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Summary 
Activated monocytes play an important role in the pathogenesis of inflammatory arthritis. Blood 
monocytes which enter the inflamed joint become activated upon adherence to extracellular ma- 
trix and exposure to a complex inflammatory environment. We have analyzed the mechanism 
of monocyte activation by soluble factors present in inflammatory synovial fluid (SF). Greater 
than 75 % of inflammatory SFs tested (a total of 22 fluids to date) increased cell surface expression 
and dramatically increased mRNA levels of monocyte activation markers Fc'yRI, Fc'yRIII, and 
HLA-DRA. This induction was not triggered by adherence, a known activating stimulus, and 
several lines of evidence showed that induction was not dependent upon interferon 3' (IFN-3,). 
Induction was not prevented by neutralizing anti-IFN-3, antibodies and IFN-3~ was not detected 
in the SFs using a sensitive enzyme-linked immunosorbent assay. The SFs also were not able 
to activate the IFN-3,-activated transcription factor Statl, thus providing further support for 
the absence of IFN-'y. SFs did activate a related signal transducer and activator of transcription 
(STAT) family factor, termed Stat-SF, which bound specifically to the IFN-'y response region 
(GRR), a well-characterized transcription element in the Fc'yRI promoter. Based upon DNA- 
binding specificity and mobilities in gel shift assays, and reactivity with specific antisera, Stat-SF 
likely contains Stat3, or a closely related STAT family member. Neutralization of interleukin 
6, a cytokine present in SFs which is known to activate Stat3, abolished the activation of Stat-SF 
and inhibited the induction of Fc3'RI expression by SFs. These results demonstrate the activation 
of monocytes by inflammatory SF and suggest that monocyte activation at an inflammatory site 
may occur in the absence of IFN-'y through the triggering of signal transduction pathways that 
activate STAT transcription factors. 

ctivated monocytes are found in the inflamed synovium 
of patients with inflammatory arthritis, such as rheu- 

matoid arthritis (RA) I. These monocytes express high levels 
of immune effector molecules such as HLA class II antigens, 
Fc receptors (FcR), proteases, cytokines, and chemotactic 
factors (1-15 and references therein). Activated monocytes may 
contribute to the pathogenesis of inflammatory arthritis 
through several mechanisms, including increased (auto)an- 
tigen presentation by class II molecules, increased cytotox- 
icity and release of toxic reactive oxygen intermediates medi- 
ated by FcR, degradation of connective tissue by proteases, 

1 Abbreviations used in this paper: EU, endotoxin unit; GRR, IFN-"/re- 
sponse region; OA, osteoarthritis; PDGF, platelet-derived growth factor; 
RA, rheumatoid arthritis; SF, synovial fluid; STAT, signal transducer and 
activator of transcription. 

stimulation of inflammation by secretion ofproinflammatory 
cytokines, and recruitment of new inflammatory cells to the 
joint by secreted chemotaxins. 

Multiple pro-inflammatory mediators have been measured 
in the inflamed joint (1-15), but the identity of the major 
monocyte activator(s) in vivo has not been conclusively demon- 
strated. IFN-% a potent monocyte activator which can acti- 
vate many complex effector functions, has been proposed to 
activate monocytes in inflammatory arthritis. The role of 
IFN-y, however, is controversial because it has been difficult 
to detect IFN-3, in synovial fluid (SF) specimens (1-4, 6, 9, 
13, 14), and indeed, one group has suggested that IFN-3/ 
synthesis is actively suppressed during synovitis (9). Other 
factors which have been detected in the inflamed joints of 
patients, such as IL-1, Ib6, II.-8, TNF-c~, platelet-derived 
growth factor (PDGF), GM-CSF, and complement break- 
down products, have been postulated to be important in 
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driving monocyte activation and synovial inflammation. How- 
ever, it is unclear whether these factors are present in a bioac- 
tive form (9, 16). Furthermore, since the biological effect of 
a cytokine can be altered or even switched to have the com- 
pletely opposite effect in the presence of other stimuli (16-18), 
it is difficult to predict the role of a cytokine in vivo based 
upon studies with individual purified cytokines in vitro. 

Monocyte activation is a complex process that can be trig- 
gered by multiple stimuli, which often act in concert (19). 
Since different stimuli can trigger different effector functions, 
the functional characteristics of the activated monocyte can 
vary. IFN-3~ and bacterial endotoxin are the most potent 
monocyte-activating factors, and are capable of activating com- 
plex effector functions such as antigen presentation and cyto- 
toxicity. Other stimuli, such as the cytokines II:1, IL-6, 
TNF-o6 and GM-CSF, or adherence to extracellular matrix, 
have been shown to induce monocyte "early genes" or other 
cytokine genes. The effect of these stimuli upon monocyte 
phenotype or effector functions has not been as well charac- 
terized as the effect of IFN-% but they appear to trigger a 
more limited cellular response (19, 20). Thus, activation of 
monocyte effector functions in the absence of IFN-3/or en- 
dotoxin may depend upon the concerted action of several ac- 
tivating stimuli. 

A large number of cytokines, growth factors, and the IFNs 
have been shown to activate the JAK family of tyrosine ki- 
nases, which phosphorylate and activate the STAT (signal trans- 
ducers and activators of transcription) transcription factors 
(21). To date, five distinct but homologous members of the 
STAT family have been identified and designated Star1 through 
Stat5. STAT proteins are localized to the cytoplasm or the 
plasma membrane in resting cells. After activation, the STATs 
dimerize, translocate to the nucleus, and acquire DNA-binding 
activity. An individual STAT protein may be activated by mul- 
tiple ligands, but certain ligands preferentially activate par- 
ticular STATs (21). For example, IFN-'r preferentially acti- 
vates Statl (previously designated IFN-y activated factor 
[GAF], p91, or Stat91), and I1:6 preferentially activates Stat3. 
Stat3, which is contained in complexes that have been termed 
serum induced factor A (SIF-A) or acute phase response factor 
(APRF) (22-24), is activated by several stimuli which have 
been detected in inflammatory SFs, including I1:6, I1:10, 
IFN-o6 PDGF, and leukemia inhibitory factor (LIF) (21-24). 

We have chosen to study the response of monocytes to 
a complex inflammatory environment that attempts to re- 
produce in vivo conditions, rather than the response to purified 
cytokines. In our experiments, we have modeled the in vivo 
process of monocyte migration into an inflamed joint by simul- 
taneously adhering purified human blood monocytes to a sub- 
strate and exposing them directly to SF. A majority of the 
SF samples induced several monocyte activation markers such 
as FcR and HLA D R  antigens. This induction appears to 
be independent of IFN-y but does involve the triggering of 
a signal transduction pathway that activates a STAT transcrip- 
tion factor, termed Stat-SF, closely related to Stat3. I1:6 in 
SFs is important for Stat-SF activation, and is necessary, but 
not sufficient, for induction of Fc3/RI expression. This in 

vitro cell system can be used to further characterize the acti- 
vated phenotype and to explore the molecular mechanism 
of monocyte activation by a complex inflammatory stimulus. 

Materials and Methods 

Monocyte Isolation and Culture. Mononuclear cells from disease- 
free volunteers were obtained from whole blood or buffy coats (New 
York Blood Center, New York) by density gradient centrifugation 
using Ficoll metrizoate (Lymphoprep; GIBCO BRL, Gaithersburg, 
MD; endotoxin <0.25 endotoxin units [EU]/ml). Monocytes were 
further purified utilizing an aggregation method (25) that minimizes 
activation. Briefly, monocytes were aggregated for 45 min at 4~ 
at a monocyte density of 3.5-4.5 x 106/ml (estimated by my- 
eloperoxidase staining) and purified by unit gravity sedimentation 
through fetal bovine serum (FBS) (Hyclone; endotoxin <0.06 
EU/ml). Cell aggregates were disrupted and platelets completely 
removed by two washes with HBSS/1 mM EDTA and cells were 
cultured adherently on plastic dishes (Coming Inc., Coming, NY) 
in complete medium (AIM V medium; [GIBCO BRL; endotoxin 
<0.6 EU/ml] supplemented with 10% heat-inactivated human 
serum). IFN-'r (Genzyme Corp., Cambridge, MA; endotoxin <0.1 
ng//~g) was added to purified monocytes immediately before plating. 
Neutralizing goat anti-IFN-% anti-Ib6, anti-TGF-/3, anti-IL-10 IgG, 
control goat IgG, and a mAb against Ib-6 were purchased from 
R&D Systems Inc., Minneapolis, MN. Pilot experiments demon- 
strated that these antisera neutralized exogenously added cytokines 
both in the absence or presence of SF. 

Serum sources included autologous serum, a serum bank set up 
locally, and AB serum (GIBCO BRL) and gave similar results. 
Monocytes were >90% pure as assayed by cell surface expression 
of CD14 or the CD32 epitope recognized by mAb IV.3 (Medarex, 
New Lebanon, NH). In some experiments, monocytes were fur- 
ther purified to >97% purity (no CD3-positive cells detectable by 
flow cytometry) by removing additional T and B cells using mag- 
netic beads (Dynal, Inc., Great Neck, NY) and gave similar results. 
Lack of monocyte activation during isolation was confirmed by lack 
of induction of IL-1 mRNA as measured by Northern analysis and 
RT-PCR. The total number of monocyte donors tested was greater 
than 40. The results obtained with different donors were qualita- 
tively similar, even though the magnitude of induction varied. 
Throughout all experimental procedures, a scrupulous effort was 
made to avoid endotoxin contamination, including purchasing re- 
agents that had been tested for endotoxin (GIBCO BRL; Hyclone 
Labs, Logan, UT; Genzyme Corp.), minimizing the use of glass- 
ware (and baking all glassware used at 190~ for 4 h), and by use 
of a water source (Millipore Corp., Bedford, MA) that contained 
<0.06 EU/ml of endotoxin as measured by the E-TOXATE Limulus 
amebocyte lysate assay (Sigma Chemical Co., St. Louis, MO). 

SFs. SFs were obtained from patients with definite and classic 
R.A, as defined by the American College of Rheumatology criteria, 
by the patients' physicians for medically indicated reasons. Fluids 
were handled using sterile technique, centrifuged for 10 rain at 
lO,O00g to remove cells and particulate debris, aliquoted, and stored 
at -80~ In some experiments, SFs faltered through a 22-/~m filter 
were used and gave similar results. SFs were added to purified mono- 
cytes before plating. 

Flow Cytometric Analysis. Flow cytometric analysis was per- 
formed using an Ortho Diagnostics Systems Cytofluorograph IIs 
(Westwood, MA). The following murine mAbs were used: Leu- 
M3 (anti-CD14; Becton Dickinson & Co., Mountain View, CA), 
4B5 (anti-CD3; Boehringer Mannheim, Indianapolis, IN), IV.3 
(anti-CD32), 32.2 (anti-FcyRI), 3G8 (anti-CD16), and TAL.1B5 
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(anti-HLA-DK; Dako Corp., Carpinteria, CA). IgG1 (MOPC 21) 
and IgG2a (UPC10) isotype controls were obtained from Sigma 
Chemical Co. Cells were washed with FACS media (HBSS with 
0.1% BSA) and incubated for 30 min at 4~ with a saturating 
amount of mAb. Cells were then washed twice and incubated with 
PE-conjugated goat F(ab')2 fragment anti-mouse Ig (Biosource In- 
ternational, Camarillo, CA/Tago, Inc., Burlingame, CA). Cells were 
analyzed after two additional washes. 

Preparation of Cellular RNA and Northern Hybridization Anal- 
ysis. Total cellular RNA was isolated using RNAzol (TM Cinna 
Scientific, Friendswood, TX) according to the instructions of the 
manufacturer. 2-5 t~g of RNA was fractionated on 1.2% formal- 
dehyde agarose gels, transferred to Hybond-N membranes, and hy- 
bridized with random primer-labeled (Boehringer Mannheim) 
DNA probes using standard techniques (26). DNA probes used 
were: Fc3,RI 1.3-kb XhoI fragment (27), Fc3"KIII (CD16) 0.8-kb 
HindlII-BamH1 fragment (28), HLA-DRA 0.5-kb PstI fragment 
(29), II.-1 1.0-kb HindlII fragment (30), and GAPDH 1.2-kb EcoRI 
fragment (31). Laser densitometry was performed using a model 
300 Series Computing Densitometer with ImageQuant software 
(Molecular Dynamics, Inc., Sunnyvale, CA). 

ELISA. The IFN-3,-specific ELISA was used according to the 
instructions of the manufacturer (Biosource International). SF 
samples were reduced and alkylated as described (15, 32) to inacti- 
vate RF. Pilot experiments showed that pretreatment of SFs with 
hyaluronidase (4) did not significantly affect detection of IFN-y. 
The standard curves of IFN-"/were generated using serial dilu- 
tions of IFN-'y (Genzyme Corp; sp act, 2.5 x 107 U/rag) diluted 
in SF or 10% normal human serum (15) and were similar. The 
standard samples were reduced and alkylated in the same manner 
as the SF samples. Reduction and alkylation did not significantly 
affect the measurement of IFN-3,. 

Nuclear and Cellular Extract Preparation. A nuclear mini-extract 
procedure (33) was used with modifications. 7 x 106 monocytes 
were washed in HBSS, resuspended, and incubated in buffer A (10 
mM Hepes, 10 mM KC1, 1.5 mM MgC12, 1 mM dithiothreitol 
(DTT), 1 mM Pefablock SC (Boehringer Mannheim) and 20/zg/ml 
of aprotinin, leupeptin, antipain, and pepstatin A) for 10 min at 
4~ NP-40 was added to a final concentration of 1% and after 
a 1-min incubation, nuclei were pelleted in a microcentrifuge, 
washed in buffer A, and lysed in 20/~1 of buffer C (10 mM Hepes, 
420 mM KC1, 1.5 mM MgC12, 1 mM DTT, and the same pro- 
tease inhibitors as buffer A). After 20 min of incubation at 4~ 
insoluble chromatin was pelleted by centrifugation, and the super- 
natant was aliquoted and stored at -80~ Total cell extracts were 
prepared by lysis in buffer containing 20 mM Hepes (pH 7.0), 300 
mM NaC1, 10 mM KC1, 1 mM MgC12, 0.1% Triton X-100, 0.5 
mM DTT, 200/~M PMSF, and 20% glycerol as described (24). 
The protein concentration of extracts was determined using the 
Bradford assay. 

DNA Binding and Gel Shift Assays. 3/xg of nuclear extract or 
8 #g of cell extract was incubated with 0.2 or 0.5 ng of 32P-la- 
beled, double-stranded oligonucleotide probe as described (34), ex- 
cept that incubation was for 15 min on ice in a 10-/~1 reaction con- 
taining 80 mM KC1 and 2 #g of poly-dI-dC (Pharmacia, Piscataway, 
NJ) (nuclear extracts) and a 15-#1 reaction containing 100 mM NaC1 
and 1/~g of poly-dI-dC (cell extracts). In competition experiments, 
an excess of unlabeled competitor oligonucleotide was incubated 
for 5 min with the nuclear extract before addition of labeled probe. 
Oligonucleotide sequences are: Ly-6E GAS, 5' CATGTTATGCATA- 
TTCCTGTAAGTG (35); hSIE, 5' GTCGACATTTCCCGTAA 
ATCGTCGA (24); GRR, 5' AGCATGTTTCAAGGATTTGAGA- 

TGTATTTCCCAGAAAAG (36); mutant GRtL, 5' AGCATGTTT- 
CAAGGATTTGAGA_~TATGGACCAGACAAG (STAT binding 
sites are underlined; mutated bases are in italics). In supershift ex- 
periments, 1/zl of a 1:10 dilution of specific antiserum (24) was 
added to extracts for 15 min before adding radiolabeled probe. 
Samples were resolved on 4 or 5% polyacrylamide gels in 0.25 x 
TBE buffer at 11 V/cm at room temperature. Gels were dried and 
subjected to autoradiography. 

Results 

SF Increase Cell Surface Expression of FcTRI, H L A  DR, and 
Fc'yRIII (CD16). We screened a panel of SFs for the ability 
to induce cell surface expression of the monocyte activation 
markers Fc'yRI, HLA DR, and Fc'yRIII (CD16). The results 
of a representative flow cytometry experiment are shown in 
Fig. 1. SF1, derived from an RA patient, significantly in- 
creased cell surface expression of all three activation makers. 
The induction of Fc'yRI and HLA DR expression was com- 
parable with that seen with 100 U/ml (4 ng/ml) of IFN-% 
A neutralizing anti-IFN-'y antibody prevented induction by 
IFN-3' (Fig. 1, A and C), but not by SF1 (Fig. 1, B and 
D). The slight inhibition of SF induction of FcyRI (Fig. 1 
B) by anti-IFN-y antibody was not detected consistently. 
These results suggest SF-triggered induction of Fc3'RI and 
HLA DR expression is mediated by a factor(s) other than 
IFN-'y. SF1 triggered a dramatic induction of Fc3'RIII ex- 
pression (Fig. 1 E), consistent with previous work which 
has attributed this effect to the presence of TGF-B (11). 

In these experiments, both control and SF- and cytokine- 
treated monocytes were plated and allowed to adhere simul- 
taneously with exposure to the soluble stimuli. This approach 
mimics the in vivo situation, where monocytes migrate into 
an inflamed joint and adhere to a connective tissue substrate 
as they become exposed to the inflammatory environment. 
Although, consistent with other reports (19, 20), adherence 
induced expression of los, Ibl ,  and activation of NF-rB, it 
did not affect expression of FcyRI, Fc3'RIII, or HLA DR 
when compared to freshly isolated monocytes, or monocytes 
cultured nonadherently in TEFLON dishes (data not shown). 

Table 1 summarizes the results of screening 22 RA SFs. 
We chose to initially focus upon R.A SFs because RA is a 
relatively specific diagnosis and joint inflammation in RA 
has been studied extensively (1-15). 17 out of the 22 RA SFs 
tested induced expression of Fc3'RIII, confirming results ob- 
tained in a different system that used nonadherent culture 
of monocytes (11). Greater than 80% of the RA SFs tested 
induced Fc'yRI and HLA DR expression, and most SFs in- 
duced all three activation markers. The major known inducer 
of both Fcq~RI and HLA DR is IFN-3'. However, since ex- 
periments with neutralizing antibodies against IFN-3, did not 
prevent induction by SFs (Fig. 1; data not shown), other agents 
present in the fluid may be responsible. The induction of the 
markers we have examined does not appear to be specific to 
RA, since our limited survey of SFs obtained from patients 
with osteoarthritis (OA) or chronic traumatic effusions (Table 
1), and seronegative arthritis (data not shown), showed in- 
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Figure 1. Induction of monocyte cell surface expression of Fc3'RI, HLA 
DR, and Fc3,RIII (CD16) by IFN-3~ and inflammatory SF. Nonadherent 
monocytes were purified (>90% pure) from PBMC, allowed to adhere 
in complete medium plus 20% normal human serum (HS), 20% SF, or 
100 U/m] (4 ng/ml) IFN-3' and cultured for 48 h. Cell surface expression 
of Fc3"RI (A and B), HLA DR (C and D), and Fc'yRllI (CD16) (E) 
was analyzed using flow cytometry. In some cultures, neutralizing anti- 
IFN-y or control IgG was included at a final concentration of 10 #g/ml. 
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Table 1. Induction of Monocyte Cell Surface Markers by SFs 

Fc~/RI Fc~RIII HLA DR 

RA 21/22 17/22 13/16 
OA 1/3 2/3 1/3 
Trauma* 1/2 0/2 ND 

Fluids obtained from patients with RA, OA, and traumatic effusions were 
tested using flow cytometry for induction of monocyte cell surface ex- 
pression of Fc3,RI, Fc"/RIII, and HLA DR. The numerator depicts the 
number of fluids that induced expression; the denominator, the total num- 
ber of fluids tested. Positive induction was defined as a greater than twofold 
increase in mean cell surface fluorescence (Fc')'RI and FcyRIII) and an 
increase comparable with that induced by 100 U/ml (4 ng/ml) IFN-3' 
(HLA DR). 
* Chronic effusions secondary to mechanical injury which required ar- 
throscopy. 

duction of these markers. Both OA (37) and trauma such 
as meniscal tears may result in a disease process which has 
an inflammatory component which may contribute to the 
development of a joint effusion. Our data show that a majority 
of SFs obtained from RA patients who are felt to have active 
disease by clinical criteria are capable of inducing several mono- 
cyte activation markers suggestive of the triggering of a com- 
plex activation program. 

Increased Cell Su~ce Expression of FcyRI, Fcg, RIII, and HLA 
DR Is Associated with Increased Steady State Levels of mRNA. 
We determined the effect of SF treatment on Fc'yRI, Fc3,RIII, 
and HLA D R A  m R N A  levels using Northern hybridiza- 
tion analysis (Fig. 2). All eight SFs selected on the basis of 
induction of  cell surface expression of Fc3,RI also induced 
Fc3'RI m R N A  levels, and all eight fluid induced m R N A  levels 
of the CD16 subunit of Fc3,RIII. The induction of HLA 
D R A  m R N A  expression was much less dramatic (Fig. 2), 
consistent with a high baseline level of expression and the 
lower induction detected by flow cytometry. However, laser 
densitometry and comparison to levels of the GAPDH house- 
keeping gene showed that six out of the eight fluids tested 
increased HLA D R A  m R N A  levels to a degree comparable 
to the twofold induction seen with 100 U/ml (4 ng/ml) IFN-y 
(Fig. 2, lane 10). Fig. 3 demonstrates that SF1 increased 
m R N A  levels of Fc3'RI and Fc'yRIII, but not GAPDH, in 
a dose-dependent manner. The induction of HLA D R A  
m R N A  by RA SF1 was near maximal with 10% SF, was 
fivefold in this experiment, and varied between two- and 
fivefold, depending upon the donor (monocytes from five 
different donors have been tested; data not shown). 

SF Levels of lFN-y Are Low or Undetectable. IFN-3' is a 
major monocyte activator and is a strong inducer of Fc'rRI 
and HLA DR.  However, it has been difficult to detect IFN-3' 
in inflamed joints, and the role of IFN-3' in synovial inflam- 
mation is controversial (1-4, 6, 9, 13, 14). The inability of 
neutralizing anti-IFN-y antibody to prevent SF induction of 
Fc3'RI or HLA D R A  surface expression (Fig. i and data not 

Figure 2. Induction of Fc'yR.I, Fc3,RIII (CD16), HLA DRA mRNA 
levels by inflammatory SF. Nonadherent purified blood monocytes were 
allowed to adhere in complete medium plus 20% normal human serum 
(HS; lane 1 ), 20% SF obtained from eight different RA patients (lanes 
2-9), or 100 U/ml (4 ng/ml) IFN-3' (lane 10) and cultured for 24 h. 5 
/~g of total cellular RNA was fractionated on an agarose formaldehyde 
gel, transferred to a nylon membrane, and hybridized with radiolabeled 
cDNA probes. 
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Figure 3. Dose response of in- 
duction of mRNA levels by 
inflammatory SF. Purified blood 
monocytes were allowed to adhere 
in complete medium plus 20% 
normal human serum (HS, lane 
I ), 10% SF (lane 2), 20% SF (lane 
3), and 40% SF (lane 4) obtained 
from an RA patient and cultured 
for 24 h. 5 #g of total cellular 
RNA was fractionated on an 
agarose formaldehyde gel, trans- 
ferred to a nylon membrane, and 
hybridized with radiolabeled 
cDNA probes. 



Figure 4. Neutralizing anti-IFN-3, antibody does not inhibit induction 
of Fc3,RI mRNA by SFs. Purified blood monocytes were cultured for 24 h 
in complete medium plus 20% normal human serum (HS) or SF. IFN-3, 
(200 U/ml = 8 ng/ml) and neutralizing anti-IFN-T antibody (10 #g/ml) 
were added at the beginning of the culture. 2 #g of total cellular RNA 
was fractionated on an agarose formaldehyde gel, transferred to a nylon 
membrane, and hybridized with radiolabeled cDNA probes. 

shown) suggested that this induction was not triggered by 
IFN-T. This conclusion is supported by results showing that 
the neutralizing anti-IFN-'y antibody also inhibited the in- 
duction of FcTRI mRNA levels by IFN-T, but not by SF1 
or SF6 (Fig. 4), or by two other SFs that were tested (data 
not shown). 

To address the issue of the presence of IFN-T in the SFs 
more directly, we assayed IFN-T levels using both an ELISA 
and a sensitive bioassay. Table 2 shows that IFN-T was not 
detectable in 21 out of 22 RA SFs using an ELISA that can 
detect 200 pg/ml IFN-% and the remaining one fluid had 
a low level of IFN-% between 200 and 400 pg/ml. This would 
correspond to an IFN-3, concentration of 40-80 pg/ml final 
concentration in our cultures, where we used 20% SF, and 
is much lower than the levels of IFN-T (4 ng/ml), that were 
needed for induction of FcTRI, comparable with that seen 
with the SFs. We also used a bioassay that measures the acti- 

ration of DNA-binding by transcription factor Statl by IFN-'y. 
Within minutes of treatment of cells with IFN-T, Statl be- 
comes phosphorylated and acquires specific DNA-binding ac- 
tivity (38). Monocytes were cultured with IFN-3' or SFs, nu- 
clear extracts were prepared, and the activation of Statl was 
assayed using gel shift assays with a radiolabeled Ly-6E pro- 
moter oligonucleotide probe that preferentially binds Statl 
compared with other STAT family members (21, 35). Fig. 
5, lane 3, shows that 10 U/ml (400 pg/ml) IFN-y induced 
Statl DNA-binding activity. This DNA-binding activity was 
specific, since the shifted band was not detected in the pres- 
ence of a 50-fold excess of unlabeled competitor oligonucle- 
otide (Figs. 5, lane 2). None of the eight SFs tested induced 
Statl DNA-binding activity (Fig. 5, lanes 4-11 ). Since re- 
cent experiments with Statl mutant cell lines have demon- 
strated that Statl activation is necessary for IFN-'y responses 
of a wide spectrum of genes (39), our results strongly sug- 
gest that SF-triggered gene induction does not employ the 
IFN-'y signal transduction pathway. 

Inflammatory SFs Activate a Stat3-related Transcription Factor 
that Binds Specifically to an Fcg/RI Promoter Sequence. We per- 
formed gel shift assays using a radiolabeled high affinity serum 
inducible element (hSIE) oligonucleotide probe, which binds 
several STAT proteins and complexes (24, 40). This approach 
allowed us to determine if SFs activated DNA-binding of STAT 
transcription factors other than Statl. Fig. 6 A shows that 
SFs induced an hSIE DNA-binding complex, which we have 
provisionally designated Stat-SF (lanes 3-10),  and which has 
a distinct mobility from the Star1 homodimer (41) induced 
by IFN-T (lane 2). In this experiment, we tested four of the 
SFs used in Figs. 2-5, as well as four additional SFs that in- 
duced FcTRI expression. To date, all 12 SFs tested have in- 

Table 2. IFN-'g Levels in SFs 

IFN-T <200 pg/ml 200-400 pg/ml >400 pg/ml 

RA 21/22 1/22 0/22 
OA 3/3 0/3 0/3 
Trauma 2/2 0/2 0/2 

IFN-y levels were measured using an ELISA with a sensitivity of 
200 pg/ml (equivalent to 5 U/ml). 

Figure 5. SFs do not activate Statl-binding to the Ly-6E promoter STAT 
(GAS) site. Purified monocytes were incubated for 20 min in complete 
medium plus 20% normal human serum (lane t ), 10 U/ml (400 pg/ml) 
IFN-y (lanes 2 and 3). or 20% SF obtained from eight different patients 
(lanes 4-11 ), and nuclear extracts were prepared. 3/zg of nuclear extract 
was incubated with 0.2 ng of radiolabeled oligonucleotide containing the 
binding site for Statl and DNA-protein complexes were resolved on 4% 
nondenaturating polyacrylamide gels. (comp) The extract in lane 2 was 
preincubated with a 50-fold molar excess of unlabeled oligonucleotide; 
(Jree) free unbound oligonucleotide; (NS) nonspecific binding. 
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Figure 7. Binding specificity of Stat-SF. Cellular extracts (8 #g) from 
monocytes treated for 15 rain with SF4 or IFN-'y were incubated with 
a 50-800-fold molar excess of unlabeled competitor oligonucleotides for 
5 rain before adding radiolabded hSIE probe and subsequent analysis by 
gel shift assay. The GRK is an inducible transcription dement from the 
Fc'gRl promoter which contains a STAT site, and the mGRR contains 
four base substitutions within this STAT site. (KB) NF-KB site. An ex- 
periment using a representative SF is shown. 

Figure 6. Activation of specific binding to the hSIE STAT site by SFs. 
Purified monocytes were incubated for 15 min, cellular extracts were pre- 
pared, and 8/~g of extract was incubated with 0.5 ng of radiolabeled hSIE 
oligonucleotide containing a binding site for several STAT proteins. 
DNA-protein complexes were resolved on 5% nondenaturing polyacryl- 
amide gels. (A) SF-induction of a complex (Stat-SF) with a mobility different 
from Statl. Monocytes were treated with 20% normal human serum (lane 
1 ), 100 U/ml (4 ng/ml) IFN-3, (lane 2), or 20% SF obtained from eight 
different patients (lanes 4-10). (B) SF-induced complex binds specifically 
to the hSIE. A 50-fold molar excess of unlabeled NF-gB or hSIE oligonu- 
cleotide was preincubated with the extracts for 5 min before adding radio- 
labeled probe. (comp) Competitor oligonucleotide. An experiment using 
a representative SF is shown. 

50-fold excess of  the G R R  effectively competed for Statl 
binding (Fig. 7, lanes 8-10), but a 200-800-fold excess of  
the G R R  was required to achieve a comparable level of  com- 
petition for Stat-SF binding (Fig. 7, lanes 1-4). A mutant  
G R R ,  m G R R ,  containing four base substitutions within the 
G R R  STAT site, did not compete for Stat-SF binding even 
when present in 800-fold excess (Fig. 7, lanes 6 and 7). Taken 
together, these results show that Stat-SF binds specifically 
to the G R R  STAT site, but with a lower affinity than Star1. 

We used specific antisera generated against Star1 or Stat3 
(24) to investigate whether  Stat-SF was antigenically related 

duced formation of a DNA-pro te in  complex that migrated 
similar to the migration of the Stat-SF complex in Fig. 6 
(data not shown). The binding of Stat-SF proteins to the 
hSIE was specific, because it was not affected by a 50-fold 
excess of unlabeled NF-gB oligonucleotide, but was abolished 
by a 50-fold excess of  unlabeled hSIE (Fig. 6 B).  Fig. 6 B 
shows a representative experiment; the specificity of  DNA-  
binding of the Stat-SF complex induced by five different SFs 
has been tested. 

The Fc3~RI promoter contains a sequence, termed the IFN-'y 
response region (GRR) ,  that mediates induction by IFN-% 
contains a STAT binding site T T C C C A G A A ,  and is known 
to bind Statl (36, 42, 43). We used a 39-bp G R R  oligonu- 
cleotide (36) as a competi tor  in gel shift assays to compare 
the binding of Statl and Stat-SF to the GR.R (Fig. 7). A 
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Figure 8. Reactivity of Stat-SF with specific anti-STAT antisera. Cel- 
lular extracts (8 #g) from monocytes treated for 15 rain with SFs or IFN-3, 
were incubated with 1/zl of a 1:10 dilution of specific antisera generated 
against Statl or Stat3 (24) for 15 min before adding radiolabeled hSIE probe. 
DNA-protein complexes were resolved on 5 % nondenaturating polyacryl- 
amide gels. 



FCTRI 

Figure 9. StatlactivationbylFN-"(inthepresenceofSFs. Purifiedmono- 
cytes were incubated for 15 min, and 8 #g of cellular extract was incubated 
with 0.5 ng of radiolabeled hSIE oligonucleotide. IFN-3, was used at 100 
or 10 U/ml. Lanes 5-8 contained the same extract, which was preincubated 
with specific antisera against Statl or Star3. 

to these proteins. Statl homodimer binding to the hSIE was 
completely abolished by the Statl, but not the Stat3, antiserum 
(Fig. 8, lanes I-3). Stat-SF binding, in contrast, was abol- 
ished by Stat3 antiserum, and was affected only slightly by 
the Statl antiserum (Fig. 8, lanes 4-9; results from a repre- 
sentative experiment are shown). These results show that the 
predominant STAT protein induced by SFs is distinct from 
Statl, which is induced by IFN-y. The combination of Stat- 
SF DNA-binding specificity and mobility in gel shift assays, 
and its reactivity with the specific antisera, suggest strongly 
that Stat-SF contains Stat3 or a very dosely related STAT family 
member. 

Role for 11-,6, but not IFN-% in Activation of Stat-SF and 
FcTRL The difference in mobility between Stat-SF and IFN- 
y-induced Statl (Fig. 6 A) allowed us to address directly 
whether we could detect IFN-7 bioactivity in the presence 
of SFs. Fig. 9 shows that addition of exogenous IFN-7 to 
SF, at concentrations of 100 or 10 U/ml, resulted in the acti- 
vation of an additional DNA-binding complex with the mo- 
bility of Statl. Supershift experiments with anti-Statl and 
anti-Stat3 antibodies showed that the predominant DNA- 
binding complex in cells treated with both SF and IFN-7 
contained Statl (Fig. 9, lanes 6-8). Thus, SF did not mask 
IFN-7 bioactivity, and we would readily have detected the 
presence of IFN-7 in the SFs using this assay. 

:.'~ + SF 
~,- 

+SF + anti-IL6 /7 ~ +SF + ant.i-ILl0 
:I 
/,. 

~ +SF + ant i~IFN'y 

10 0 101 10 2 10 3 

Fluorescence 

Figure 11. Neutralization of IL-6 inhibits induction of FcTRI expres- 
sion by SFs. Purified monocytes were cultured for 48 h in complete medium 
plus 20% human serum (HS) or synovial fluid (SF). Neutralizing or con- 
trol antibodies were included at 10/~g/ml and cell surface expression of 
Fc3,RI was detected using flow cytometry. A representative experiment 
is shown. 

A major activator of Stat3 is IL-6, a cytokine that is present 
in most SFs (1, 5). Therefore, we tested whether neutraliza- 
tion of ILo6 in SFs would affect the activation of Stat-SF and 
the expression of FcyRI. Fig. 10 shows a representative ex- 
periment demonstrating that neutralization of IIr but not 
TGF-3, IL-10, or IFN-7, resulted in the complete inhibition 
of Stat-SF activation. The effect of neutralization was ob- 
served with both a specific anti-IL-6 antiserum and a mAb 
that has been tested extensively for lack of cross-reactivity 
with other cytokines. These antibodies effectively neutral- 
ized exogenous IL-6, as determined by the prevention of the 
activation of SIF-A, an IL-6-activated DNA-binding complex 
which contains Stat3 (24), and which has a mobility similar 
to Stat-SF (Fig. 10, lanes 10-12). These results show that IL-6 
plays a major role in SF activation of Stat-SF, most likely 
through the activation of Stat3. 

Figure 10. Neutralization of IL-6 pre- 
vents Stat-SF activation by SFs. Purified 
monocytes were incubated for 15 min with 
HS, SF, or 20 ng/ml Ib6 in the presence 
or absence of 10 #g/ml of neutralizing goat 
antibodies or a mAb specific for IIr (lanes 
9 and 12); control preimmune antibodies 
were used to keep IgG concentrations con- 
stant. 8/*g of cellular extract was analyzed 
for binding to a radiolabeled hSIE probe. 
A representative experiment from the 
testing of eight SFs is shown. (SIF-A) The 
Stat3-containing complex induced by I].-6 
(lane I0) (24). 
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We used flow cytometry to determine whether inhibition 
of Stat-SF activation correlated with inhibition of FcTR.I ex- 
pression. Fig. 11 shows that neutralization of IL-6, which 
inhibited Stat-SF activation (Fig. 10), also dramatically in- 
hibited the induction of FcTR.I expression. This inhibition 
also occurred at the level of Fc3,R`I mR.NA (data not shown). 
On the other hand, neutralizing antibody to IFN-T or IIA0 
had no effect upon SF induction of Fc3,R.I expression (Fig: 
11). Interestingly, addition of IL-6 alone had minimal effect 
upon Fc'yRI expression, consistent with previous reports (44). 
Our data show that IL-6 and Stat-SF activation are necessary 
but not sufficient for SF induction of FcTR.I, and suggest 
that a second signal, in addition to IL-6, is required. 

Discussion 

Monocytes make an important contribution to synovial 
inflammation in rheumatoid arthritis. Understanding how 
monocytes are activated in the inflamed joint would provide 
useful information about the pathogenesis of disease and also 
about the monocytic cell activation program. We have mod- 
eled the activation of monocytes which enter the inflamed 
joint by adhering resting monocytes in the presence of inflam- 
matory SF. This approach makes possible an analysis of mono- 
cyte activation by a complex inflammatory stimulus, similar 
to activation in vivo. We have used this model to demon- 
strate SF induction of monocyte effector genes, address the 
issue of whether IFN- T plays an important role in monocyte 
activation in the inflamed joint, and show that SFs activate 
a signal transduction pathway that uses specific members of 
the STAT family of transcription factors. 

Fc'yRI, FcyRIII, and HLA DR. are expressed at high levels 
in activated monocytes and in inflamed SF cells and synovial 
tissue (1-15). Monocytes which enter an inflamed joint en- 
counter numerous potentially activating stimuli, including 
(a) adherence to the extracellular matrix; (b) cell-cell interac- 
tions with synoviocytes and lymphocytes; and (c) exposure 
to soluble pro-inflammatory stimuli. Our results show that 
adherence plus the soluble factors in SF are sufficient to acti- 
vate monocyte expression of FcTR.I, Fc"/R.III, and HLA DR., 
and likely activate a complex monocyte activation program. 
Adherence alone has been shown to activate NF-KB/rel family 
transcription factors and induce expression of cytokines such 
as IL-1 and TNF-oe (20), findings which we have reproduced 
in our system (Ivashkiv, L., unpublished data). Adherence 
alone did not activate expression of FcyRI, Fc"yR.III, and HLA 
DR (Ivashkiv, L., unpublished data), but activation signals 
triggered by adherence likely affect the functional phenotype 
of the monocytes. Therefore, we carried out our analysis of 
the mechanism of monocyte activation by soluble pro-inflam- 
matory stimuli in a system where both control and SF- and 
cytokine-stimulated monocytes were allowed to adhere as they 
were exposed to the soluble stimulus. This approach has the 
advantage of reproducing the simultaneous exposure to an 
inflammatory environment and adherence that occurs in vivo. 

The issue of whether IFN-3' plays a role in activating mono- 
cytes in inflammatory synovitis has been controversial (1-4, 

6, 9, 13, 14). Our experiments provide three independent 
lines of evidence that the induction of FcTRI and HLA DR 
in our system is not dependent upon IFN-T. SF levels of IFN-T 
were very low or undetectable when measured by ELISA, 
consistent with the findings of other investigators (4). In ad- 
dition, neutralizing antibodies to IFN-3' did not inhibit the 
ability of SFs to induce cell surface and mRNA expression 
of Fc3,RI and HLA DR., and SFs did not activate transcrip- 
tion factor Statl, which is necessary for gene activation by 
IFN-T (39). Furthermore, SFs did not mask the presence of 
IFN-% since we readily detected IFN- 3, that was added to 
SFs both by ELISA (Ivashkiv, L., unpublished data), and by 
activation of Statl (Fig. 9). Taken together, these findings 
demonstrate that monocyte activation by SFs does not de- 
pend upon IFN-3', and strongly argue that monocyte activa- 
tion in inflammatory disease can occur in the absence of IFN-T. 

Treatment of monocytes with SFs induced a specific DNA- 
binding activity, which we have provisionally designated Stat- 
SF, within 15 min of stimulation. This DNA-binding pro- 
tein bound to oligonucleotides containing a STAT binding 
site, but not to an irrelevant NF-KB oligonucleotide or a mu- 
tant oligonucleotide with four base substitutions within the 
STAT site. In contrast to IFN-T-induced Statl, Stat-SF binding 
activity was neutralized by a specific antiserum directed against 
Stat3, but not by an antiserum against Statl. Stat-SF also had 
a mobility in a gel shift assay which was distinct from that 
of Statl (Fig. 6). A tyrosine-phosphorylated protein which 
migrated with the mobility of Stat3 was immunoprecipitated 
from SF-treated monocytes by the Stat3 antiserum (Sengupta, 
T., and Z. Zhong, unpublished data). Based upon these criteria, 
we believe that Stat-SF contains Stat3 or a very closely related 
member of the STAT family. 

We have determined that the SF factor which plays a pre- 
dominant role in activation of Stat-SF is IL-6. IL-6 is a pro- 
inflammatory cytokine present in a majority of SFs (1, 5), 
and activates DNA-binding of the SIF-A complex, which con- 
tains Stat3. SIF-A has been proposed to be a homodimer of 
Stat3, although the presence of additional proteins has not 
been ruled out (21, 24). The similarity of the mobility of 
SIF-A and Stat-SF (Fig. 10), and their common activation 
by Ib6 suggest that these complexes may be closely related 
or identical. However, different DNA-binding complexes often 
comigrate on the nondenaturing gels used in these assays. 
Thus, differences in the identity or posttranslational modi- 
fication of proteins which associate with Stat3 to form SIF-A 
or Stat-SF could have escaped detection in our experiments. 
The relationship between Stat-SF and SIF-A can be investigated 
by a biochemical analysis of purified proteins. 

Our data with neutralizing antibodies showed that TGF-/3, 
II~10, and IFN-y, are not necessary for Stat-SF activation. 
Other cytokines, however, may play an important role, pos- 
sibly by regulating proteins that associate with Stat3 in the 
Stat-SF complex. An interesting issue is why we did not de- 
tect activation of STATs by other cytokines present in SFs, 
especially cytokines, such as LIF, oncostatin M (OsM), IL- 
10, and PDGF, which activate Stat3 (24, 40, 45-47). This 
lack of cytokine activity cannot be completely explained by 
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the absence of the cytokine from a specific SF, limitations 
of the gel shift assays, or lack of monocyte receptors for a 
factor such as PDGF (Sengupta, T., unpublished data). It will 
be interesting to explore whether SFs can suppress monocyte 
responses to particular cytokines, possibly by uncoupling signal 
transduction pathways. 

Interestingly, neutralization of ILo6 and inhibition of Stat- 
SF activation resulted in the inhibition of the induction of 
Fc'yRI expression. Stat-SF binds specifically, albeit with rela- 
tively low affinity, to the GRR, an inducible transcription 
element present in the Fc3,RI promoter (36). Thus, Stat-SF 
may regulate Fc'yRI expression directly through binding to 
the GRR, but an indirect mechanism of regulation is also 
possible. The presence of IL-6 in SFs is necessary, but not 
sufficient to activate Fc3'RI expression, since treatment of 
monocytes with purified II,-6 had minimal effect upon FcyRI 
expression. Treatment with IL-6, however, did activate the 

SIF-A complex, which has a similar mobility to Stat-SF. Our 
data suggest that the SFs are providing a second signal that 
synergizes with the I1:6 signal. An interesting possibility is 
that the second signal modifies the SIF-A complex, possibly 
by changing the identity of the proteins that make up the 
complex, or by altering posttranslational modifications. 

STAT proteins are triggered by numerous cytokines to ac- 
tivate transcription of many cellular genes leading to major 
changes in cell phenotype. Our system provides an opportu- 
nity to systematically study the activation of STAT proteins 
and physiologically relevant target effector genes which are 
activated by inflammatory SF, and to determine which factors 
present in SF are important for activation. This will yield 
a greater understanding of monocyte activation by complex 
inflammatory stimuli in vivo, and should provide insight into 
pathogenetic mechanisms in inflammatory arthritis. 
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