively inexpensive to maintain in a high-
temperature environment and are less susceptible to failure [1]. Existing methods for re-
mote sensing (i.e., passive inductor and capacitor resonant telemetry scenes, accelerometer,
surface acoustic wave sensor, chemical resistor, etc.) are performed by proximate environ-
mental monitoring and are primarily limited to storage and transportation purposes; they
are usually limited by sensing distance (e.g., ≤3 cm) [2]. However, the development of
next-generation defense systems demands greater situational awareness of the extreme
environmental conditions (i.e., acceleration, temperature, pressure). Therefore, novel sen-
sors that can increase the safety by tracking and assessing their status on demand will find
great utility in many defense applications. This kind of device can keep the effectiveness
of material over extended periods of time under extreme and transient environment con-
ditions. It is envisioned that traditional sensors can be improved upon by utilizing novel
materials (formulated for extreme pressure, temperature, and vibration environments)
in combination with additive manufacturing (AM) techniques to work towards true 3D
sensing capability. Additionally, it is desirable to produce ‘shock hardened’ electronics by
scale-tailorable AM packaging for fuse electronics, which has the ability to miniaturize
manufactured devices.
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This study demonstrated wireless patch antenna temperature and pressure sensors
that operate at a greater sensing distance improved upon by utilizing novel materials
(formulated for extreme temperature and vibration environments). The patch antenna
temperature and pressure sensors consist of a polymer-derived SiCN (silicon carbon nitride)
ceramic substrate, a carbon paste patch, and a ground plane. Since the patch is a resonating
element, the patch antenna sensor receives interrogation signals at its resonant frequency. The
resonance of the patch is coupled to the dielectric constant of the substrate, which changes
with the variation of temperature and pressure [3]. Therefore, the temperature and pressure
measurements performed are wireless, using the resonant frequency signal. To identify
resonant frequency changes, the S11 parameter is measured. While a patch antenna has been
used as a wireless sensor node in previous research, the proposed patch sensor operates at a
greater sensing distance compared to other reports in the existing literature [4–7].

The embedded sensor developed here can be additively manufactured with novel
ruggedized material into complex 3D geometries, which is able to realize 3D sensing in
the high temperature/shock environment of munitions (up to 50 MPa). In the literature,
the majority of existing additively manufactured wireless sensors are made on extruded
polymer substrates which have negligible resistivity change and no delamination for
temperature cycling from room temperature to as high as 300 ◦C [8–12]. Above this
temperature range, the antenna (or substrate) would not survive, or delamination/cracking
will occur which prevents the sensor from functioning correctly.

The benefits of using additive manufacturing (AM) in this research include the poten-
tial to directly print the sensor onto conformal substrates as well as embedding the sensor
into the testing materials with complex geometries. Additionally, the form factor and de-
sign can be rapidly prototyped with AM for proof of concept. This research work optimizes
the materials and design for embedded temperature and pressure measurements while
simultaneously testing the sensor performance to develop a robust, embedded sensor.

In this paper, the PDC temperature and pressure sensors were designed, fabricated,
and experimentally demonstrated in high-temperature settings from 600 ◦C to 900 ◦C
and in force from 0 N to 4500 N. Section 2 presents the fabrication method and sensing
material property of the PDC which enables it to sense the variations in temperature and
pressure. In Section 3, the operation principle and geometry design of a micro-patch
antenna sensor based on the transmission line theory as well as the reflection are described.
The experimental setup, digital signal processing procedure, and experimental results are
explained in Section 4. Finally, the summary and conclusion are presented in Section 5.

2. Sensing Material and Property Characterization
2.1. PDC-SiCN Material Property

The wireless sensing material was made of the polymer-derived silicon carbonitride
(SiCN) ceramic and was fabricated using commercially available polysilazane (Kion Ceraset,
USA) as the precursor. Polysilazane is a polymer consisting of nitrogen and silicon atoms
alternating in their backbone. For the preparation, 8.8 g liquid-phased Polysilazane and
1 g aluminum-tri-sec-butoxide were mixed at 120 ◦C for 24 h while 2 wt% of the diluted
catalyst solution was slowly added to the mixture. Curing took place at 140 ◦C and 350 ◦C,
then the crosslinked samples were ball-milled (8000D Mixer/Mill®, SPEX SamplePrep,
Metuchen, NJ, USA) before pressing and being put into a tube furnace (carbolite gero
30–3000) for pyrolysis. The samples were heated up to 1000 ◦C. The detailed processing
steps can be seen in Figure 1.

Figure 1. Processing steps for synthesizing PDC (SiCN) material.
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Based on Figure 1, the process of SiCN substrate fabrication is: First, the liquid
polysilazane is solidified with 2 wt% of dicumyl peroxide (DP) as the thermal initiator
and subsequently cross-linked respectively at 140 ◦C and 350 ◦C for 3 h in nitrogen. The
cross-linked product is then ground for 90 min to a fine powder of about 10 µm using
a planetary ball mill. During grinding preparation, five drops of liquid polysilazane are
added for every 1 g (of) stirred fine powder, and the product is mixed with 3 g of 140 ◦C
thermal treatment product and 3 g of 350 ◦C thermal treatment product in a mortar. Under
a uniaxial pressure of 4.83 MPa, the powder is compressed into disk samples of 18.24 mm
in diameter and 0.5–1.0 mm in thickness. Finally, the compacts are pyrolyzed at 1000 ◦C
for 3 h.

Micro-Raman spectroscopy investigations were performed for the as-prepared SiCN
sensor with the pyrolysis of 1000 ◦C, as shown in Figure 2. The recorded spectra show the
presence of typical bands for disordered sp2 carbon. The two high-intensity Raman features
of the segregated carbon phase in PDC are the so-called D and G bands at 1340 cm−1 and
1600 cm−1. The G band is related to the stretching mode of the sp2 hybridized carbon
atoms in rings and/or chains whereas the D band relies on breathing modes of the rings
and occurs only in disordered ring structures. Moreover, two bands at around 2690 and
2920 cm−1 are attributed to overtones or combination modes of the D- and G- bands. Free
carbon plays an important role in the dielectric behavior of the PDC systems.

Figure 2. Micro-Raman spectroscopy measurements of the polymer-derived SiCN.

In order to investigate the microstructure, XRD (ICDD PDF Card NO.33-1160) and
SEM were carried out. Figure 3 shows the XRD patterns of SiCN ceramics pyrolyzed at
1000 ◦C. The diffraction peak around 20◦ belonged to amorphous carbon. The spectrum
indicates that the microstructure is amorphous and devoid of crystalline SiC. The presence
of the carbon peak confirms the influence of the carbon in the structure. The SEM image in
Figure 4 also demonstrates that the PDC-SiCN matrix is amorphous which is in agreement
with our previous findings [13,14].
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Figure 3. XRD patterns of PDC-SiCN ceramics at 1000 ◦C.

Figure 4. SEM image of PDC-SiCN pyrolyzed at 1000 ◦C showing the amorphous nature of the matrix.

2.2. Fabrication of the PDC-SiCN Sensor

When making the wireless PDC-SiCN sensor, the surface of specimens was firstly
polished before coating with the carbon paste. Then, a layer of carbon paste (Pelco, Redding,
CA, USA) from an aqueous solution was applied on both the top (seen in Figure 5, right)
and bottom surfaces of the substrate to form the rectangular patch and ground plane. An
inverse mold is made by machining the dimensions of the patch out of a flat material (seen
in Figure 5, left). The conductive paste is then applied until the patch dimensions and the
ground plane side of the substrate are coated. The substrate and conductive traces are then
cured using a heat treatment process that bonds the paste to the substrate and increases the
conductivity of the trace.

With PDC-SiCN as the substrate and carbon paste as the conductive trace, the sensor
can be fabricated by the 3D printing technique. The 3D-printing experimental setup is
shown in Figure 6. Material is stored in a syringe and sprayed by the printing needle.
The antenna is printed layer by layer as an embedded structure in the substrate as shown
in Figure 7.
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Figure 5. MPA mold (left) and PDC substrate (right) with conductive trace applied.

Figure 6. 3D-printing experimental setup.

Figure 7. Schematic diagram of antenna 3D printing process.

2.3. Monotonic Relationship between the Dielectric Constant of Sensor Substrate and Ambient
Temperature/Applied Pressure

The amorphous structure of SiCN contains various chemical phases including SiCO3,
SiN2O2, SiCN3, SiC2N2, and SiCN3 [15]. In these units, there are many Si- and C-related
dangling bonds. The amorphous matrix phase consists of various chemical units and
highly disordered carbon. The dielectric property of PDC-SiCN is closely related to its
structure. The dielectric constant is mainly ascribed to the space charge polarization in
which the ions and electrons are activated and moved to the interface of free carbon phases.
The space charge polarization depends upon the number of ions and electrons near these
structures, as illustrated in Figure 8.
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Figure 8. Schematic diagram of space charge polarization of PDC-SiCN when an alternating electro-
magnetic field is applied.

2.3.1. Wireless Temperature Sensing Principle

At low temperatures, the energy for the thermal motion of these particles is low. The
relaxation polarization is difficult to initiate which results in a long relaxation time. In this
case, the motion of the relaxation particles cannot keep pace with the change of the applied
electric field. The dielectric constant of the PDC-SiCN, therefore, is low. With an increase
in ambient temperature, the relaxation particles acquire more energy due to the thermal
motion, which results in the decrease in relaxation time. This change can be described
in (1) [16].

τ(T) = τ0exp(
Ea

R · T ) (1)

where T is temperature, τ0 is a pre-factor, Ea is the activation energy, R is gas constant,
and τ(T) is the temperature-dependent polarization relaxation time. It is clear that τ(T)
decreases as temperature increases, and polarization transformation occurs easily in the
electric field. The motion of the relaxation particles can keep pace with the change of
electric field and the setup of relaxation polarization is easier. Thus, the dielectric constant
of the PDC-SiCN increases when the temperature increases, as shown in (2) [16].

ε′ = εα +
εs − εα

1 + ω2 · τ(T)2 (2)

where εs is static dielectric constant, εα is relative dielectric constant at a high-frequency
limit, and ω is the angular frequency. The relaxation polarization becomes prominent at
elevated temperatures [17]. Thus, the dielectric constant of the PDC sensor substrate has a
monotonic relationship with the ambient temperature.

2.3.2. Wireless Pressure Sensing Principle

The sensing mechanism in this wireless RF pressure sensor design is based on the
piezo-dielectric and piezo-resistivity property of PDC [4,18]. As a mechanical load is
applied to the sensor, the dielectric constant of the PDC changes. To explain, the pressure
coefficient for dielectric constant is introduced as shown in (3):

κ =
dε/ε

dp
=

∂ ln ε

∂p
(3)

where ε is the dielectric constant and p is the pressure. The relationship between dielectric
constant and polarizability is the famous Clausius-Mossotti (CM) relationship, as shown
in (4) [19].

M
ρ

(
ε− 1
ε + 2

)
=

4π

3
Nα (4)
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where M is the atomic weight in grams, ρ is the density, N is Avogadro’s number, α is the
atomic polarizability and ε is the dielectric constant. By simplifying (4) and substituting it
into (3), the new relationship is shown in (5) [19].

κ =
∂ ln ε

∂p
=

(ε− 1)(ε + 2)
3ε

(
∂ ln α

∂p
+ β) (5)

where β is the part related to the compressibility of materials and can be neglected because
it is much smaller compared with the first part in brackets. Thus, the increase in dielectric
constant with pressure has attributed to an increase in polarization. The change of polar-
ization caused by the increase in pressure can be demonstrated as (6) [20] by rearranging
Equation (5).

∂ ln α

∂p
=

3
ε

∂ ln ε

∂p
(6)

According to the PDC material’s property, ∂ ln α
∂p is consistently positive which indicates

that polarization is increasing with increasing pressure. Thus, the dielectric constant of the
PDC sensor substrate has a monotonic relationship with the applied pressure.

3. Micro-Patch Antenna Theory
3.1. Operation Principle of the Wireless Patch Antenna

The wireless interrogation system is composed of a horn antenna, a patch antenna
sensor, and a vector network analyzer which performs frequency sweeps and signal mea-
surements. The antenna radiating elements consist of a metallization applied on the top
(patch) and the bottom (ground plane) of the sensor as shown in Figure 9. The presented
temperature and pressure sensor enables the patch antenna for wireless operations. The
sensor substrate material, PDC-SiCN, is selected since it has good high-temperature me-
chanical stability [21] and dielectric properties [22]. This simple structure of the patch
antenna sensor is desirable because it is lightweight, has a low profile, and is inexpensive
to fabricate [23].

Figure 9. Electric and magnetic fields of the PDC patch antenna sensor.

The sensor operation begins with the horn antenna broadcasting frequency sweeps
toward the patch antenna sensor. The frequency component transmitted to the patch
antenna sensor can be introduced and stored inside the sensor (substrate) or reflected
back to the horn antenna. The interrogation frequency close to the resonant frequency
of the sensor establishes the desired power transfer to the sensor due to the minimum
impedance at its resonance. The power coupling induces the surface charges on the inside
of conducting plates and produces electric fields between two separate conductors. In
addition, the current flow in the patch and ground plane creates magnetic fields. The
formation of magnetic fields results in electromagnetic energy being trapped inside the
sensor and operating as a transmission line model as shown in Figure 9. However, in the
case of the interrogation signal differing from the resonant frequency of the sensor, the
electromagnetic energy rather reflects the horn antenna because the impedance blocks the
power passing through the sensor [24].
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The signal measurement of the reflection and absorption response is distinctive in the
return loss (S11); a definitive trough appears at its resonant frequency. Thus, due to the
ease of reading the resonant frequency of the sensor, it is reliable as a sensing signal. The
dielectric constant is an important element in deciding the resonant frequency of the sensor
such that its change (due to an increase in temperature and pressure) is attributed to the
change in the resonant frequency of the sensor. Therefore, the temperature and pressure
can be measured wirelessly using the resonant frequency of the sensor.

3.2. Wireless Measurement Distance

The electromagnetic power transfer between the interrogator and receiver is relevant
in order to achieve the wireless operation of the sensor. The wireless power transfer perfor-
mance between a transmitter and receiver can be approximated by the Friis transmission
equation as shown in (7) [25].

Pr =
Ar · At

d2 · λ2 · Pt (7)

where Pt is the power fed into the transmitting antenna, Pr is the power available at the
receiver, At is the effective area of the transmitting antenna, Ar is the effective area of the
receiving antenna, d is the distance between antennas, and λ is the wavelength. The Friis
transmission equation indicates that when the receiver sensor size and transmitted power
are fixed, power transfer performance depends on the aperture size of the transmitter and
the distance between the two antennas.

Since a horn antenna is well-known to provide a directional radiation pattern and a
large gain [26], it can deliver strong energy to the sensor. In addition, the large aperture
size of 27.95 cm × 19.05 cm (11 in × 7.5 in) provides a large effective transmitting area
for wireless power transmission. Thus, a horn antenna is selected as an interrogator in
the wireless operation of the patch antenna sensor; despite the small effective area of the
sensor, it still can fulfill a long interrogation distance. In addition to power transmission
from the interrogator, since the reflected return is a sensing signal as well, the reflection
intensity degradation by the square of the distance is also considered. The interrogation
distance was adjusted through repeated experiments in the near radiating field.

In the experiment, the distance of 0.5 m (20 inches) from the sensor to the horn
antenna is determined through experiments that provided repeatable signals in several
experimental runs. The distance choice is also corresponding to the far-field region, which
is defined as (8).

2D2/λ ≤ R (8)

where R is the boundary distance, D is the largest dimension of the antenna, λ is the
wavelength of the frequency [25].

3.3. Geometry Design of Patch Antenna

The design of the patch antenna sensor resonating at a specific frequency is essential
for a wireless sensor since the resonant frequency of the sensor is dependent upon the
dielectric constant. The variation of temperature and pressure will change the dielectric
constant of the substrate. In other words, the detection of its resonant frequency is crucial
to measure the temperature and pressure. The resonant frequency of the sensor is a reliable
sensing signal due to the phenomenon observed only at resonance. When electromag-
netic waves transmit at the same frequency with the resonant frequency of the sensor,
it is capable of propagating at the largest amplitude through the sensor. This resonance
encourages minimization of sensor impedance which allows it to maximize signal transfer
with minimal loss.

The resonant frequency of the patch antenna sensor is determined based on the
dielectric constant of the dielectric substrate and the geometry of the patch antenna sensor.
The material dielectric constant is a complex value that is presented in (9) [27].

ε = ε′ − jε′′ (9)
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where ε′ is the real part of the dielectric constant and ε′′ is the imaginary part of the dielectric
constant. The real part of the dielectric constant represents the electric energy retained in
material from an external electric field, and the imaginary part of the dielectric constant
represents the loss of electric energy to an external electric field.

In terms of the dielectric constant, the resonance phenomenon is governed by the
real part since it allows most of the power to transfer into the sensor and to be stored in
the material with significantly less loss. The imaginary part of the dielectric constant for
SiCN is significantly small in a span of temperature range, e.g., tan δ ≈ 0.023 at 500 ◦C [28].
Because of this small value, it is reasonable to only take into account the real part of the
dielectric constant in determining its resonant frequency.

The geometrical design of the patch and the height of the substrate is significant in
constructing the field configuration beneath the patch at its resonant frequency. The patch
antenna sensor exhibits that the electric field lines pass through non-homogeneous media,
typically air, and a dielectric substrate because the dimensions of the patch are finite along
the length and width as shown in Figure 8. For this reason, the electric field has different
phase velocities in the two media, so it undergoes fringing at the edges of the patch (Ez
in Figure 9). Therefore, the patch antenna sensor can be described as two radiating slots
separated by a transmission line [29]. The fringing field is taken into account for the design
of the sensor.

The resonant frequencies of the patch antenna temperature and pressure sensor were
initially designed at about 5.75 GHz and 4.7 GHz, respectively. The geometry of the patch
antenna sensor is approximated with the following steps.

The patch width W can be calculated using (10) [23].

W =
C

2 · fr

√
2

εr + 1
(10)

where C is the speed of light, fr is the designed resonant frequency, εr is the effective
dielectric constant.

The substrate thickness h is suggested to be a small fraction of a wavelength
(0.003λ0 < h < 0.05λ0, where λ0 is the free-space wavelength) [23]. In general, as the sub-
strate thickness increases, the number of fringing increases. The fringing field is the reason
for the patch antenna sensor to radiate.

The effective dielectric constant εre f f takes into account the fringing effect so that
the nonhomogeneous electrical characteristics in air and the substrate are considered as a
uniform dielectric in the patch design. An effective dielectric constant represents the mixed
dielectric constant of the substrate and air, which can be estimated by (11) [23].

εre f f =
εr + 1

2
+

εr − 1
2

[1 + 12
h

W
]
− 1

2
(11)

where εr is the relative dielectric constant, h is the substrate thickness and W is patch width.
Fringing makes the patch appear larger in the electrical field plane to be extended on

each side of the patch by a distance ∆L, which is shown in (12) [23].

∆L = 0.412h

(
εre f f + 0.3

)(
W
h + 0.264

)
(

εre f f − 0.258
)(

W
h + 0.8

) (12)

where εre f f is the effective relative dielectric constant calculated in (11).
For a rectangular patch, the length of the patch is usually λ0/3 < L < λ0/2 [23]. The

length of the patch should ideally be a half-wavelength. At this length, the patch creates
the maximum electric field in the smallest dimensions of the patch. For the patch antenna
sensor, the actual length of the patch becomes slightly less than a half-wavelength because
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of the fringing effect. According to the designed resonance frequency and equation (12),
the effective length of the patch can be obtained in (13).

Leff = L + 2∆L =
c

2 fr
√

εreff
=

λd
2

(13)

where λd is the wavelength of the designed resonance frequency and fr is the designed
resonance frequency.

The effective length varies as the extended length is added to the actual length of the
patch as shown in (13). According to the relationship between the real length and effective
length of the patch, the real patch length that satisfies our design can be obtained in (14).

L = Le f f − 2∆L (14)

4. Experimental Setup
4.1. Time-Domain Gating Principle

To obtain the resonant frequency using a wireless interrogation method, filtering
techniques must be performed. As the electromagnetic waves propagate through the
environment, they are reflected by physical objects that cause noise in the S11 reflection
coefficient measurement. Since testing is done using a metal machine with high reflections,
data math is performed to subtract the noise from the measurement. The horn antenna and
machine are set up without the sensor in place. The data from the S11 response are saved
and then subtracted from the real-time response.

In the experiment, a Digital Signal Processing (DSP) algorithm was used to extract
the resonant frequency of the sensor from the measured S11 [30]. First, the S11 responses
of the experiment environments including a furnace/universal test machine (UTM) and
a horn antenna were measured without a patch antenna sensor. Inverse Fast Fourier
Transform (IFFT) was used to transform from the frequency to the time domain. In the time
domain, the S11 response was calibrated to characterize the structural backscattering due
to reflections inside of the furnace and UTM. These internal reflections were filtered out by
subtracting the reflections from the S11 graph. Second, the sensor was placed inside the
furnace, and UTM and another calibration were performed in order to isolate the sensor.

In both experiments, a time-domain technique is used to find the sensor within the
wireless environment. A time of 0 s corresponds to the feeding point of the transmitting
interrogation horn antenna. The reflection wave packet is maximized by placing a high
reflective metal plate in the same location of the sensor, which can be found as a peak
in time domain response. The location is given in nano-seconds away from the port
(interrogation antenna). A gate is then applied to encompass the peak shown in Figure 10.
After the time gate was applied, a Fast Fourier Transform (FFT) was used to convert back
to the frequency domain from the time domain. The final process signal is then scaled, and
the lowest amplitude is determined as the resonant frequency of the sensor.

Figure 10. Time−domain gating filtering technique diagram of the experiment setup.

A wireless sensing system with high-temperature survivability and a small volume is
significant in that it can be used in extreme situations such as harsh environments over a
variety of temperatures. The wireless sensing system may be utilized within the surface of
simple devices to the interior of complicated mechanical structures such as turbine engines
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and nuclear reactors. As shown in Figure 11, a temperature/pressure sensor the size of a
coin may be used to monitor the internal condition of a turbine engine.

Figure 11. Wireless PDC temperature/pressure sensor that can be used to monitor the internal
condition of a turbine engine.

4.2. Experiment Setup of Wireless Temperature Sensor

The experimental setup to validate the temperature sensing capability of a patch
antenna sensor with a wireless interrogation is shown in Figure 12. The muffle furnace
was constructed from Moldatherm Insulation. The foam box was used because it is a radio
frequency transparent material and a good thermal insulator. Thus, the temperature of the
furnace could increase uniformly without the metallic door in place.

Figure 12. Temperature sensor experimental setup.

The wireless interrogator was conducted by using a vector network analyzer (VNA).
The VNA was a PXI-M9375a from Keysight Technologies that produced a frequency sweep
0.6–8 GHz with a gain of 6–15 dB and was broadcast by a horn antenna positioned 0.5 m
away from the furnace. The signal travels through free space until it reaches the sensor. The
horn antenna is connected to a one-port VNA so that the S11 parameter can be acquired.
A k-type thermocouple was placed inside the furnace to verify the temperature. The
thermocouple measurements were acquired by a PXIE- thermocouple DAQ.

4.3. Experiment Setup of the Wireless Pressure Sensor

In order to test and validate the pressure sensor design, a National Instruments
Vector Network Analyzer (VNA) PXIe-5630 (0.1–6 GHz) along with a wideband horn
antenna (0.8–6 GHz) were used. The diagram can be seen in Figure 13. The VNA applied a
frequency sweep from 3–6 GHz in 0.0015 GHz steps. The horn is placed so that the antenna
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pattern is normal to the surface of the patch on the sensor. The sensor was placed in a
Shimadzu AGS-J universal test machine (UTM). The sensor was positioned so that the
patch faced the horn. The horn antenna was placed 0.5 m away from the sensor. This
distance was chosen due to the high reflective metal construction of the UTM. It is possible
to increase this distance in low reflection environments or by using a different interrogation
antenna with a more focused beam pattern.

Figure 13. Wireless pressure sensing process diagram.

The sensor was placed in the UTM so that the load is applied to the thin edges of the
sensor. In this orientation, the patch maintains its position normal to the horn antenna
(seen in Figure 14). A 5000 N load cell was used in the UTM to validate the forces. A load
was applied to the sensor in increments of 250 N. The resonance was recorded at each step
until 4500 N of force was loaded on the sensor.

Figure 14. Pressure sensor experimental setup.

5. Result and Discussion

The resonant absorption frequency can be seen by applying a frequency sweep and
taking the reflection coefficient measurement of the sensor. As the temperature and pressure
on the sensor increase, the frequency shifts due to changes in the dielectric constant. The
resonance is denoted by a characteristic drop in the reflection coefficient, and the frequency
is taken as the minimum of the curve (seen in Figure 15).



Sensors 2021, 21, 6648 13 of 18

Figure 15. Resonant frequency at the minimum of the reflection coefficient (S11) curve.

5.1. Experimental Results on Wireless Temperature Sensing

The measured relative dielectric constant of PDC-SiCN with increasing temperature is
shown in Figure 16. The dielectric constant increases with the increase in temperature thus
indicating a decrease in the resonance frequency.

The patch antenna sensor performance is validated using a three-dimensional (3D)
electromagnetic simulation tool. High-Frequency Structural Simulator (HFSS) with dielec-
tric constant data are shown in Figure 16. The S11 curves having the lowest return loss at
different frequencies are shown in Figure 17. The trough at each temperature is shifted
to the left as temperature increases, which means its resonant frequency decreases. With
the increase in temperature and pressure, the dielectric constant increases. The resonant
frequency is decreasing with this increase in the dielectric constant. In the simulation, a
wired micro-patch antenna is used to obtain better S parameters. For different frequencies,
the transmission line has different impedance matching degrees, which will introduce
different Return Loss (RL) amplitudes.

According to the simulation result above, the resonant frequency changes with varying
temperatures. Next, a PDC temperature sensor is fabricated and measured by experiment.
The measured resonance frequency of the sensor for temperatures from 600 ◦C to 900 ◦C is
plotted in Figure 18. When the temperature increased, the measured resonant frequency
decreased from 4.60 GHz to 3.97 GHz. Between different temperature ranges, the resonant
frequency decreases at different rates. Overall, the absolute sensitivity is 2.2 MHz/◦C.

To verify the accuracy of the temperature sensor, the difference between thermocouple
temperature and temperature shown by the temperature sensor can be seen in Table 1. The
average value of the absolute mean differences between thermocouple and patch sensor
measurements over the entire temperature span is 2.63 ◦C. Each cycle was run for 10 h, and
the experiment was repeated for six cycles.
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Figure 16. The measurement result of SiCN dielectric constant with increasing temperature.

Figure 17. The simulated resonant frequency of temperature sensor changes with temperature.

Figure 18. The measured resonant frequency of the PDC-SiCN patch temperature sensor at various
ambient temperatures.
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Table 1. A comparison of temperature measurement by patch antenna sensor and thermocouple.

Temperature Range 600–650 650–700 700–750 750–800 800–850 850–900

|∆e| (◦C) 0.78 6.56 2.93 0.31 1.03 6.15

|∆e*| = |(thermocouple measurement) − (patch antenna sensor measurement)|.

5.2. Experimental Results on the Wireless Pressure Sensing

The resonance frequency for force from 0 N to 4500 N is measured and plotted in
Figure 19. When the pressure increases, the measured resonant frequency was decreased
from 4.455 GHz to 4.435 GHz. These results indicate that the resonant frequency of the
sensors with fixed dimensions is pressure-dependent.

Figure 19. The resonant frequency of pressure sensor changes with varying pressure.

The pressure was determined using the area of the sensor over which the load was
applied as well as the force applied using the load cell. The measured dielectric constant
of PDC-SiCN and resonant frequency of sensor change with the increasing pressure are
shown in Figure 20. From 0 Pa to 9.51 × 107 Pa, a roughly 20 MHz shift in resonance can
be seen in the figure.

The S-parameter describes the input-output relationships between ports in an electrical
system. The S11 response illustrates transmission through port 1 and reception from port 1,
which is often referred to as the reflection coefficient (RC) as shown in (15) [22].

RC = 10 log10

(
Pr

PI

)
(15)

where PI is the incident power and Pr is the reflected power. The reflection coefficient
represents how much incident power is reflected. The 0 dB RC means that all signals
are reflected from the patch antenna sensor so that there is no electromagnetic energy
introduced into the sensor. Similarly, a −10 dB RC means that more than 90% of the energy
transmitted is introduced into the sensor. When the reflection coefficient is smaller than
−10 dB, it is viewed as sufficient energy transfer into the sensor. Based on these facts and
in accordance with Figures 16 and 18, enough energy is transferred into the patch sensor at
its resonance in all ranges of temperature and pressure.
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Figure 20. Ramp up Pressure vs. Frequency of pressure sensor during the experiment.

6. Summary and Conclusions

In this paper, wireless patch antenna sensors have been successfully fabricated which
demonstrate the capability to measure temperature and pressure at a sensing distance of
0.5 m. The sensors are entirely wireless and do not require a power source. The wireless
sensing mechanism is based on the monotonic increase of the dielectric constant of the
PDC-SiCN sensing material with respect to an increasing ambient temperature and applied
pressure which induces a decrease in the resonant frequency of the sensor. The frequency
shift of 0.67 GHz over temperature ranges from 600 ◦C to 900 ◦C is observed with an
absolute sensitivity of 2.2 MHz/◦C. A shift of 0.02 GHz over a pressure range from 0 Pa to
9.51 × 107 Pa is observed with an absolute sensitivity of 0.217 Hz/Pa. The sensor operation
is repeatable in the full range of temperature and pressure variation.

This work demonstrates the feasibility of measuring high temperatures and pressures
using patch antenna wireless passive sensors in harsh environments. It is anticipated
that the sensor could be tailored to reduce the size and increase the sensitivity by altering
the material dielectric properties (e.g., dielectric constant). The sensing distance can
also be optimized specifically to different environments (high reflection, low reflection).
Overall, it is inexpensive, efficient, and aims to reduce maintenance costs. Further, when
a wireless sensor network using multiple sensors is formed, pressure and temperature
distribution can be measured over a span of sensing area, which means not only the
pressure and temperature can be measured simultaneously, but also temperature and
pressure distribution can be directly plotted using standard computer software.

What is more, it is envisioned that other printed component technologies such as
capacitors, antennas, and traces will be able to be designed and eventually seamlessly
printed on a single machine for benefits such as weight reduction, cost savings for low
production quantities of tailorable weapon systems to name a few. Both monitoring and
optimizing, if possible, temperature and pressure in extreme environments would be
broadly useful for many extreme applications to improve efficiency and safety.
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Nomenclature of Variables

τ(T) Temperature-dependent polarization relaxation time
T Temperature
τ0 Relaxation time pre-factor
Ea Activation energy
R Gas constant
ε′ Real part of dielectric constant
εs Static dielectric constant
εα Relative dielectric constant at the high-frequency limit
ω Angular frequency
ε Dielectric constant
p Applied pressure
M Atomic weight in grams
ρ Material density
N Avogadro’s number
α Atomic polarizability
Pt Power fed into the transmitting antenna
Pr Power available at the receiver
At Effective area of the transmitting antenna
Ar Effective area of the receiving antenna
d Distance between antennas
λ Microwave’s wavelength
R Boundary distance between antenna and sensor
D The largest dimension of the antenna
ε′′ Imaginary part of the dielectric constant
C Speed of light
fr Designed resonant frequency
εr Relative dielectric constant
h Substrate thickness
εre f f Effective dielectric constant with fringing field
W Width of patch
L Length of patch
Le f f Effective length of patch
λd Wavelength of designed resonant wave
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