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Abstract

Production of specialized cells from precursors depends on a tightly regulated sequence of proliferation and differentiation
steps. In the gonad of Drosophila melanogaster, the daughters of germ line stem cells (GSC) go through precisely four
rounds of transit amplification divisions to produce clusters of 16 interconnected germ line cells before entering a
stereotypic differentiation cascade. Here we show that animals harbouring a transposon insertion in the center of the
complex nucleoporin98-96 (nup98-96) locus had severe defects in the early steps of this developmental program, ultimately
leading to germ cell loss and sterility. A phenotypic analysis indicated that flies carrying the transposon insertion,
designated nup98-962288, had dramatically reduced numbers of germ line cells. In contrast to controls, mutant testes
contained many solitary germ line cells that had committed to differentiation as well as abnormally small clusters of two,
four or eight differentiating germ line cells. This indicates that mutant GSCs rather differentiated than self-renewed, and that
these GSCs and their daughters initiated the differentiation cascade after zero, or less than four rounds of amplification
divisions. This phenotype remained unaffected by hyper-activation of signalling pathways that normally result in excessive
proliferation of GSCs and their daughters. Expression of wildtype nup98-96 specifically in the germ line cells of mutant
animals fully restored development of the GSC lineage, demonstrating that the effect of the mutation is cell-autonomous.
Nucleoporins are the structural components of the nucleopore and have also been implicated in transcriptional regulation
of specific target genes. The nuclear envelopes of germ cells and general nucleocytoplasmic transport in nup98-96 mutant
animals appeared normal, leading us to propose that Drosophila nup98-96 mediates the transport or transcription of targets
required for the developmental timing between amplification and differentiation.
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Introduction

In development and tissue homeostasis, the proliferation of

precursor cells and the initiation of terminal differentiation are

temporally separated. For example, regeneration of organs

typically involves proliferation of de-differentiated or pre-existing

pluripotent cells followed by coordinated differentiation. Tissue

homeostasis from self-renewing populations of stem cells follows a

similar two-step process. First, stem cell daughters exiting the stem

cell fate multiply by transit amplification divisions to create a pool

of precursor cells. Then these precursors develop into specialized

cell types through a precisely coordinated cascade of differentia-

tion events [1,2]. The Drosophila gonad has served as a highly

successful model for elucidating many of the signaling pathways

that regulate the cell fate, amplification, and differentiation of the

GSC lineage [3,4]. However, comparatively little is known about

the molecules and mechanisms that coordinate developmental

timing and, specifically, the timing between amplification and

differentiation of stem cell daughters.

Here, we show that a normal balance between transit

amplification divisions and terminal differentiation depends on

the complex nucleoporin98-96 (nup98-96) locus. Nucleoporins are

structural components of the nuclear pore and have well-

established functions in nucleo-cytoplasmic transport as well as

the breakdown and re-assembly of the nuclear envelope during

mitosis [5–7]. More recently, it has become clear that members of

this protein family also contribute to the regulation of develop-

mental processes via their effect on gene transcription. Specifically,

Drosophila Nup98 was found to associate with actively transcribed

chromatin in salivary glands of 3rd instar wildtype larvae in a

manner dependent on Ecdysone, a steroid hormone and key

regulator of molting and metamorphosis. Transcriptional up-

regulation in response to Ecdysone is correlated with increased

chromatin occupancy of Nup98 while down-regulation correlated
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with a decrease in Nup98 chromatin binding. Transcriptional

profiling of Drosophila S2 cells further established that Nup98 and a

second nuleoporin, Sec13, control the transcription of specific

target genes regulating developmental transitions and the cell cycle

[8,9].

The highly conserved nup98-96 locus is complex and gives rise

to two distinct proteins, Nup98 and Nup96. Alternative splicing

generates two transcripts in Drosophila: a short mRNA containing

an open reading frame for only Nup98, and a long mRNA with an

open reading frame for a Nup98-Nup96 poly-protein. Processing

by autocatalytic cleavage subsequently separates the two function-

al units, Nup98 and Nup96. In Drosophila, nup98-96 transcripts

were detected at all stages of development [10–12]. Mutations

harbouring a stop codon in Nup98, and thus presumably

eliminating both Nup98 and Nup96 function, are associated with

lethality prior to metamorphosis, possibly reflecting the role of

Nup98 in Ecdyson-dependent gene transcription [12].

Here, we investigate the role of the nup98-96 locus in the germ

line stem cell lineage. In a screen for mutations effecting the

development of germ line cells, we identified a transposon-

insertion in the center of the nup98-96 locus. In Drosophila wildtype

males, the daughters of GSCs amplify by exactly four rounds of

mitosis with incomplete cytokinesis to produce clusters of 16

spermatogonia that remain interconnected by cytoplasmic bridges.

After mitosis, the spermatogonia become spermatocytes, which

enter the terminal differentiation cascade. The first step of

terminal differentiation is an extreme increase in germ cell size

accompanied by the expression of most of the genes that mediate

subsequent differentiation steps. Subsequently, the spermatocytes

undergo meiosis and develop into spermatids [13,14]. In the

gonads of males homozygous for the nup98-962288 mutation, or

harbouring nup98-962288 in trans to a deficiency that uncovers the

locus (Df(3R)mbc-R1), GSCs and their daughters appeared to

differentiate into spermatocytes either directly or after less than

four rounds of transit amplification divisions. These defects were

fully complemented by expression of nup98-96 specifically in the

germ line, revealing a cell autonomous mode of action.

Manipulations of signalling pathways that result in the over-

proliferation of germ line cells in otherwise wildtype testes did not

attenuate the nup98-962288 phenotype. As the nuclear pore of

mutant animals showed no obvious defects, we propose that the

defects in nup98-962288/Df(3R)mbc-R1 mutant animals are due to

the lack of either nucleocytoplasmic transport or transcription of as

yet unidentified factors required for timing the transition between

amplification and terminal differentiation.

Results

The nup98-96 locus is required for maintaining germ line
cells in an undifferentiated state

Animals carrying the nup98-962288 mutation were first identified

in a genetic screen for sterile animals with abnormally small

gonads. We subsequently observed the same gonad phenotype in

animals trans-heterozygous for nup98-962288 and Df(3R)mbc-R1,

suggesting that the nup98-962288 allele acts as a strong allele with

respect to the gonad phenotype. No other morphological

abnormalities were obvious in these animals, implying that

nup98-962288 is a mutation with a specific effect on gametogenesis.

In testes from nup98-962288/Df(3R)mbc-R1 mutant animals

(hence forth referred to as nup98-962288/Df(3R)mbc-R1 testes),

the germ line cells were progressively lost with increasing age of

the animal. Normally, the germ line cells are arranged in a spatio-

temporal gradient along the apical to basal axis of the testis

(Figure 1A). GSCs are confined to the apical tip and surround a

group of somatic cells, called the hub (red in Figure 1A). Their

immediate daughters (gonialblasts) and clusters of between two

and 16 interconnected cells in the process of transit amplification

divisions (spermatogonia) become displaced basally and are found

a short distance from the hub. Large spermatocytes that have

initiated the differentiation cascade and mature spermatids occupy

more basal positions within the testis. At all stages of development,

GSCs and their progeny are fully enclosed by somatic support cells

(black circles in Figure 1A). This germ cell microenvironment, or

niche, provides external cues that regulate stem cell self-renewal,

stem cell daughter amplification, and germ line differentiation

[15,16].

In situ hybridization with a gonad-specific probe (piwi-RNA)

revealed that the gonads from nup98-962288/Df(3R)mbc-R1 mutant

embryos were similar in size to gonads from control animals (in the

following referred to as control testes, compare Figure 1C to 1B,

n.50). However, by the 3rd instar larval stage, nup98-962288/

Df(3R)mbc-R1 testes were noticeably smaller than control testes

(compare Figure 1E to 1D, n.100), and did not contain any early

stage germ line cells (GSCs, gonialblasts, or spermatogonia). In

preparations stained with 49,6-diamidino-2-phenylindole (DAPI),

the nuclei of early stage germ line cells appear as characteristic

small bright signals (Figure 1D, arrows) due to the small size of

their nuclei, whereas spermatocytes that have initiated the

differentiation cascade have larger, less brightly staining nuclei

(Figure 1D, arrowhead). In contrast to control testes, the apical

region of nup98-962288/Df(3R)mbc-R1 testes did not contain many

small, brightly stained nuclei, suggesting that early stage germ line

cells were depleted. However, larger and less brightly staining

nuclei characteristic of spermatocytes were present in nup98-

962288/Df(3R)mbc-R1 testes (Figure 1E, arrowheads).

Labelling with an antibody against a-spectrin confirmed that 3rd

instar larval nup98-962288/Df(3R)mbc-R1 testes lacked transit-

amplifying spermatogonia, but contained germ line cells at the

spermatocyte stage. In germ line cells, a-spectrin labels a sub-

cellular structure called the fusome, and the shape and the size of

fusomes is indicative of the germ line cell’s developmental stage

[17]. The GSCs and the gonialblasts contain round fusomes,

commonly referred to as spectrosomes. The spectrosomes

containing GSCs (Figure 1F, G arrowheads) are found next to

the hub (red and marked with an asterisk in Figure 1F–1L).

Clusters of interconnected germ line cells contain branched

fusomes that reach through their intercellular bridges. a-

spectrin-staining reveals that spermatogonia in transit amplifying

divisions have small, branched fusomes and are located relatively

close to the hub while the spermatocytes have large, branched

fusomes and are found more basally (Figure 1F, small and large

arrows, respectively).

3rd instar nup98-962288/Df(3R)mbc-R1 testes did not contain cells

with a-spectrin-positive spectrosomes located next to the hub

(Figure 1H, n.50). Cells with a-spectrin-positive structures were

mostly found toward the middle and basal region of mutant testes

(Figure 1I). Germ line cells with round spectrosomes characteristic

of GSCs were detected. However, these cells were larger than

GSCs (Figure 1I, arrowheads) and contained large and less

brightly DAPI-stained nuclei typical of spermatocytes (Figure 1I,

inset). We propose that these solitary differentiating germ line cells

originated from GSCs and gonialblasts that failed to undergo

amplification divisions. In addition, we detected many wide

fusomes (Figure 1J, arrows) that connected large germ line cells

with large nuclei and less brightly staining DNA (compare

Figure 1J–1E), similar to wildtype spermatocytes. In contrast to

the fusomes in 16 cell stage spermatocytes in control testes, the

fusomes in the nup98-962288/Df(3R)mbc-R1 testes consistently had
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fewer than 16 branches and appeared to connect only two, four or

eight spermatocytes. This implies that most of the germ line cells of

nup98-962288/Df(3R)mbc-R1 testes only went through one, two or

three instead of the stereotypical four rounds of amplification

divisions. In support of this conclusion, the nup98-962288/

Df(3R)mbc-R1 testes contained far fewer germ line cells than

control testes: on average, only 34 a-spectrin-positive cells were

found per mutant testis (s.d. 20, range: 0–54, n = 40) compared to

several hundred a-spectrin-positive cells found in control testes

(n.50).

Adult nup98-962288/Df(3R)mbc-R1 testes completely lacked early

stage germ line cells and, on the basis of immuno-labelling with the

germ line cell markers Vasa and a-spectrin, rarely contained late

stage germ line cells. In control testes, Vasa-positive GSCs

(arrowheads in Figure 1K) form a rosette around the apical hub

(n.100). Vasa-positive spermatogonia are found at a distance

from the tip in the apical region of the testes (Figure 1K, small

arrows), whereas large Vasa-positive spermatocytes are located

more toward the base (Figure 1K, large arrows). Double staining

with Vasa- and a-spectrin-antisera revealed that 98% of adult

nup98-962288/Df(3R)mbc-R1 testes did not contain any germ line

cells (Figure 1L, n.100). The remaining 2% of the mutant testes

contained either two or four large, Vasa-positive spermatocytes

located in the testis coil, or a few immature sperm bundles (data

not shown). We conclude that the failure to undergo the normal

numbers of amplification divisions completely exhausted the germ

line of nup98-962288/Df(3R)mbc-R1 males.

nup98-962288 plays a parallel role in the female gonad
Much like the testis, the gonad of female flies is organized in an

apical-to-basal differentiation gradient of germ line cells. GSCs lie

at the apical tip of the germarium. The stem cell daughters

(cystoblasts), and their transit amplifying progeny (cystocytes)

become progressively displaced away from the tip toward the base

(Figure 2A) [18]. GSCs and cystoblasts are characterized by the

presence of a a-spectrin-positive spectrosome (Figure 2B, arrow-

heads) whereas the interconnected cystocytes contain branched

fusomes (Figure 2B, arrows). Labelling with a-spectrin antibodies

revealed the absence of both spectrosomes and fusomes in most

germaria from nup98-962288 homozygous (data not shown) and

nup98-962288/Df(3R)mbc-R1 mutant females (Figure 2C, 70%,

n.100).

We next investigated if the loss of early stage germ line cells

observed in nup98-962288/Df(3R)mbc-R1 germaria was age-depen-

dent. Ovaries from wildtype control and nup98-962288/Df(3R)mbc-

R1 mutant flies were collected at three and ten days post-eclosion,

immuno-labelled with the germ line marker anti-Vasa, and the

number of Vasa-positive germ line cells in each germarium was

quantified (Figure 2D). We found that the number of germ line

cells in control animals did not change significantly between three

and ten days post-eclosion. Control germaria contained on

average 35 Vasa-positive cells three days post-eclosion (n = 100;

Figure 1. Germ line cells are not maintained at early stages and
differentiate in nup98-962288/Df(3R)mbc-R1 mutant testes. (A)
Drawing showing the stages of germ line cell differentiation in testes.
GSC: germ line stem cell, GB: gonialblast, SG: spermatogonia, SC:
spermatocytes. Black circles: somatic support cells enclosing the germ
line cells. (B, C) In situ hybridization with a piwi-RNA-probe to (B) w1118

and (C) nup98-962288/Df(3R)mbc-R1 mutant embryos. Anterior to the left.
(D–J) 3rd instar larval testes. (D, E) DNA in D) the apical region of a
wildtype (wt), and (E) a whole nup98-962288/Df(3R)mbc-R1 testis. Arrows
point to early stage germ line cell nuclei, arrowheads point to
spermatocyte nuclei that are in addition outlined by grey dotted
circles. The small, strong DAPI-positive signals at the posterior (right)
end of the testes correspond to the nuclei of somatic precursor cells

that will develop into the most basal somatic structures of the testes
during pupal stage. (F–L) FasIII and asterisks label the hub. Arrowheads
point to spectrosomes, small arrow points to the small, branched
fusomes as normally seen in the spermatogonia, large arrows point to
the wide, long, branched fusomes as normally seen in the spermato-
cytes. (F) Apical region of a wildtype testis. (G, H) High magnification of
apical tips of testes from (G) wildtype and (H) nup98-962288/Df(3R)mbc-
R1. (I, J) Whole nup98-962288/Df(3R)mbc-R1 testes. Note the inset in (I)
showing the spectrosome (green) and DNA (red) in a single, large germ
line cell. (K, L) Apical regions of adult testes from (K) wildtype and (L)
nup98-962288/Df(3R)mbc-R1. Scale bars: 30 mm.
doi:10.1371/journal.pone.0025087.g001
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standard deviation: 16, range: 21 - .40; blue bars in Figure 2D)

and 32 Vasa-positive cells 10 days post-eclosion (n = 100; standard

deviation: 16; range: 16 - .40; green bars in Figure 2D). Control

germaria without Vasa-positive cells were never observed. In

contrast, nup98-962288/Df(3R)mbc-R1 germaria showed a dramatic

loss of germ line cells. Three days post-eclosion, mutant germaria

contained an average of 13 Vasa positive cells (n = 100; standard

deviation: 27), but this number varied widely (from 0 to 40; yellow

bars in Figure 2D). Ten days post-eclosion, mutant germaria, on

average, contained only 2 Vasa-positive cells (n = 100; standard

deviation: 13; range: 0–15; red bars in Figure 2D). Notably, 75%

of the nup98-962288/Df(3R)mbc-R1 germaria had no detectable

germ line cells. We conclude that the nup98-962288 mutation has

similar effects on both male and female early stage germ line cells:

in both sexes, the GSC lineage is rapidly depleted with increasing

age, presumably due to differentiation.

The defects in the nup98-962288/Df(3R)mbc-R1 mutant
gonads are due to disruption of a nuclear pore locus

We mapped the nup98-962288 mutation to chromosomal region

95A5 to C10. Complementation tests using mutations in genes

along this region revealed that the defects in the mutant animals

were due to a disruption of the nup98-96 locus. Sequencing of

genomic DNA from nup98-962288 mutant animals revealed two

changes to the published gene sequence of the nup98-96 locus.

Mutant animals harboured a point mutation that results in an

amino acid exchange of the Nup98 coding sequence (CAA to

CGA, Glutamine860 to Arginine). However, the same amino acid

exchange is found in nup98-96 alleles of Drosophila pseudoobscura

[19], strongly suggesting it is a natural variant and does not cause

the defects associated with the nup98-962288 allele. In addition,

mutant animals carried a Pogo-element insertion in the fourth

intron of the nup98-96 locus (Figure 3A, indicated as 2288). This

insertion is predicted to disrupt the splicing of exon 4 to exon 5

(encoding the N-terminal portion of Nup96) and thus should

specifically prevent the formation of Nup96.

Expression of a rescue construct in the gonads of mutant

animals confirmed that the nup98-962288 mutant phenotype was

due to lesions in the nup98-96 locus. We generated flies carrying

cDNAs encoding the two naturally occurring mRNAs under

control of Yeast Upstream Activating Sequence. Flies carrying a

full-length cDNA encoding nup98 and nup96 (UAST-nup98-96,

Figure 3A) were crossed to flies carrying gal4-transactivators to

induce tissue specific expression [20]. Expression of UAST-nup98-

96 in germ line cells of nup98-962288/Df(3R)mbc-R1 mutant males

using the germ cell specific driver nanos-gal4-VP16 (nos-gal4) [21]

restored spermatogenesis.

An adult wildtype testis is a coiled, tubular organ that is, on

average, 2 mm long (n.100) and contains germ line cells at all

stages of spermatogenesis, including sperm bundles (Figure 3B,

arrow). Adult nup98-962288/Df(3R)mbc-R1 testes were much

shorter (Figure 3C) than control testes, measuring only 100–

500 mm in length (n.100). In addition, mutant testes contained

very few, if any, germ line cells (see above). nup98-962288/

Df(3R)mbc-R1 testes with germ line specific expression of UAST-

nup98-96 were of normal size and contained germ line cells at all

stages of spermatogenesis, including mature sperm (Figure 3D,

arrow, n.100). Expression of the UAST-nup98-96 construct in the

somatic cells of the gonad did not restore spermatogenesis (n.50,

data not shown), demonstrating that the defects were due

specifically to loss of nup98-96 from the germ line cells.

Expression of a cDNA (UAST-nup98) which only encoded nup98

(Figure 3A) within the germ line cells from nup98-962288/

Df(3R)mbc-R1 testes did not restore spermatogenesis and testes

remained small (Figure 3E, n.50). Western blot analysis using

protein extracts from whole control and mutant 1st instar larvae

revealed that both antibodies (raised against either Nup98 or

Nup96) failed to detect significant levels of either protein in the

mutant animals (Figure 3F). We conclude that the defects in the

nup98-962288/Df(3R)mbc-R1 gonads are due to a strong reduction

in both proteins, Nup98 and Nup96.

Confirming the role of the nup98-96 locus in the GSC lineage,

expression of two independent RNA-interference lines targeted

against nup98-96 (Figure 3A, indicated as RNAi) in the germ line

cells of otherwise wildtype animals also resulted in progressive loss

of early stage germ line cells and the appearance of single cell

Figure 2. Germ line cell loss in nup98-962288/Df(3R)mbc-R1
mutant germaria. (A) Drawing showing the organization of GSCs
and their daughters in a wildtype germarium. GSC: germ line stem cell,
CB: cystoblast, CC: cystocytes, EC: egg chamber, FC: follicle cells, black
marking in germ line cells: spectrosomes and branched fusomes. (B, C)
Germaria. Asterisks mark the apical tips, arrowheads point to spectro-
somes in the GSCs (grey dotted circles), arrows point to branched
fusomes. Note that only a section of the fusomes is in focal plane. Scale
bars: 50 mm. (D) Histogram depicting the number of Vasa-positive germ
line cells in the germaria at different time points post-eclosion.
Genotypes are as indicated.
doi:10.1371/journal.pone.0025087.g002
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spermatocytes (Figure 3G, arrow, n.50). Conversely, expression

of UAST-nup98 or UAST-nup98-96 (Figure 3H) in germ line cells

of otherwise wildtype animals did not cause any defects in

spermatogenesis (n.50) suggesting that the nup98-96 locus plays a

permissive role in germ line development.

In nup98-962288/Df(3R)mbc-R1 animals, the nuclear
envelope and general nucleocytoplasmic transport
appear normal

The molecular nature of nup98-96 suggests that the proteins

play a structural role in germ line cells. We therefore used the

nuclear envelope marker LaminC and the nuclear pore marker

mAB414 to determine if nup98-962288 caused any visible

alterations in nuclear envelope morphology. This analysis was

performed using ovaries from young wildtype and nup98-962288/

Df(3R)mbc-R1 females since the female germ line cells are larger

than male germ line cells and thus enable imaging with better sub-

cellular resolution. In nup98-962288/Df(3R)mbc-R1 gonads, La-

minC (Figure 4B, 4G), and mAB414 (Figure 4D, 4E, 4I)

localization to the nuclear envelopes and nuclear pores of the

germ line cells appeared normal compared to the controls

(Figure 4A, 4C, 4F, 4H).

Next, we surveyed the effect of the nup98-962288 mutation on

nucleocytoplasmic transport by determining the localization of

selected proteins normally found either in the nucleus or in the

cytoplasm. The following proteins were assayed: the transcription

factors Groucho (Figure 5A, 5B, arrows) and phosphorylated Jun-

kinase (Figure 5C, 5D, arrows), the cytoplasmic proteins Vasa (green

in Figure 5A–5D and 5G–5H) and Sex-lethal (Figure 5E, 5F, arrows),

and the nuclear protein phosphorylated Histone-H3 (Figure 5G, 5H,

arrows). As in the controls, Sex-lethal and Vasa were localized to the

cytoplasm of nup98-962288/Df(3R)mbc-R1 germ line cells, indicating

that general mRNA export was not disrupted. Likewise, Groucho,

phosphorylated Jun-Kinase, and phosphorylated Histone-H3 were

localized to the nuclei of both control and nup98-962288/Df(3R)mbc-

R1 germ line cells, showing that the mutant germ line cells are

capable of importing these proteins into their nuclei.

Finally on the basis of phosphorylated Histone-H3 and

Bromodeoxyuridine (BRDU) labelling, nup98-962288/Df(3R)mbc-

R1 ovaries did not contain germ line cells that appeared to be

blocked in S-phase or M-phase of the cell cycle (compare Figure 5H,

5J to Figure 5G, 5I). Thus, our analysis failed to reveal any support

for the view that the nup98-962288 mutation has a noticeable effect

on either the structure of the nuclear pore or its function in the

general transport of mRNAs and proteins to and from the nucleus.

The nup98-962288 mutation causes differentiation of the
germ line cells, even in the presence of proliferation-
promoting factors

To further explore the role of nup98-96 in the germ line cells, we

tested the genetic interaction of nup98-962288 with perturbations in

Figure 3. Mutations in nup98-96 disrupt gametogenesis. (A) Top:
Intron-exon structure of the nup98-96 locus. Coding region in dark grey.
Gene products as indicated. Bottom: Rescue constructs containing the
whole transcription unit for nup98-96 or nup98 only. Arrowhead: Pogo-
insertion in nup98-962288, arrow: RNAi-sequences. (B-E) Bright field

images of whole testes. Genotypes as indicated. Arrows point to sperm.
Asterisks mark the apical tips. Scale bars: 100 mm. (F) Western blot
analysis. Genotypes and antibodies as indicated. The Nup96 antibody
does not detect a 95 kd protein in extracts from mutant animals.
Instead, the Nup96 antibody detects a high molecular weight bands
that may be abnormal Nup96 protein or Nup98-Nup96 polyprotein. The
Nup98 antibody detects extremely low levels a 95 kd protein in the
mutant compared to the control. (G, H) Apical tips of adult testes with
germ line expression of (G) UAST-nup98-96-RNAi (arrow points to a
single spermatocyte), and (H) UAST-nup98-96. Asterisks mark the apical
tips. Scale bars: 30 mm.
doi:10.1371/journal.pone.0025087.g003
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signalling pathways that regulate early stage germ line cells. In

wildtype ovaries, somatic cap cells signal via the Transforming

Growth Factor-b (TGF-b pathway to the adjacent GSCs to

regulate their decision between stem cell and cystoblast fate. Upon

receptor activation, the TGF-b signal transducers, Mad and

Medea, translocate into the nucleus and silence transcription of

the differentiation factor bag of marbles (bam) in the GSCs.

Therefore, Bam is normally not found in the cytoplasm of GSCs

but is found in the cytoplasm of cystoblasts and cystocytes.

Overexpression of bam within the germ line cells of otherwise

wildtype ovaries causes the germ line cells to be lost, first from the

GSC position and then from the entire germaria [22,23].

The expression pattern of Bam is an excellent tool for

determining whether a defect in TGF-b signalling exists in mutant

ovaries. In ovaries from freshly eclosed nup98-962288/Df(3R)mbc-

R1 females, Bam was expressed in a pattern similar to that seen in

wildtype ovaries. As in wildtype germaria (Figure 6A, arrowhead),

the nup98-96 mutant GSCs located next to the apical tip did not

contain cytoplasmic Bam (Figure 6B, arrowhead). In nup98-

962288/Df(3R)mbc-R1 germaria, GSC daughters displaced away

from the GSC position showed normal cytoplasmic Bam

expression (Figure 6B, arrow), as seen in wildtype germaria

(Figure 6A, arrow). We conclude that TGF-b signalling from the

soma to the GSCs was not disrupted in nup98-962288/Df(3R)mbc-

R1 mutant germaria.

This conclusion is consistent with the differences between the

gonad phenotypes observed in flies with mutations in TGF-b
signalling pathway and nup98-962288/Df(3R)mbc-R1 mutant ani-

mals. In both genders, loss of TGF-b signalling specifically causes

GSC loss. However, upon loss of TGF-b signalling, the GSC

daughters undergo normal numbers of amplification divisions

[24,25]. In contrast, nup98-962288/Df(3R)mbc-R1 mutant GSCs

and their daughters differentiated either directly or after

undergoing fewer than the normal four rounds of mitosis.

Loss of signalling via the Epidermal Growth Factor Receptor

(EGFR) has an opposite effect on germ line cells than the nup98-

962288 mutation does. EGFR-dependent signalling promotes the

growth of the somatic support cells that surround the germ line

cells and form their microenvironment (black circles in Figure 1A).

Depletion of EGFR signalling, for example via loss of Stet, an

enzyme required for processing the EGFR ligand, results in a loss

of this regulatory microenvironment. As a consequence, the germ

line cells over-proliferate and produce hundreds of early stage

germ line cells, which populate the entire testis [26,27].

We next investigated if germ cells mutant for the nup98-962288

mutation fail to proliferate in stet mutant background by creating

double mutant animals. Early stage germ line cells that stain

brightly with the nuclear dye DAPI were confined to the tip of

wildtype testes (Figure 6C, arrow) but filled the testes of animals

homozygous for the strong stet1 allele (Figure 6D, arrows) [24]. In

contrast, testes from nup98-962288 mutant animals were much

smaller than stet1-testes (compare Figure 6E to 6D) and contained

few brightly stained, small nuclei (Figure 6E). Likewise, stet1; nup98-

962288 double-homozygous animals were smaller than stet1-testes

(compare Figure 6F to 6D) and also contained few brightly stained,

small nuclei (Figure 6F). Immuno-labelling with antibodies against

a-spectrin revealed few germ line cells in stet1; nup98-962288

double-mutant testes, all of which were large spermatocytes

(Figure 6G, arrowhead) and had a spectrosome (Figure 6G, arrow)

similar to the spermatocytes in nup98-962288/Df(3R)mbc-R1 testes.

Figure 4. Germ cells from nup98-962288/Df(3R)mbc-R1 animals have normal nuclear envelopes. (A–E) Images showing nuclear localization
around nuclei of early stage germ line cells (see insets) and nurse cells. Small arrows in insets point to early stage germ cell nuclei in the germaria and
large arrows in images point to nurse cell nuclei in egg chambers. Immunofluorescence-labelling as indicated. (A, B) Apical region of (A) a wildtype
and (B) a nup98-962288/Df(3R)mbc-R1 ovariole. (C) The apical region of a wildtype ovariole. (D) The germarium and (E) an egg chamber of a nup98-
962288/Df(3R)mbc-R1 ovariole. (F–I) Immuno-labelling of single nurse cell nuclei, antibodies and genotypes as indicated. Asterisks: apical tips of
germaria, scale bars: 20 mm.
doi:10.1371/journal.pone.0025087.g004

Nucleoporin98-96 in the Germ Line of Drosophila

PLoS ONE | www.plosone.org 6 September 2011 | Volume 6 | Issue 9 | e25087



These results indicate that nup98-962288 can suppress the germ line

defects associated with loss of EGFR signalling.

We next determined whether we would see the same effect of

nup98-962288 on overproliferation phenotypes resulting from the

hyper-activation of signalling pathways. Hyper-activation of the

TGF-b pathway in otherwise wildtype testes forces spermatogonia

to proliferate beyond the normal four rounds of amplification

division, producing clusters of 64, 128, or more spermatagonia

that ultimately die [26,27]. Hyperactivation of the Janus Kinase/

Signal Transducer and Activator of Transcription (JaK/STAT)

pathway in otherwise wildtype animals results in testes that are

filled with thousands of cells resembling GSCs and gonialblasts

[28,29]. Both phenotypes could be reproduced by either over-

expression of the TGF-b ligand decapentaplegic (dpp) (Figure 6H,

n.50), or the JaK/STAT ligand unpaired (upd) (Figure 6I, n.50),

in the germ line cells of otherwise wildtype animals. In contrast,

over-expression of either ligand in the germ line cells of nup98-

962288 animals failed to increase the number of early stage germ

line cells. Instead, the testes were depleted of early stage germ line

cells and, occasionally, a spermatocyte was observed (Figure 6J,

arrow, n.50). The interaction of nup98-962288 with EGFR, TGF-

b, and JaK/STAT signalling strongly argue that nup98-96 function

is an essential prerequisite for maintaining germ line cells in an

undifferentiated state.

Discussion

The nup98-962288 mutation disrupts the normal progression of

germ line cells through gametogenesis in both male and female

flies. Zero or very few germ line cells were found in adult animals.

A developmental analysis revealed that the loss of early stage germ

line cells was due to differentiation of GSCs. nup98-962288/

Df(3R)mbc-R1 testes contained only late stage germ line cells that

were similar to wildtype spermatocytes. Spermatocytes normally

develop in clusters of 16 cells that are derived from a single

gonialblast undergoing four rounds of transit amplification

divisions with incomplete cytokinesis. In contrast, the late stage

germ line cells of nup98-962288/Df(3R)mbc-R1 testes were either

solitary, with a single large spectrosome, or part of small clusters of

cells with wide, branched fusomes that connected only two to eight

cells. This finding implies that GSCs and gonialblasts initiated the

spermatocyte differentiation cascade either without or after a

reduced number of transit amplification divisions.

The nup98-96 gene products are structural components of the

nuclear pores and it seems possible that the defects seen in the

nup98-962288/Df(3R)mbc-R1 gonads may have been caused by

generic defects in the nuclear pores or nuclear envelope. However,

the nuclear envelopes of nup98-962288 germ line cells did not

exhibit defects apparent by immuno-fluorescence experiments,

and the localization of several nuclear markers as well as

cytoplasmic markers was unaffected in nup98-962288/Df(3R)mbc-

R1 gonads. Furthermore, a reduction in the numbers of

amplification divisions has not been reported in animals

harbouring mutations in other Nucleoporins. However, it has

been shown that localization of a Lamin, Otefin (Ote), to the

nuclear envelope of GSCs is required for stem cell maintenance in

female flies. Ote physically interacts with Medea to silence Bam in

the GSCs. Over-expression of ote in the germ line cells increased

the number of GSCs, implying that it is instructive for stem cell

identity [30]. In contrast, bam expression at the tip of nup98-

962288/Df(3R)mbc-R1 germaria did not extend into the GSC

position, and overexpression of nup98-96 had no effect on GSC

number. These findings argue against the view that Nup98-96 acts

in a common pathway with Ote. With all of the above

observations taken together, it seems unlikely that the defects in

maintaining early stage germ line cells in the nup98-962288/

Df(3R)mbc-R1 mutants is due to a generic defect in nuclear pore or

nuclear envelope structure, or general nucleocytoplasmic trans-

port. Instead, it is likely that nup98-96 function plays a specific role

in the developmental timing between amplification and differen-

tiation.

Recent studies have implicated the nup98-96 gene products in a

variety of specific functions in metazoans that appear to go beyond

its role at the nuclear pore: Arabidopsis thaliana Nup96 was found to

be required for basal immune-responses and constitutive resistance

to non-host pathogens [31]; mouse Nup96 regulates the nuclear

export of Interferon regulated mRNAs in immune responses [32];

and, finally, Drosophila Nup98 mediates gene transcription in

response to the molting hormone Ecdysone [8,9]. By analogy, we

Figure 5. Germ line cells from nup98-962288/Df(3R)mbc-R1 mutant
animals have normal protein localization patterns. Immuno-
labelling of germaria, antibodies and genotypes as indicated. (A, B)
nuclear Groucho (red) and cytoplasmic Vasa (green); (C, D) nuclear
phosphorylated Jun-Kinase (red) and cytoplasmic Vasa (green); note
that some germaria (arrowheads) are empty in the nup98-962288/
Df(3R)mbc-R1 mutant ovaries; (E, F) cytoplasmic Sex-lethal in GSCs and
gonialblasts; (G, H) nuclear phosphorylated Histone-H3 (red) and
cytoplasmic Vasa (green); (I, J) Anti-BRDU (green) and DAPI (red).
Asterisks: apical tips, arrows point to intra-cellular protein localizations,
scale bars: 50 mm.
doi:10.1371/journal.pone.0025087.g005
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propose that the nup98-962288 allele eliminates a specific aspect of

nup98-96 function that is required for maintaining early stage germ

line cells in an undifferentiated state. On a mechanistic level, this

function could be mediated by transcriptional regulation or

selective nucleocytoplasmic transport of factors required for timing

the transition between amplification and terminal differentiation.

While no such timing mechanisms have been identified in

Drosophila, nuclear exclusion of the transcription factor Oct4, a

master regulator of differentiation, is a prerequisite for maintaining

mammalian tissue stem cells in an undifferentiated state [33].

In support of this view, the germ line cells in the nup98-962288/

Df(3R)mbc-R1 mutant gonads were not responsive to the external

cues that tightly control and influence the early stage germ line

cells. EGFR-dependent signalling from the somatic support cells to

the germ line cells promotes differentiation whereas activation of

the TGF-b and JaK/STAT pathways promotes proliferation. A

genetic analysis revealed that these pathways were not able to

modify the number of amplification divisions in nup98-962288

gonads. nup98-962288 suppressed the effect of loss-of-function

mutations in the EGFR pathway, which normally lead to dramatic

over-proliferation of early germ line cells. Similarly, over-

expression of TGF-b or JaK/STAT ligands in the germ line of

nup98-962288/Df(3R)mbc-R1 animals remained without effect on

germ line cell amplification. Furthermore, the expression pattern

of bam, the main target of TGF-b signalling in the ovary, appeared

normal in nup98-962288/Df(3R)mbc-R1 ovaries, suggesting that

TGF-b signals act independently of nup98-96.

As targeted expression of a wildtype nup98-96 cDNA in the

germ line cells rescued the gonadal defects in nup98-962288

mutants, the function of Nup98-96 in maintaining an undifferen-

tiated state reflects a germ line-intrinsic mechanism. Instead of

regulating differentiation factors, nup98-96 could be required cell-

intrinsically for germ cell proliferation and a failure of the germ

line cells to proliferate could trigger a cell-intrinsic differentiation

response. The nup98-96 locus in mice and Drosophila has been

implicated in regulating proliferation. T-cells from Nup96+/2

mice hyper-proliferate [9,34], and overexpression of Nup98 in

Drosophila embryonic S2-cells results in increased expression levels

of cell cycle genes [9]. In contrast, the germ line cells in nup98-

962288/Df(3R)mbc-R1 testes displayed an opposite response:

reduced proliferation upon the loss of nup98-96. Overexpression

of nup98-96 in germ line cells, by way of UAST-nup98-96, did not

increase the number of germ line cells in gonads from otherwise

wildtype animals. These results demonstrate that the Drosophila

nup98-96 locus regulates a distinct response from the nup98-96

locus in mouse.

The germ cell phenotype of nup98-962288/Df(3R)mbc-R1

animals adds to the current view of germ cell development and

possibly to the development of other specialized cells from

precursors. In testes but not ovaries, the nup98-962288/

Df(3R)mbc-R1 mutant phenotype shares similarity to the bam

mutant phenotype. Lack of bam has a different effect on the germ

line cells in the two genders. In bam mutant ovaries, the germ line

cells do not enter amplification divisions and accumulate as single

cells. In testes, Bam regulates the number of mitotic amplification

divisions. Reduction in bam expression causes the proliferation of

spermatogonia beyond the 16-cell stage [35] and over-expression

Figure 6. Nup98-96 acts upstream of signalling pathways
regulating early stage germ line cells. (A, B) Immuno-labelling of
germaria from (A) wildtype and (B) nup98-962288/Df(3R)mbc-R1 mutant
females. Arrowheads point to Bam-negative GSCs (circled in grey),
arrows point to Bam-positive cells, scale bars: 50 mm. (C-J) Adult testes,
genotypes as indicated. (C–F) DNA-labelling (DAPI), arrows point to
early stage germ line cells. (G) Whole stet1; nup98-962288 testis showing a
single spermatocyte (arrowhead) with a spectrosome (arrow). (H, I)
Hyper-activation of signalling pathways results in accumulation of early

stage germ line cells. (H) Apical region of a testis with germ line
expression of dpp, and (I) whole testis with germ line expression of upd.
(J) Whole nup98-962288/Df(3R)mbc-R1 testis with germ line expression of
upd. Arrow points to single spermatocyte. Asterisks mark the testes tips,
scale bars: 30 mm.
doi:10.1371/journal.pone.0025087.g006
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of Bam causes premature differentiation at the 8-cell stage [36]. It

is possible that Bam is mis-expressed in the nup98-962288/

Df(3R)mbc-R1 mutant testes and that this mis-expression contrib-

utes to the nup98-962288/Df(3R)mbc-R1 mutant phenotype.

However, our observations emphasize that the nup98-962288/

Df(3R)mbc-R1 mutant phenotype is different from the bam mutant

phenotype. In nup98-962288/Df(3R)mbc-R1 mutant ovaries and

testes, GSCs, their immediate daughters, and their mitotic progeny

proliferated less than control cells and instead entered the

differentiation program. Our findings suggest that the switch

between GSC divisions, transit amplification divisions, and

terminal differentiation has to be controlled at multiple levels.

Further understanding of nup98-96 function in the germ line cells

awaits the identification of factors that regulate entry and exit from

transit amplification divisions, and initiation of the terminal

differentiation program.

Materials and Methods

Fly strains
Flies were raised on standard cornmeal molasses agar medium.

The nup98-962288 mutation was identified by Antoine Guichet and

Anne Ephrussi in a screen for flies with small gonads. Flies

expressing RNAi-constructs for nup98-96 (UAS-nup98-96RNAi, lines

31198 and 31199) were obtained from the Vienna Drosophila

Resource Center. The stet1 allele is described in [24]. Df(3R)mbc-

R1, nup98-96339, UAS-dpp, UAS-upd, nos-gal4:VP-16, C784-gal4,

w1118, Oregon R, balancer chromosomes, the 3rd chromosome

Deficiency kit, and mutants that mapped to the chromosomal area

95A-C are as described in [19] and were obtained from the

Bloomington stock center.

Mapping
The nup98-962288 mutation was mapped using Deficiencies

spanning the 3rd chromosome. Deficiencies Df(3R)mbcR1 (95A5-7

to 95D6-11) and Df(3R)mbc-30 (95A5-7 to 95D10-11) produced a

germ line cell loss phenotype when in trans to nup98-962288

whereas deletions surrounding the area did not. Fly stocks carrying

mutations in genes mapping to the 95A–C chromosomal region

were tested for complementation. The nup98-96339 mutation failed

to complement nup98-962288 while all other mutants in the area

complemented nup98-962288.

Molecular techniques
Generation of genomic DNA, sequencing, SDS-page, and

Western blotting were performed following standard procedures

[37]. Protein extracts were made from whole 1st instar larvae. For

western blots, chicken anti-Nup96-serum was used at 1:20,000,

rabbit anti-Nup98-serum was used at 1:5,000, and mouse-anti-

LaminC was used at 1:70. Horseradish peroxidase coupled

secondary antibodies for Western blotting were obtained from

Promega (anti-chicken, 1:5,000) and GE-Healthcare (anti-rabbit,

1:20,000, anti-mouse 1:10,000).

Generation of UAST-nup98-96-constructs
Testis cDNA clones for nup98-96 were obtained from the

Drosophila Genomics Resource Center. The clone AT20377

contained 380 base pairs of the nup98-96 59 prime sequence,

which contains a TATA box for polymerase binding and the

coding region for nup98 (nucleotides 1 to 2250). The clone

AT01311 contained the coding region for nup96 and 500 base

pairs of the nup98-96 39 prime sequence, which contains consensus

sequences for polyadenylation to assure transcript stability

(nucleotides 2496 to 6522). A full-length clone of nup98-96 was

generated by standard molecular cloning techniques. A 1 kb

fragment spanning the end of nup98, the auto-cleavage site, and

the beginning of nup96 was generated by PCR from genomic

wildtype DNA and cloned directionally into the EcoR1 and

EcoN1 restriction sites of AT01311, resulting in plasmid POT-CS-

96. Subsequently, the nup98-96 59 prime sequence and nup98-

coding region were directionally cloned using EcoR1 and BspH1

into POT-CS-96 resulting in POT-nup98-96. The cDNA was

cloned into a UAST-vector to generate UAST-nup98-96. To

generate a nup98-cDNA, UAST-nup98-96 was cut with Mlu1 and

Nco1 to remove the nup96 coding sequences, the ends were filled

by the Klenow enzyme, and the vector was re-ligated. This

resulted in a nup98-construct (UAST-nup98) that contains the

nup98-96 59 prime sequence, the nup98 coding region, the auto-

cleavage site, a STOP codon, and the nup98-96 39 prime sequence.

The constructs were injected into flies by The Best Gene, Inc. Fly

stocks were established from the injected animals and several

independent lines were used for our experiments. All lines yielded

the same results.

UAS-Gal4 expression studies
All crosses for cell-type specific expression (using the germ line

cell nos-gal4:VP-16 and the somatic cell C784-gal4 transgene

drivers) were set up and the subsequent F1 progeny raised at 29uC.

Immunofluorescence and histochemistry
Tissues were dissected in testis buffer (10 mM Tris-HCl, ph 6.8,

180 mM KCl). Immunofluorescence was performed following

standard procedures [38]. Tissues were observed using a Zeiss

Axiophot microscope in brightfield and antibody (1:2,000) was

kindly provided by Dennis McKearin. Fluorescence-coupled

secondary antibodies (Molecular Probes) were used at 1:1,000.

Tissues were embedded in Vectashield (Vector Laboratories)

either with or without DAPI, or Slow Fade Gold (Molecular

Probes).

In situ hybridization
In situ hybridization was performed as previously described [22].

A full-length piwi-DNA in a pBST-vector for generation of the

RNA-probes using the SP6 and T7 polymerase start sites was

kindly provided by Dan Cox. fluorescent microscopy. Images were

taken with a CCD camera using an Apotome and Axiovision Rel

Software. Proteins for the production of polyclonal rabbit-anti-

Nup98 (1:500) and chicken-anti-NUP96 (1:5000) were generated

and purified by Enzymax. The anti-Nup98 antibody was raised

against the 200 amino acids at the N-terminus of Nup98. The anti-

Nup96 was raised against the 100 amino acids at the C-terminus

of Nup96. Anti-Nup98 and anti-Nup96 antibodies were produced

in and isolated from animals by Alpha Diagnostic. The following

hybridoma/monoclonal antibodies were obtained from the

Developmental Studies Hybridoma Bank, developed under the

auspices of the NICHD, and maintained by The University of

Iowa, Department of Biological Sciences, Iowa City, IA 52242:

mouse anti-a-spectrin 3A9 (1:10) developed by D. Branton and R.

Dubreuil; mouse anti-LaminC (1:10) developed by P. A. Fisher;

mouse anti-Sex lethal M18 (1:10) developed by P. Schedl; mouse

anti-Groucho (1:5) developed by C. Delidakis; and mouse anti-

FasciclinIII 7G10 (1:10) developed by C. Goodman. Goat anti-

Vasa (1:1000) and mouse anti-phosphorylated Jun-Kinase (1:50)

were obtained from Santa Cruz Biotechnology. Covance supplied

the mouse anti-mAB414. Rabbit anti-phosphorylated Histone-H3

(1:500) and mouse anti-Bromodioxyuridine (1:200) were obtained

from Millipore. Mouse-anti-Bam.
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