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The annually increasing incidence of endometrial cancer in younger women has created a
growing demand for fertility preservation. However, the diverse therapeutic efficacy among
patients under the same histological subtype and the same tumor grade suggests the
potential interference of the innate molecular characteristics. The molecular classification
has now been applied in clinical practice and might help to stratify the endometrial cancer
patients and individualize the therapy, but the candidates for the fertility-spared treatment
are most likely to be subdivided in the subgroup lacking the specific signature. KRAS
mutation has been linked to the malignant transition of the endometrium, while its role in
molecular classification and fertility preservation is vague. Here, we mainly review the
advance of molecular classification and the role of KRAS in endometrial cancer, as well as
their correlation with fertility-preservation treatment.
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INTRODUCTION

Endometrial cancer (EC) ranks as the second most commonmalignancy originating from the female
reproductive tract, the incidence of which in the population between 20 and 44 years old is increasing
globally and accounts for approximately 8.6% of all 417,367 new cases (1). In China, EC is already the
most common malignant tumor of the female reproductive tract in developed areas (2), and the
proportion of patients with EC diagnosed between 20–44 years old is up to 14.2% (1). The increasing
incidence in the younger population thus creates demands of reproductive-aged patients for fertility
preservation, while the therapeutic efficacy of conservative treatment varies even in the same
histological subtype and the same treatment strategy, suggesting the underlying high molecular
heterogeneity of lesions. In 2013, a new molecular classification was proposed and has now been
introduced into the clinical-pathological diagnosis in the latest version of NCCN (National
Comprehensive Cancer Network) guideline. Patients suitable for the fertility-spared treatment
are most likely subdivided into the molecular subtype of which the specific molecular signatures are
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still under exploration. The Kirsten rat sarcoma viral oncogene
homolog (KRAS) represents the most prevalent oncogene in
human cancers, the mutation of which is reported to predict
the carcinogenesis as well as the invasive progression of type I EC
(3), suggesting that KRAS might be applied as a potential
monitoring target for the fertility-preservation treatment of the
early stage type I EC. Here we mainly discuss the advance of the
molecular classification of EC and the potential link of KRAS
mutation to the oncologic outcomes of conservative treatment in
early EC patients.

THE CONSERVATIVE TREATMENT OF EC

In 1983, with an understanding of the endocrine and metabolic
pathogenesis of EC, Bokham broadly divided EC into two
subtypes: the estrogen-dependent (most are histologically
diagnosed as endometrioid adenocarcinoma) type I and the
estrogen-independent (mainly serous and clear cell carcinoma)
type II (4). In 1997, Kim et al. first reported that 13 of 21 (62%)
patients who were treated with progestin alone for type I EC had
an initial response to progestins (5), beginning the exploration of
the criteria for the conservative treatment. At present, relevant
guidelines for fertility preservation treatment of EC have been
launched, including the NCCN1 (6), the Gynecological Oncology
Committee of Chinese Anti-Cancer Association (7), and the
European Society of Gynecological Oncology (ESGO) (8–11).
The main indications agreed by the above guidelines/expert
consensus are as follows:

1) Well-differentiated (grade 1) endometrioid adenocarcinoma
confirmed by expert pathology review,

2) Disease limited to the endometrium on imaging,
3) Absence of suspicious or metastatic disease on imaging,
4) No contraindications to medical therapy or pregnancy, and
5) Patients should undergo counseling as the fertility-sparing

option is not standard of care for the treatment of endometrial
carcinoma.

The main treatment strategy is the use of progestin-based oral
drugs [megestrol acetate (MA) or medroxyprogesterone acetate
(MPA)] or the levonorgestrel (LNG) -intrauterine system/device
(IUS/IUD) with or without the hysteroscopic resection of the
lesions, accompanied by the evaluation based on the image and
the pathological status of the endometrium every 3–6 months.
The complete response (CR) is defined as the EC lesions being
totally diminished after 6 months of therapy (12) and no response
(NR) or failure should be considered when the EC still persists
after 6–12 months of therapy and a hysterectomy is
recommended.

Although the effectiveness of the fertility-spared treatment has
now been widely recognized, the overall CR rate of conservative
treatment is reported to fluctuate from 50.0 to 90.0% (13–15).
Despite the different use of progestins and hysteroscopy, a center

reported that even under the same treatment and histological
type, the CR rate was only 40.0% in patients who were diagnosed
as grade 1 endometrioid adenocarcinoma with minimal
myometrial infiltration (16). These results indicate that the EC
cases with similar morphological features show individualized
therapeutic efficacy under the same therapy, suggesting that the
molecular signature of the tumor might be essential for the
implementation and assessment of conservative therapy.

THE MOLECULAR CLASSIFICATION OF EC

In 2013, The Cancer Genome Atlas (TCGA) using an integrated
multi-genomic transcriptomic and proteomic platform classified
EC into four subgroups (17): the POLE subgroup (7%) had
characteristical mutations in the exonuclease domain of POLE
with a unique C > A transition, which was mostly composed of
high grade endometrioid tumors and exhibited the best
progression-free survival (PFS); the CN-H subgroup (26%)
was characterized by frequent (over 90%) somatic mutations
in TP53 with extensive somatic copy number alterations,
comprised of 9% of the endometrioid (56% of grade 3 and
44% of grade 1/2 EC) and almost all of the serous (41/42), and
exhibited the poorest outcome; the MSI subgroup (28%) was
characterized by MSI and frequent MLH1 promoter
hypermethylation and primarily consisted of endometrioid
carcinomas, 62% of which were diagnosed as low-grade (grade
1 and grade 2) endometrioid tumors; finally, the CN-L subgroup
had the largest proportion (39%) in EC with a relatively stable
microsatellite status, more complex molecular characteristics,
lower mutation frequency and somatic copy number
alterations, and increased progesterone receptor expression.
The CN-L subgroup was dominantly enriched for the low-
grade endometrioid carcinomas (94%) but showed worse PFS
than either the POLE or the MSI subgroup.

The value of molecular classification of EC has been identified
by the subsequent studies and is recommended in the newest
version of NCCN guidelines and WHO classification.
Considering the equipment in most pathology laboratories, the
ProMisE strategy proposed using the immunohistochemistry
(IHC) of MMR protein as a surrogate to screen the MSI
subgroup, as well as the IHC of TP53 to the CN-H subgroup
(18–20). The patients under fertility-preservation treatment
might also profit from the molecular classification. Since the
conventional progesterone receptor and estrogen receptor
isoforms showed insufficient predictive accuracy (21), the
ProMisE strategy has also been practiced in the population of
fertility preservation to identify the MSI status and the potential
TP53 abnormality (22–24). POLE mutation could be detected
only by sequencing (the next-generation sequencing or Sanger
sequencing), considering its superior prognostic value, and it
might be of use for young patients with strict fertility-spared
conditions.

However, the most troubling problem might be the CN-L
subgroup, as the patients entitled to the fertility-spared treatment
are mainly (99%) aggregated in the subgroups of POLE, MSI, and
CN-L, and nearly 62% of them fall into the CN-L subgroup (17).1https://www.nccn.org/professionals/physician_gls/default.aspx#uterine
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TCGA data showed that the significantly mutated genes in this
subgroup included PTEN, PIK3CA, PIK3R1, ARID1A, CTCF,
CTNNB1, and KRAS. Recently, long non-coding RNAs
(lncRNAs) have been reported to be upregulated or
downregulated in ECs compared to normal tissues and their
dysregulation has been linked to tumor grade, FIGO stage, the
depth of myometrial invasion, lymph node metastasis, and patient
survival (25). LncRNA homeobox transcript antisense intergenic
RNA (HOTAIR) has been confirmed to bind with lysine-specific
demethylase 1 to demethylate the histone 3 lysine 4 on progesterone
receptor B promotor, thus inhibiting progesterone receptor B
transcription and decreasing progesterone sensitivity (26), and
long non-coding RNA nuclear enriched abundant transcript 1
(LncRNA-NEAT1) promotes EC proliferation and invasion by
regulating the miR-144-3p/EZH2 axis (27).

Complexmolecular characteristics of the CN-L subgroupmight
lead to the high differences in response to the fertility-spared
treatment. In a recent study performing molecular analysis on 15
fully evaluable EC patients, three of the eight patients in the CN-L
subgroup respectively relapsed at the 8th, 11th, and 41st months of
conservative treatment (22). Another study showed similar results
(24), suggesting the lack of the effective molecular signature of the
CN-L subgroupmight impair the value of the molecular strategy to
stratify the patients under fertility-preservation treatment. All these
problems suggest that further molecular stratification to subdivide
the patients is urgently needed.

KRAS MUTATIONS IN EC AND ITS
POTENTIAL VALUE IN THE
FERTILITY-SPARED TREATMENT

RAS (KRAS, NRAS, and HRAS) is one of the most frequently
mutated gene families in cancers, the protein form of which is a
kind of membrane-bound GTPase switching to transmit
signals within cells (28), controlling processes like cellular
growth, cell proliferation, cell differentiation, cell adhesion,
cell apoptosis, and cell migration. KRAS is the most frequently
mutated isoform in the RAS family, which constitutes 86% of
RAS mutations (29). KRAS gene is a proto-oncogene that
encodes a 21-kDa GTPase transducer protein, which has
two states (30, 31): GTP-binding (active) and GDP-binding
(inactive). In response to extracellular stimuli, the intracellular
cycling between these two states is regulated by the guanine
nucleotide exchange/releasing factors (GEFs/GRFs) and the
GTPase activating proteins (GAPs) and further influence three
major signaling pathways in both normal and transformed cell
types, namely the mitogen-activated protein kinase (MAPK)
pathway, phosphoinositide 3-kinase (PI3K) pathway, and the
Ral-GEFs pathway, to promote cell survival, proliferation, and
cytokine secretion (29, 32–34). The binding of GTP causes a
conformational change of KRAS protein that involves two
important regions (35): Switch Ⅰ (amino acids 30–38) and
Switch Ⅱ (amino acids 59–67). The Switch regions Ⅰ and Ⅱ
play pivotal roles in the binding of regulators and effectors.
KRAS protein has a weak intrinsic GTPase activity [G domain
of the KRAS protein (36)], which could be amplified by GAPs T
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and facilitate the return of the GTP-bounding active form to its
inactive GDP-bounding form (37–40). In contrast, GEFs/GRFs
could catalyze the exchange of GDP for GTP.

Mutations in KRAS could impair the intrinsic GTPase activity of
KRAS protein, and the protein becomes unresponsive to GAPs that
maintain the KRAS protein in its active form (39, 41). The mutant
KRAS protein causes aberrant and uncontrollable cell growth and cell
transformation without being affected by upstream molecules in
many cancer types. Different mutant KRAS proteins have unique
biochemical behaviors in intrinsic/GAPs-stimulated GTPase
activities and interactions with effectors (39, 42). Over 80% of
KRAS mutations occur at codon 12 (43), including the commonly
occurring glycine-to-cysteinemutation (KRASG12C), the glycine-to-
valine mutation (KRAS G12V), and the glycine-to-aspartic acid
mutation (KRAS G12D), likely to produce a steric hindrance that
prevents binding of GAPs and decreases GAP-stimulated GTPase
activity. Different conformations produced by distinct mutant KRAS
substitutions can lead to an altered association with downstream
effector molecules, resulting in preferential signal transduction and
biologic behavior that may impact clinical outcomes and response to
therapy (43). In the previous studies (44, 45), KRASG12C and KRAS
G12V have been shown to preferentially signal through the Ral-GEFs
pathway with worse PFS than other KRAS mutant or wild-type
KRAS, whereas KRAS G12D has been shown to preferentially signal
through the MAPK and the PI3K pathways. KRAS mutations drive
the tumorigenesis of the three most lethal cancers (lung cancer,
colorectal cancer, and pancreatic cancer) (46). Different mutations of
KRAS have shown tissue-specific incidences, such as G12V/C in lung
cancer (47, 48) and G12R in pancreatic cancer (49). Novel targeting
therapies are currently being pursued as potential treatments for
KRAS-mutant non-small-cell lung cancer (43, 50) andKRAS-mutant
colorectal cancer (51, 52), which might be worthwhile for KRAS-
mutant EC in the future.

In EC, the incidence of KRAS mutation is increasing globally
(Table 1), which was reported to be approximately 15.0% in the past
(37, 61–63). Ahmed et al. (64) found the presence ofKRASmutation
in both complex mucinous changes andmucinous adenocarcinoma,
indicating that KRAS mutational activation was implicated in the
pathogenesis of a significant subset of endometrial mucinous
carcinoma. Xiong et al. (65) noticed that the KRAS status in the
neoplastic lesion presented on the surface of the endometrium was
different from that in the benign metaplastic areas, while Van der
Putten et al. (66) found that KRAS mutation appeared both in the
hyperplastic lesions and the adjacent benign endometrial tissues.
Other studies (46, 62) also supported that KRASmutation occurred
in the early stages of type I EC (endometrioid) before clonal
expansion, which is similar to the role of KRAS mutation in
colorectal cancer (67, 68). Endometrial atypical hyperplasia
(EAH) is now believed to be the precancerous lesion of EEC, in
which KRAS was also a highly mutated gene (63, 64, 69). Contrarily,
some studies found no KRAS mutation in endometrial atypical
hyperplasia (70, 71), probably due to the small sample size. On the
other hand, Tsuda et al. (72) stressed the role of KRAS in predicting
invasive proliferation of well-differentiated (grade 1) tumors.
Birkeland et al. (73) noticed an increase in KRAS amplification

and KRASmRNA expression during the transition from primary to
metastatic disease. All these data suggest thatKRASmutationmay be
crucial to the proliferation and invasion of EEC, and might be used
as a predictivemarker to predict a potential malignant transition and
progression. It has been reported that KRAS mutation is associated
with obesity (73, 74), a high-risk factor for the development of EEC
(75), and decreased expression of estrogen receptor (76), suggesting a
potential crosstalk between KRAS-mediated signaling pathway and
the estrogen receptor activated signaling pathway. Recently, Ahmed
et al. (64) demonstrated that KRAS mutation had a positive
predictive value of 88% for complex atypical hyperplasia (the
precancerous lesion of EEC) or adenocarcinoma. The KRAS
mutation testing may be valuable for predicting the therapeutic
effect of conservative treatment in EC, and the patients carrying
specific mutations of KRAS may profit from the targeted therapy.
However, the KRAS status of EC patients with conservative
treatment has not been studied yet. Although current molecular
classification shows potential predictive value in fertility sparing
management, there are still proposed candidates for further risk
stratification, such as KRAS (56, 77). If KRAS mutation tracking,
combined with other biomarkers, could be completed during the
follow-up of conservative treatment of EC patients, it may be
possible to further understand the actual significance of KRAS
mutation and help determine whether it can be an indicator of
prognosis in conservative treatment. However, the KRAS status has
not been reported during the follow-up of conservative treatment of
EC/EAH patients. It is unclear whether KRAS status will change
during follow-up, and how these changes will be associated with the
effect of fertility preservation treatment.

As rates of obesity and metabolic syndrome have risen, rates of
EC have also increased, creating demands of reproductive-aged
patients for fertility preservation. It may be of clinical significance
to use the molecular classification in the fertility-preserving EC/
EAH patients to guide individualized treatment and prognostic
evaluation in the future. Notably, detecting theKRAS status might
help to further stratify the therapeutic response of fertility-
preserving EC/EAH patients. Screening such patients with
specific KRAS mutations might also help the introduction of
the targeted therapy and the improvement of the fertility-sparing
efficacy.
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