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Since their discovery CD4+FOXP3+ regulatory T cells (Tregs) represented a promising

tool to induce tolerance in allogeneic hematopoietic cell transplantation. Preclinical

models proved that adoptive transfer of Tregs or the use of compounds that can

favor their function in vivo are effective for prevention and treatment of graft-vs.-host

disease (GvHD). Following these findings, Treg-based therapies have been employed

in clinical trials. Adoptive immunotherapy with Tregs effectively prevents GvHD

induced by alloreactive T cells in the setting of one HLA haplotype mismatched

hematopoietic transplantation. The absence of post transplant pharmacologic

immunosuppression unleashes T-cell mediated graft-vs.-tumor (GvT) effect, which results

in an unprecedented, almost complete control of leukemia relapse in this setting. In the

present review, we will report preclinical studies and clinical trials that demonstrate Treg

ability to promote donor engraftment, protect from GvHD and improve GvT effect. We will

also discuss new strategies to further enhance in vivo efficacy of Treg-based therapies.

Keywords: regulatory T cells, allogeneic hematopoietic transplantation, tolerance, engraftment,

graft-vs.-host-disease, graft-vs.-tumor effect

INTRODUCTION

CD4+FOXP3+ regulatory T cells (Tregs) are capable of suppressing the function of conventional
CD4+ and CD8+ T cells (Tcons), B cells, NK cells and antigen presenting cells (APCs).
They maintain tolerance to self and prevent autoimmune diseases, control excessive immune
responses to allergens and pathogens, help maintain a balance with commensal microbial
flora and the maternal tolerance to fetus. They have been shown to infiltrate tumors and
suppress anti-tumor immunity (1–6). Recent studies have uncovered a role for bone marrow
mouse Tregs in the maintenance of the hematopoietic stem cell (HSC) niche and in B cell
lymphopoiesis (7, 8). Tregs develop in the thymus with a T cell receptor (TCR) repertoire
that overlaps to some extent with that of Tcons (9–12). In addition, studies in mice reported
that TGF-β and retinoic acid can induce differentiation of peripheral naïve CD4+ T cells
into Tregs in response to antigenic stimulation (13–19). FOXP3 is a transcription factor of
the forkhead winged helix family and is the lineage marker for both mouse and human
Tregs (20–25), although human Tcons can express low levels of FOXP3 after activation (26,
27). FOXP3 deficiency causes lymphoproliferation and multi-organ autoimmunity in scurfy
mice and a lethal X-linked syndrome with immune dysregulation, polyendocrinopathy, and
entheropathy in humans (28–31). Recent studies in mouse models suggest that FOXP3 expression
is not required to direct thymocyte development to the Treg cell lineage, but it is essential
for Treg stability and function (32–34). TCR, IL-2, and TGF-β signaling can induce Foxp3

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02901
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02901&domain=pdf&date_stamp=2019-12-17
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:antonio.pierini@unipg.it
https://doi.org/10.3389/fimmu.2019.02901
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02901/full
http://loop.frontiersin.org/people/515514/overview
http://loop.frontiersin.org/people/528535/overview
http://loop.frontiersin.org/people/528538/overview
http://loop.frontiersin.org/people/458613/overview


Mancusi et al. Treg-Based Therapies in Haploidentical Transplantation

transcription and are responsible for the maintenance and the
function of thymic Tregs and the differentiation of Tregs in
the periphery (35–38). Among others, FOXP3 represses the
transcription of genes for IL-2 and other inflammatory cytokines,
while it activates the transcription of IL2RA, CTLA4, and its own
gene (39, 40). The α chain of the IL-2 receptor (IL-2Rα, CD25)
and CTLA-4 are constitutively expressed by Tregs, while they are
expressed on Tcons upon activation (1, 2, 41–44). Due to the
intranuclear localization of FOXP3, CD25 is currently used to
select Tregs for functional in vitro studies and cellular therapy,
although it is not an exclusive marker. As Tregs do not produce
IL-2, they depend on IL-2 produced by other immune cells,
mainly Tcons (45). Tregs constitutively express the high-affinity
receptor for IL-2 (IL-2Rαβγc), thus they can efficiently compete
for IL-2 with Tcons and NK cells (46–48). TCR stimulation
activates Tregs that are capable of suppressing antigen-specific
responses but can also exert bystander suppression (49). Tregs act
through several mechanisms, including production of inhibitory
cytokines such us IL-10 and TGF-β, cell-cell contacts, and
cytolysis (5, 50). The inhibition of dendritic cell maturation
and function is considered a core mechanism of Treg-mediated
suppression. CTLA-4 on Tregs binds CD80 and CD86 on
dendritic cells and inhibits maturation of APCs and co-
stimulation of Tcons (51, 52).

Efforts have been made to exploit Treg function for
the treatment of autoimmune and inflammatory diseases.
Recently, clinical trials are evaluating Treg-based therapies in
allogeneic hematopoietic transplantation (HCT) with promising
results. Allogeneic HCT is a life-saving treatment for high-risk
hematologic malignancies (53). After a conditioning regimen
based on radiotherapy and/or chemotherapy, a bone marrow
or a stem cell graft reconstitutes hematopoiesis and immunity
of donor origin in the recipient. Residual host T cells that may
have survived the conditioning regimen can recognize donor
alloantigens and cause rejection. Similarly, donor alloreactive
T cells recognize recipient alloantigens, eliminate malignant
cells [graft-vs.-tumor (GvT) effect] and can prevent relapse.
However, they also attack host normal tissues (mainly skin,
gut and liver), causing graft-vs.-host disease (GvHD), that is a
major cause of non-relapse mortality (NRM). Pharmacological
immune suppression is widely used to prevent GvHD, but it
also reduces the GvT effect. Separation of the GvT effect from
GvHD is the main goal of the translational research in the field.
In this setting, Tregs contribute to induction and maintenance of
tolerance to alloantigens, facilitating engraftment and preventing
the development of GvHD (54–56).

INDUCTION OF TOLERANCE BY TREGS IN
PRECLINICAL MODELS OF ALLOGENEIC
HCT

Mouse models of allogeneic HCT have provided evidence
that Tregs suppress T cell alloreactions and can promote
engraftment and help control GvHD. The role of Tregs in
GvHD has been mostly investigated in MHC mismatched bone
marrow transplantation. Pioneering studies demonstrated that

CD4+CD25+ T-cell depletion from the bone marrow graft
exacerbated GvHD.When additional CD4+CD25+ T cells, either
freshly isolated or ex-vivo expanded, were infused, GvHD onset
was delayed and even prevented to various degrees (57–60). One
study showed that Tregs also protected from GvHD in a minor
histocompatibility antigen-disparate, MHCmatched setting (60).
In a mouse model of fully mismatched T-cell depleted bone
marrow transplantation, infusion of donor Tcons killed all the
mice within 30 days of acute GvHD. When donor CD4+CD25+

Tregs were co-infused at a 1:1 ratio with Tcons more than 70%
of mice were protected from lethal acute GvHD. Co-infusion of
Tregs reduced the number of Tcons that could be recovered in
lymph nodes and GvHD target tissues such as skin and gut, thus
limiting Tcon expansion (61). Importantly, when mice were co-
injected with a leukemia or lymphoma cell line, transfer of Tregs
did not inhibit Tcon-mediated GvT effect (60–62). Moreover,
Treg transfer preserved thymic and lymph node architecture
and even accelerated donor lymphoid reconstitution to such
an extent that mice survived lethal mouse Cytomegalovirus
(CMV) infection (63). Treg homing to lymph nodes and target
tissue is an important variable in GvHD prevention. In mouse
models of GvHD, bioluminescence analyses showed that Tregs
localized to peripheral lymph nodes and spleen in the first 24–
48 h with a peak on day 4 after infusion, then they migrated
to peripheral tissues. When Tregs were infused 2 days before
Tcons, an unfavorable 1:10 ratio with Tcons still protected
from GvHD at some extent (64). Moreover, when Tregs were
eliminated in vivo 2 days after their transfer and even before
Tcon injection, mice survived to GvHD (65). Finally, CD62L−

Tregs do not migrate to lymph nodes and are not capable
of controlling GvHD (66, 67). Thus, Tregs migrate to lymph
nodes and suppress Tcon proliferation early after transplant.
However, Tregs could also suppress alloreactive Tcons in GvHD
target tissues. One study showed that CCR5-deficient Tregs had
reduced migration to mesenteric lymph nodes, liver, lung, and
spleen and were less effective in preventing GvHD (68). In
another study, CXCR3-transfected Tregs migrated better to liver,
lung, and intestine and better controlled GvHD (69). Adoptively
transferred third party Tregs also conferred protection from
GVHD in mouse models of allogeneic transplantation, although
they were less effective than donor Tregs. Third party Tregs
survived for a shorter period, probably because they were
rejected by donor Tcons. Thus, suppression of alloreactive T
cells can also operate through MHC-independent mechanisms
(65). Moreover, both radiation-resistant host Tregs and donor
Tregs reduced the severity of chronic GvHD in a mouse model
of bone marrow transplantation with a minor histocompatibility
antigen mismatch (70). The capability of human donor Tregs
to prevent and ameliorate GvHD caused by co-infused Tcons
has been demonstrated in xenogeneic mouse models (71–73),
and one of these studies also showed that the GvT effect was
unaffected (73). Similar results were obtained with the infusion of
third party human Tregs derived from umbilical cord blood and
expanded before infusion (74). The same group also showed that
fucosylation of expanded third party Tregs improved prevention
of GvHD. In fact, the addition of a fucose formed the moiety
found on P-selectin ligand on Treg cell surface, enhancing their
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persistence in vivo as a result of improved homing to the sites of
inflammation (75).

Other studies focused more specifically on the role of Tregs
in the engraftment of T-cell depleted bone marrow allografts.
Joffre et al. demonstrated that when host Tregs were activated
in vitro with donor allogeneic APCs, they inhibited host CD4+

and CD8+ T-cell mediated rejection of donor bone marrow
graft, but not of a third-party bone marrow graft (76, 77).
Another study showed that either donor or host CD62Lhi,
but not CD62Llo, ex-vivo activated Tregs inhibited rejection of
MHC-mismatched bone marrow in sublethally irradiated mice
(66). In a similar model, donor Tregs promoted engraftment
without being activated ex-vivo (78). Steiner et al. showed that
third-party Tregs, either naïve or ex-vivo expanded, enhanced
engraftment of bone marrow allografts (79). Adoptive transfer
of host-type Tregs can also induce mixed chimerism and
tolerance to a fully mismatched bone marrow graft after a
conditioning with short-course costimulation blockade (with
CTLA-4 Ig and anti-CD40L antibody) and rapamycin, in the
absence of cytoreductive treatment (80). Rapamycin is used
because it limits activation and expansion of Tcons while
promoting the expansion of Tregs (81). The ability of Tregs
to promote engraftment is consistent with their role in the
maintenance of the HSC niche, where they protect HSCs from
autologous and allogeneic immune attack (7, 8). Tregs are also
critical for tolerance induction to allogeneic HCT after reduced
intensity conditioning regimens with total lymphoid irradiation
and anti-thymocyte globulin (TLI/ATG). These regimens kill
host-type Tcons while partially sparing Tregs, which increase
donor HSC engraftment, cell cycling and differentiation (82, 83).
These results support the use of TLI/ATG to establish mixed
chimerism after allogeneic HCT in patients with hematologic
malignancies (84).

TREG-BASED THERAPIES IN ONE HLA
HAPLOTYPE MISMATCHED
TRANSPLANTATION

In one HLA haplotype mismatched (haploidentical)
hematopoietic transplantation, the high degree of HLAmismatch
triggers strong host-vs.-graft and graft-vs.-host alloresponses.
In the early 1990s, the combination of a myeloablative and
immunosuppressive conditioning regimen with the infusion
of a “mega-dose” of T-cell-depleted HSCs made haploidentical
transplantation feasible and effective without the need for any
post-transplant GvHD prophylaxis. The major limitation of
this approach was delayed post-transplant immune recovery,
which resulted in∼40% NRM, mainly due to infections (85–87).
More recently, protocols of unmanipulated (T-cell replete)
haploidentical transplantation have been developed. They are
based on new strategies to control T-cell alloreactivity that
also rely on Treg-induced tolerance (87, 88). A widespread
and effective approach is the administration of high-dose
cyclophosphamide following graft infusion (PTCy), which
inhibits alloresponses while sparing donor HSCs (88–90). Donor
Tregs are resistant to PTCy-induced cytotoxicity upon allogeneic

HCT, because they express high levels of the enzyme aldehyde
dehydrogenase, which is essential for in vivo detoxification of
cyclophosphamide (91). Treg-mediated suppression plays an
essential role in the prevention of GvHD in mouse models of
allogeneic HCT with PTCy (91, 92). A recent study showed that
PTCy induced functional impairment rather than elimination
of alloreactive T cells and confirmed a role for Tregs in GvHD
mouse models (93). Moreover, recovery of mature and functional
natural killer (NK) cells is also impaired in patients undergoing
haploidentical transplantation with PTCy (94, 95). Such effects
could impair T cell- and NK cell-mediated leukemia killing
after transplant. Importantly, clinical data suggest survival
after haploidentical transplantation with PTCy is similar to
that of patients undergoing HLA-matched sibling or unrelated
HCT (96–102). Another trial used a rapamycin-based GvHD
prophylaxis in order to promote in vivo expansion of Tregs and
allow the infusion of unmanipulated haploidentical grafts (103).

In the setting of T-cell depleted haploidentical transplantation
without post-transplant immunosuppression, the Perugia
Bone Marrow Transplant Program is exploiting adoptive
immunotherapy with freshly isolated donor Tcons and Tregs,
in order to promote immune reconstitution while preventing
GvHD (73, 87, 104, 105). CD4+CD25+ Tregs are isolated
by a two-step immunomagnetic selection consisting of a
negative CD19/CD8 selection, followed by a positive CD25
selection. The purity of CD4+FOXP3+ Tregs is around
70–80%. 2 × 106 Tregs/kg are infused 4 days before 1 ×

106 Tcons/kg and about 10× 106 CD34+ cells/Kg. No
pharmacological GvHD prophylaxis is given. The first study
reported results in 28 patients with hematologic malignancies
(24 in any complete remission and 4 in relapse at transplant).
They received a conditioning regimen with TBI, thiotepa,
fludarabine, and cyclophosphamide. Twenty-six patients
engrafted. Treg/Tcon adoptive immunotherapy was associated
with rapid reconstitution of B cells and of T cells with a
wide repertoire. Compared with standard T-cell depleted
haploidentical transplantation, reconstitution of pathogen-
specific CD4+ and CD8+ T cells, and of mature NK cells
was faster. The incidence of CMV reactivation was markedly
reduced, with no CMV-related deaths. Two patients developed
≥grade 2 acute GvHD and no patient developed chronic GvHD.
One patient (in chemoresistant relapse at transplant) relapsed.
Thirteen patients died of NRM, 4 of them because of extra-
hematological toxicity (104). The second study extended the
analysis to 43 patients with high-risk leukemia in any remission,
including 24 reported before. In order to reduce NRM, a
lower dose of cyclophosphamide or anti-T cell antibodies in
the place of cyclophosphamide were used in the conditioning
regimen. Forty-one patients engrafted. NRM was 40% and fell
to 21% in patients who had received anti-T cell antibodies
as a part of the conditioning. Incidence of ≥grade 2 acute
GvHD was 15% and only one patient developed chronic GvHD.
Incidence of leukemia relapse was 5% and it was significantly
reduced compared to the standard protocol of T-cell depleted
haploidentical transplantation (73). Finally, in an updated
analysis of a total of 60 patients with acute leukemia in any
remission at transplant, incidence of acute grade II-IVGvHD and
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chronic GvHD were 15 and 3%, respectively. Five-year incidence
of NRM was 35%. Five-year relapse incidence was as low as 12%,
confirming preclinical data that Treg adoptive transfer does
not impair T-cell immune reconstitution and the GvT effect
(87). More recently, this strategy of adoptive immunotherapy
with Treg/Tcon in haploidentical transplantation has been
combined with a low-toxicity conditioning regimen based on
total marrow and lymphoid irradiation (TMLI). TMLI provides
high-intensity irradiation to bone marrow, spleen, and major
lymph node chains, while sparing other tissues (106). This
transplant protocol has been tested in acute myeloid leukemia
patients who were aged or unfit to receive total body irradiation.
Preliminary data indicate this combination provides promising
results in terms of control of leukemia relapse and chronic
GvHD/leukemia-free survival (107). Despite acute GvHD still
occurs in a relevant fraction of patients, Treg/Tcon adoptive
immunotherapy strikingly improves outcomes of T-cell depleted
haploidentical transplantation thanks to a better chronic
GvHD/leukemia-free survival.

TREG-BASED THERAPIES IN
HLA-MATCHED AND UMBILICAL CORD
BLOOD TRANSPLANTATION

Since the number of freshly isolated Tregs to be used for cellular
therapy is limited (5–10% of CD4+ T cells in peripheral blood),
several protocols of expansion under good manufacturing
practice have been developed and tested in clinical trials (108).
Such expansion protocols preserve FOXP3+ Treg purity and
suppressive function in vitro. Tregs can be isolated from
peripheral blood or umbilical cord blood by immunomagnetic
selection as described above, or by flow cytometric cell sorting.
Tregs are usually incubated with anti-CD3/CD28 beads and high-
dose IL-2 with or without rapamycin for around 2–3 weeks
(108–112). Another option is the use of a modified K562 cell
line, which expresses the Fc receptor CD64 to cross-link an
anti-CD3 antibody, and CD86 to provide co-stimulation in the
presence of IL-2 (113–115). Brunstein and colleagues used this
approach to prevent GvHD after double-umbilical cord blood
transplantation. Tregs were isolated by CD25 immunomagnetic
selection from a third party cord blood unit that was 4–6/6 HLA
matched with the patient, and expanded in vitro (114). In the
last published clinical study, 3–100 × 106 Tregs/kg were infused
in 11 patients with various hematologic malignancies, who also
received post-transplant immune suppression. Expanded Tregs
were detectable in patients for a maximum of 14 days after
the infusion. The incidence of grade II-IV acute GvHD at 100
days was 9% compared with 45% in contemporary controls with
the same transplant protocol without Treg infusion. Chronic
GvHD was 0% compared with 14% in controls. Incidence of
infections, NRM and relapse, and disease-free survival were
similar in patients infused with Tregs and in controls (114).
Such studies suggest third party Tregs can be an alternative
to donor-derived Tregs. However, donor and third party Tregs
have never been compared in clinical studies for their efficacy
in GvHD prevention. The infusion of donor expanded Tregs has

been also tested for the treatment of acute and chronic GvHD in
small series of patients after HLA-matched transplantation, with
a clinical response in some patients (109, 111).

A recent phase I/II study investigated the infusion of
fresh donor Tregs and Tcons in the setting HLA-matched
transplantation in 12 patients with various hematological
malignancies (116). Tregs were purified by CD25+

immunomagnetic selection, followed by flow cytometric
cell sorting of CD4+CD127loCD25+ cells (as Treg cells do not
express the IL-7 receptor α subunit CD127 or express it at low
intensity). Purity of CD4+FOXP3+ Tregs was over 90%. The
first cohort of 5 patients received frozen Tregs but showed signs
of GvHD, consistent with the reduced functionality of Tregs
after cryopreservation and thawing (117). The other 7 patients
received freshly isolated Tregs in combination with low-dose
single-agent GvHD prophylaxis. No acute or chronic GvHD was
observed (116).

TREATMENT WITH LOW-DOSE IL-2 IN
ALLOGENEIC HCT

A promising alternative to Treg adoptive transfer is low-dose
IL-2 therapy, that has been shown to selectively activate and
expand Tregs in several autoimmune and inflammatory settings,
due to the constitutive expression of CD25 and factors related
to IL-2 receptor signaling (118, 119). The group from Dana-
Faber Cancer Institute and Harvard University investigated in
vivo stimulation of Tregs with low-dose IL-2 for the treatment
of steroid-refractory chronic GvHD after allogeneic HCT. A
phase I study established that the maximum tolerated dose
of IL-2 was 1 × 106 IU/m2/day. During the 8 weeks of
treatment, Treg counts and the Treg:Tcon ratio rose and 52%
of patients had a clinical response (120). In a phase II study,
35 patients with steroid-refractory chronic GvHD were treated
for 12 weeks. Two patients withdrew, 5 patients required dose
reduction, and 61% of evaluable patients had a partial response
to treatment. After a 4-week hiatus, low-dose IL-2 therapy could
be extended for 2 years in patients with partial response or
stable disease (121). The same group showed that low-dose IL-
2 induced phosphorylation of signal transducer and activator
of transcription 5 (STAT5) in Tregs but not in Tcons and
preferentially expanded Tregs in vitro. Moreover, patients with
severe chronic GvHD had constitutive phosphorylation of STAT5
in Tcons and high levels of IL-7 and IL-15. Treatment with low-
dose IL-2 was associated with increased STAT5 phosphorylation
in Tregs and decreased STAT5 phosphorylation in Tcons. This
resulted in enhanced Treg proliferation, thymic export and
resistance to apoptosis (122). Strategies to enhance efficacy
of low-dose IL-2 therapy are under investigation and include
combination with infusion of purified Tregs or extracorporeal
photopheresis (123, 124). Another phase II study used ultra-
low dose IL-2 for GvHD prophylaxis in 16 pediatric recipients
of allogeneic HCT. Treatment started at a median of 28 days
after transplant and consisted of 1–2 × 105 IU/m2 three times
per week for 6 or 12 weeks. This treatment was safe and it was
associated with expansion of Tregs in vivo. None of the patients
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developed II-IV GvHD, while the incidence of acute GvHD was
12% in a control group of patients who did not receive IL-2
treatment (125).

PERSPECTIVES

Recent clinical trials demonstrate that Treg-based therapies can
effectively promote engraftment and prevent or treat GvHD
after allogeneic HCT. However, these treatments fail to protect
some patients from severe GvHD. Strategies to improve purity,
enhance specificity, promote activation and control localization
of Tregs are needed. Several experimental strategies are under
investigation to achieve this goal.

Recent studies have focused on the generation of IL-2
compounds with enhanced selectivity for Tregs (126). One
strategy is the use of anti-IL-2 antibodies in complex with IL-2
that allow for selective stimulation of T cell subsets. Boyman
et al. showed that one anti-mouse IL-2 antibody prevented the
binding of IL-2 to IL-2Rβγc, but not to CD25 (IL-2Rα). When
complexed with IL-2, this antibody preferentially triggered the
proliferation of Tregs (127). Subsequently, Trotta et al. reported
the generation of a fully human anti-IL-2 antibody (F5111.2) that
exerted the same effect on humanTregs when complexed with IL-
2. Treatment with F5111.2-human IL-2 complexes was effective
in preclinical models of autoimmune diseases and GvHD, and

it did not affect immune response to mouse CMV (128). IL-2
can also be covalently linked to the antibody to generate a single-
agent cytokine/antibody fusion that is more stable than the above
immune complexes (129). Ward et al. designed a fusion protein
of mouse IL-2 and CD25 that allows for a selective stimulation
of Tregs in vivo. A treatment with this fusion protein delayed
the development of diabetes in non-obese diabetic mice (130).
An alternative strategy is engineering human IL-2 so that it
preferentially binds the high affinity receptor IL-2Rαβγc and,
consequently, preferentially activates Tregs (131, 132). Moreover,
these IL-2 muteins are also designed to have a longer half-life and
can provide a persistent stimulation of Tregs (130–132).

Another pleiotropic cytokine, TNF-α, has been recently
shown to enhance Treg function. After the conditioning regimen,
tissue macrophages release TNF-α, which activates donor
alloreactive T cells that cause GvHD (133, 134). In fact, anti-
TNF-α therapy with infliximab and etanercept is used to treat
steroid-refractory chronic GvHD. However, some patients do
not respond or even worsen (134–136). Tregs express higher
levels of TNF receptor (TNFR) 2 compared with Tcons, and
TNFR2+ Tregs are more suppressive than TNFR2− Tregs
(137–140). While TNFR1−/− mice have defective immunity
to infections and inflammatory response, TNFR2−/− mice are
affected by exacerbated inflammation (141). Several reports
suggest that TNF-α/TNFR2 signaling is required for effective
mouse Treg development in the thymus and optimal function

FIGURE 1 | Treg-based therapies in allogeneic HCT. Adoptive transfer of Tregs or the use of compounds that can favor their function in vivo are used to promote

donor engraftment and protect from GvHD after HCT. New strategies to further enhance in vivo efficacy of Treg-based therapies are under active investigation, and

include CAR-Tregs, ex-vivo priming with IL-2 and TNF-α, TNFR2, or DR3 agonists, Treg-selective IL-2 compounds or compounds that inhibit Tcon function while

sparing Treg suppressive activity.
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in vivo (142–145). In mouse models of allogeneic bone marrow
transplantation, GvHD control was abrogated when mice were
infused with TNFR2 deficient Tregs or with a TNFR2 blocking
monoclonal antibody (143). Moreover, ex-vivo priming of Tregs
with TNF-α enhanced the effectiveness of GvHD prevention
(144). Finally, expansion of radiation resistant host Tregs with a
TNFR2 agonist reduced GvHD severity and improved survival
(145). Importantly, the GvT effect was unaffected by Treg
stimulation in these studies. Ex-vivo priming or expansion
of Tregs with TNF-α or a TNFR2 agonist before adoptive
transfer could improve prevention and treatment of GvHD.
TNFR2 agonists could also be used to expand Tregs in vivo
(146, 147). As Tregs express higher levels of TNFR2, they
could be preferentially activated. However, Tcons upregulate
TNFR2 expression upon activation and become more resistant
to Treg-mediated suppression (148). Thus, the effects of in
vivo TNFR2 signaling stimulation should be carefully evaluated.
Another option is treatment with agonists of the costimulatory
receptor TNFR superfamily 25 (Death receptor 3, DR3), which
strongly stimulate Treg proliferation while weakly affect CD4+

T cell proliferation (149, 150). Treatment of donor mice with
DR3 agonists reduced severity of GvHD in recipient mice
of MHC-mismatched bone marrow transplantation, preserving
GvT effects (151). Moreover, when recipient mice received a
prophylactic treatment with a DR3 agonist, recipient-derived
Treg expanded and severity of GvHD was reduced. In contrast,
treatment of recipient mice after transplant favored donor
Tcon alloreactions and worsened GvHD (152). In other studies,
Treg expansion was induced in donors with the combination
of a DR3 agonist and low-dose IL-2. The infusion of donor
expanded Tregs ameliorated GvHD but did not affect GvT
activity in both MHC matched and MHC mismatched bone
marrow transplantationmodels (153–155). Recently, Copsel et al.
combined this approach with the administration of inhibitors
of bromodomain and extra-terminal proteins (BETi), which
suppress expression of pro-inflammatory cytokines and other
genes involved in T cell activation. They found that BETi
EP11313 spared Tregs and that GvHD severity was reduced in
mice treated with EP11313 and low numbers of donor Tregs
expanded with DR3 agonist and low-dose IL-2 (156).

While current protocols of adoptive transfer use polyclonal
Tregs, antigen-specific Tregs could be more effective without
exerting a broad suppression of immune responses. Alloantigen-
specific Tregs can be generated in the presence of allogeneic
APCs or by TCR gene transfer. An alternative is the generation of
chimeric antigen receptors Tregs (CAR-Tregs) (157). MacDonald

et al. generated human HLA-A2-specific CAR-Tregs that
prevented GvHD caused by HLA-A2+ Tcons in a xenogeneic
mouse model. They were more effective than Tregs expressing
an irrelevant CAR (158). A similar strategy was also used to
prevent rejection after xenogeneic transplantation (159). Another
study used Tregs expressing a CAR that binds Fluorescein
isothiocyanate-conjugated monoclonal antibodies (mAbCAR-
Tregs). Using tissue-specific antibodies, mAbCAR-Tregs could be
directed to different sites, where they exerted their suppressive
function (160).

Finally, several compounds are under investigation for
the prevention and treatment of GvHD, such as Janus-
activated kinase inhibitors and others. They share the ability
to preferentially inhibit Tcon function while sparing Treg
suppressive activity to various degrees (161). Thus, Tregs play a
key role in many of the current and newly developed strategies to
induce tolerance in allogeneic HCT.

CONCLUSIONS

Treg-based therapies have provided promising clinical responses
in allogeneic HCT. These treatments have proven to be safe
and are not associated with the side effects that could have
been anticipated, such as increased susceptibility to infections
and leukemia relapse. Efforts are ongoing to improve the
effectiveness of these approaches, whether they are based on
adoptive transfer of freshly isolated, expanded or modified Tregs
or on the induction of Treg expansion and function in vivo
(Figure 1).

To these days, treatment of patients with chemoresistant
leukemia is still largely ineffective. In the present review, we
discussed that Treg-adoptive transfer allows for a strong Tcon-
mediated GvT effect while controlling GvHD. Although it
requires further optimization, we believe this strategy is close to
become an effective treatment for these patients.
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