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Abstract

Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immedi-
ate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic.
Extant terrestrial mammals have different optimal body sizes according to their foot posture
(plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot pos-
ture with dinosaur body size has never been investigated, even though the body size of
dinosaurs has been studied intensively. According to a large dataset presented in this
study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant ter-
restrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for
macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondino-
saur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetra-
pods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture
exhibited a steady increase in body size following Cope’s rule. In contrast, contemporane-
ous plantigrade lineages exhibited no trend in body size evolution and were largely con-
strained to small body sizes. This evolutionary pattern of body size specific to foot posture
occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed
by the end-Cretaceous extinction, species of mid to large body size have predominantly
been nonplantigrade animals from the Jurassic until the present; conversely, species with
small body size have been exclusively composed of plantigrades in the nonvolant terrestrial
tetrapod fauna.

Introduction

Body size affects many aspects of biological phenomena in organisms; therefore, the evolution
of body size is one of the central issues in evolutionary biology [1]. The evolution of body size
has been investigated not only in extant animals, but also in extinct animals [2-7]. Because
they were the largest terrestrial animals ever to live on Earth, the body sizes of nonavian dino-
saurs (hereafter, simply referred to as dinosaurs, when including Mesozoic Avialae we use the
term “volant dinosaurs”) have drawn considerable attention and have been reconstructed
using various methods [8-12]. For example, the evolutionary pattern and distribution of body
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sizes among dinosaur species have been analyzed using large datasets [3,4,13,14]. Compared
with those of other major terrestrial vertebrate groups, the body size distribution of dinosaur
species exhibits three distinct features. First, the largest dinosaurs are heavier by an order of
magnitude than any other terrestrial animals [15]. Second, when the number of species is plot-
ted against log body mass, dinosaurs exhibit a distribution that is skewed toward a large body
size; conversely, the distributions of other major vertebrate groups are typically skewed toward
a small body size [14]. Third, the smallest species of dinosaurs was heavier than those of other
major terrestrial vertebrate groups, such as mammals, birds and fossil mammals of the Meso-
zoic and the Cenozoic, by more than two orders of magnitude [14,16-18].

These three features have received varying degrees of attention from researchers. The
extremely large body size of the largest dinosaurs has been one of the hottest topics in dinosaur
research. The reason for their gigantism has been investigated in detail [15]. The second fea-
ture, the skew toward large body size in the distribution of dinosaur species' body size, received
less attention [14,19,20]. Two hypotheses have been proposed for this unique skew: tapho-
nomic and sampling biases on one hand [13,20], and competition between middle-sized dino-
saurs and juveniles of large dinosaurs due to ontogenetic niche shifts on the other hand [19]. In
contrast, the reason underlying the larger size of the smallest dinosaurs compared with other
terrestrial vertebrate groups has only rarely been investigated. The processes of dinosaur minia-
turization toward and within the bird lineage have been well studied, and it has been indicated
that the lower body size limit of nonavian dinosaurs is about 1 kg [3,4]. The requirement for
digesting cellulose has been proposed as a factor that may have maintained herbivorous dino-
saurs at modest to large body sizes [21]. However, this cannot explain why there were no small
omnivorous or insectivorous dinosaurs smaller than 1 kg.

Dinosaurs are terrestrial, with functionally digitigrade or sub-unguligrade posture [22,23]
and Dinosauromorpha (including birds) and Scleromochlus, the closest relative of Dinosauro-
morpha, are the only animals that exhibited nonplantigrade foot posture during the Mesozoic
era [2,23]. In contrast, Cenozoic terrestrial mammals exhibited various foot postures, including
plantigrade, digitigrade, and unguligrade. Biomechanical studies have noted that nonplanti-
grade foot posture is more efficient for large body size owing to its lower locomotor cost and
faster speed [24,25]. In small body sizes, these merits of nonplantigrades are lost, and planti-
grade foot posture appears to have advantages primarily in its retention of digit functionality
and stability during locomotion [2]. Previous studies have investigated the constraints of foot
posture on body size distributions of North American and African nonvolant terrestrial mam-
mals and have considered how foot posture affected the body size evolution of North American
Cenozoic nonvolant terrestrial mammals [2,5,26]. These studies have shown that mammalian
groups with different foot postures have different body size distributions. The upper size limit
of plantigrades and the lower size limit of nonplantigrades have been found to correspond to a
body size of approximately 1 kg. The body size distributions of plantigrades appear skewed
toward small body sizes, whereas those of digitigrades and unguligrades are normally distrib-
uted. Furthermore, the fossil records of North American mammals indicate that, after the
emergence of nonplantigrade carnivores, most terrestrial plantigrades were constrained to
small body sizes (<1 kg), with no directional change (decrease or increase) in body size; con-
versely, the body size of nonplantigrade animals steadily increased following Cope’s rule [2,27].
However, in studies of dinosaur body size evolution and distribution, the effect of foot posture
has not yet been considered.

Here, we test the following hypotheses. 1) The observation that the lower body size limit of
nonvolant terrestrial nonplantigrades at 1 kg is not specific to North American and African
nonplantigrade mammals, but common for all nonvolant terrestrial nonplantigrade animals
(including terrestrial birds, mammals, and dinosaurs), regardless of continents, taxa, and
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geological age. 2) Foot posture is a factor that could be correlated with the unique body size dis-
tributions of dinosaurs, which are skewed toward large body size. 3) After the emergence of a
nonplantigrade lineage (Dinosauromorpha + Scleromochlus) in the Middle Triassic, evolution-
ary patterns of body sizes differ between the nonplantigrade lineage and coexisting plantigrade
lineages (therapsids and nonornithodiran archosauromorphs) similar to that which occurred
after the emergence of nonplantigrade mammals in Cenozoic North America, with an increase
in the body size of nonplantigrades and constraints imposed on the body size of plantigrades

[2].

Materials and Methods
Data collection

Body mass data for extant mammals and nonvolant terrestrial birds were taken from
PanTHERIA and the CRC handbook of avian body masses, respectively [17,18]. For birds, the
body mass of flightless terrestrial birds, i.e., Palacognathae (Ostrich and relatives) excluding
tinamous, flightless Gruiformes (flightless rails), and Strigops habroptilus (kakapo), were
included in the analysis (S1 Table). Nonvolant birds on predator-free islands do not need cur-
soliality for escaping from predators [28]; thus they inhabit environments which are not com-
parable to other nonplantigrade tetrapods in the present study. They were therefore excluded
from the analyses. Aquatic and amphibious nonvolant birds, i.e., Sphenisciformes, Anseri-
formes, Podicipediformes, and Fulica gigantea (giant coot), were not included because foot
posture only constrains the body size of terrestrial animals [5,25,27]. Categorizing foot posture
for each mammalian species is not straightforward because foot posture characteristics are con-
tinuous among mammals, and nonplantigrade foot posture convergently evolved in different
lineages [29]. As a result, the same species are sometimes categorized differently among
researchers [5,29,30]. Here, we define an organism’s foot posture to be nonplantigrade if their
heels are not in contact with the ground when they stop walking. Some large nonplantigrades
have elephantine feet that possess heel pads. Following Lovegroove and Haines [5], we consider
these animals as nonplantigrade, because elephantine feet have the same advantage as nonplan-
tigrades over plantigrade feet, because their foot bones are oriented vertically with respect to
the direction of Ground Reaction Force [31]. We judged foot posture at family level because
there was not sufficient information for each genus. Therefore, 24 mammalian families were
considered nonplantigrade (S2 Table). Other mammalian families were treated as plantigrades.
We did not categorize families comprising both plantigrade and nonplantigrade species (i.e.,
Caviidae, Eupleridae, Herpestidae, and Viverridae) or families comprising saltatorial organisms
(i.e., Macropodidae, Potoroidae, and Lagomorpha) as nonplantigrade, to retain the same stan-
dards of foot posture categorization for dinosauromorphs, in which no convincing evidence
suggests the existence of families with plantigrade or saltatorial members [23].

To investigate the constraints of nonplantigrade foot posture on extinct mammals and
assess sampling and taphonomic biases affecting fossils through comparison with extant
descendants, the body sizes of extinct Nearctic mammals belonging to the nonplantigrade fam-
ilies (according to the definition included above) were collected from the dataset of Lovegrove
and Mowoe [32].

Body mass data of Mesozoic dinosaurs included data taken from Benson et al. [4] and addi-
tional data for eight dinosaur species (54 Table). The body size estimates of Benson et al. [4]
are based on Campione and Evans [10], which uses circumference of limb bones. These meth-
ods have been criticized for overestimation of weights in comparison with estimates using volu-
metric methods, especially when the target taxa lie outside of the size range of extant taxa and/
or no extant analogues exist in terms of mode of locomotion or physiology [33-35]. We adopt
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their method because it was used to estimate body mass of a large number of dinosaur species
and also because the simplicity of the method allows us to calculate the weight of additional
taxa. When obtaining data from Benson et al. [4], we used data in which the mass of facultative
quadrupeds had been calculated as bipeds and eliminated data based on juvenile specimens.
Species of Mesozoic volant dinosaurs that are widely considered as volant, i.e., avialan species
except for aquatic or nonvolant forms, Microraptor (2 species), Rahonavis, Anchiornis, and
Xiaotingia were grouped as Mesozoic volant dinosaurs separately from other nonvolant dino-
saurs, to test how flight ability affects the constraint of foot posture on body mass. When more
than one body mass datum existed for the same species, the body mass data of Benson et al.
[4], which have been used in the phylogenetic comparative method, were adopted. The body
masses of eight newly added dinosaur species were calculated from circumferences of propo-
dial bones using the formulas given by Benson et al. [4]. The circumferences of the humerus
and femur of Scolosaurus cutleri were directly measured from the specimen at Fukui Prefec-
tural Dinosaur Museum (FPDM-V0000031). The circumferences of propodial bones of Latir-
hinus, Proa, Nankangia, Trinisaura, Anzu, Eousdryosaurus, and Dreadnoughtus were taken
from the literature or calculated from the anteroposterior and mediolateral widths of the mid-
shaft, measured from figures in the literature [4]. When the midshaft of the femur was clearly
not the thinnest part of the femur owing to the fourth trochanter, anteroposterior and medio-
lateral length were measured from above or beneath the trochanter, whichever was thinner.
Although there were several nondinosaur dinosauromorphs with well-preserved femora and
humeri, the figures in the literature were unfortunately not sufficient for the calculation of cir-
cumference, were lacking views from different directions, or (for quadrupedal taxa) figures of
the humerus and femur were not from the same individual. Therefore, we could not estimate
weights of non-dinosaur dinosauromorphs. However, some nondinosaur dinosauromorphs
were very small in their body size, and it is important to include them in searching for the
lower body mass limit of nonplantigrades. Therefore, we used the femur length of nondinosaur
dinosauromorphs (S5 Table) to infer their weights by judging whether their femora were longer
or shorter than those of dinosaurs which weighed 500 g and 1 kg, as 500g and 1kg are thresh-
olds body weights between nonplantigrades and plantigrades (see the results section).

To investigate changes in body size in response to the emergence of the first nonplantigrades
in the Middle Triassic, the femur length of both plantigrade and nonplantigrade species from
the Middle Triassic to Middle Jurassic was collected. The nonplantigrade lineage comprised
dinosauromorphs and Scleromochlus, whereas the two plantigrade groups examined here are
nonornithodiran archosauromorphs and therapsids. A database of tetrapod femur length pre-
sented by Sookias et al. [6] was used, with additional data from 19 species. Because foot posture
constrains only terrestrial tetrapods [2], volant pterosaurs, amphibious species belonging to
Phytosauria and Doswelliidae, and the aquatic Qianosuchus were omitted from the database of
Sookias et al. [6], and the femur lengths of aquatic thalattosuchians were not added to the data-
base. Taxa with stratigraphic midpoints between the Middle Triassic and Middle Jurassic were
selected. In addition, the femur lengths of 17 species of Archosauromorpha and two therapsid
species were added to the database based on direct measurements or the literature (S5 Table).
The absolute ages of each taxon were revised on the basis of the International Chronostrati-
graphic Chart 2013 [36].

Data analyses

Analyses of body mass distributions. To investigate the lower limit of body mass for non-
plantigrade terrestrial tetrapods, the lightest species were found within each of four groups:
nonvolant dinosaurs, nonplantigrade mammals, extinct Nearctic nonplantigrade mammals,
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and nonvolant terrestrial birds. For extant species, because our data set covers most of the spe-
cies with known body mass, it is likely that the lower body mass limit is close to the actual
lower limit for each group. On the other hand, in the case of extinct taxa, there is a well-studied
sampling bias in the fossil record, and this is especially profound for dinosaurs (see the discus-
sion section). The analyses presented herein are based on most of the species with known body
mass at the current time, but future discoveries may considerably change the picture.

In analyzing body mass distributions, we followed the methods of O’Gorman and Hone
[14]. The following 10 groups were analyzed: (1) all mammals regardless of foot postures
(2,732 species) [17], (2) nonplantigrade mammals (330 species), (3) plantigrade mammals
(2,402 species), (4) Nearctic extinct nonplantigrade mammals (326 species), (5) nonvolant ter-
restrial birds (17 species), (6) nonvolant dinosaurs (310 species), (7) Mesozoic volant dinosaurs
(53 species), (8) nonvolant Theropoda (130 species), (9) Sauropodomorpha (80 species), and
(10) Ornithischia (100 species) (Fig 1). Silverman’s test was conducted to count the number of
modes and the location of each mode. A measure of skewness for each distribution was calcu-
lated. Kolmogorov-Smirnov tests were conducted to test if each distribution was significantly
different from the normal distribution and from the body size distribution of other groups. In
addition, to clarify the differences between these groups graphically, the cumulative frequency
curves of plantigrade mammals, nonplantigrade mammals, extinct Nearctic nonplantigrade
mammals, nonvolant terrestrial birds, nonvolant dinosaurs, Mesozoic volant dinosaurs, Thero-
poda, Sauropodomorpha, and Ornithischia were plotted (Fig 2).

Fitting evolutionary models on lineages with different foot postures. Log femur lengths
of Archosauromorpha and Therapsida were plotted against the midpoint of the age range for
each taxon (Fig 3). Because these age ranges represent uncertainty in the dating of beds where
fossils were found, rather than a real living range, the midpoints were selected for the evolu-
tionary model fitting. The change in femur length patterns in three terrestrial lineages (i.e.,
nonplantigrade lineage of Dinosauromorpha + Scleromochlus, two plantigrade lineages of non-
ornithodiran Archosauromorpha, and Therapsida) were fitted to evolutionary models [37,38].
In addition, the lineage of Pseudosuchia was also analyzed, because plantigrade nonornitho-
diran Archosauromorpha was not a monophyletic group. The evolutionary model fitting used
a sequence of mean and variance of femur length within each clade, without reference to phy-
logeny. Four evolutionary models were fitted to the sequence and their goodness of fit com-
pared: a generalized random walk model (GRW), unbiased random walk (URW) model, an
Ornstein-Uhlenbeck (OU) process, and stasis.

Body size was binned by stage(s) according to the midpoint geological age estimated for
each taxon (S5 Table). There were several taxa for which the age range midpoint was 237 Ma,
corresponding to the border between the Ladinian and Carnian. These taxa were binned into
the Ladinian. When no data or only one datum were obtained for a given stage, this stage was
analyzed with the dataset of the adjacent stage belonging to the same epoch because the analy-
sis needed a variance that required at least two data sets for each time bin. Only one datum was
found for after the early Jurassic (Sinemurian), for a nonornithodiran Archosauromorpha
(Sunosuchus sp.) from the late Middle Jurassic (Callovian). Because of the long time gap, this
data point was not included in the analysis; consequently, there were no age bins for nonor-
nithodiran archosauromorphs and pseudosuchians younger than the Sinemurian. For therap-
sids, there were only four data in the Middle Jurassic; these data were grouped in the same time
bin for analysis. The age of each time bin for the evolutionary model fitting was calculated by
averaging the age of taxa included in each time bin, rather than using the midpoint of each
time bin, because the temporal distributions of taxa were not even in most time bins (Fig 3).
The mean and variance of femur length for each time bin used in the evolutionary model fitting
were overlaid on the scatter plot, along with the trajectories of mean values for each lineage

PLOS ONE | DOI:10.1371/journal.pone.0145716 January 20, 2016 5/14



el e
@ ) PLOS ‘ ONE Nonplantigrade Foot Posture of Dinosaurs

300

250

2004

1504

1004

50 +

Frequency

O -=_2NWrO

25 _

20

15

10

I T T T 1
0 2 4 6 8

Log10 body mass(g)

Fig 1. Body mass distribution for terrestrial tetrapod groups. Histograms for extant mammals of all foot
postures (A), extinct Nearctic nonplantigrade mammals (B), nonvolant terrestrial birds (C), and Mesozoic
dinosaurs including avialans (D). The dotted line indicates 500 g. In the histogram of extant mammals (A),
plantigrade species are colored in white, species of Macroscelididae (elephant shrew) are in gray, and other
nonplantigrade species are in black. In the histogram of dinosaurs (D), volant dinosaurs are in white,
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theropods are hatched, ornithischians are in gray, and sauropodomorphs are in black. Representatives of
each group are shown as silhouettes on histograms. Except for Macroscelididae and two dinosaur species,
all terrestrial nonplantigrade species were above 500 g. Except for nonvolant dinosaurs, the distributions of
terrestrial nonplantigrade groups are not significantly different from a normal distribution.

doi:10.1371/journal.pone.0145716.g001

(Fig 3). In the analysis, joint parameterization was used because it has stronger statistical
power in detecting the GRW model when the sampling error is high [38], which was the case
here. Because Bartlett’s test showed that variance of femur length is significantly different
between different time bins in all four lineages, pooled variance was not used [37]. For the sta-
tistical analyses, R 3.0.2 [39] and the packages silverman test, e1071, and paleoTS were used.

Results

The lightest body mass for nonplantigrade mammals, nonvolant birds, and nonvolant dino-
saurs in our data were 32.5 g, 957 g, and 123 g, respectively. In the case of Nearctic nonplanti-
grade fossil mammals, the lightest body mass was 827 g. These values are heavier by more than
one order of magnitude than those for the smallest mammal and bird, which were found to be
2.3 gand 1.9 g, respectively [17,18]. Furthermore, among extant nonplantigrade mammals,
only Macroscelididae mammals were lighter than 500 g. Among nonvolant dinosaurs, only
two alvarezsauroid species were below 500 g (S3 and S4 Tables).
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Fig 2. Cumulative curves of proportion of species number against log10 body mass for
nonplantigrade taxa and plantigrade mammals. Each dot represents a species. Curves of plantigrade
mammals and Mesozoic volant dinosaurs are shown on the far left and are distinct from curves for terrestrial
nonplantigrade groups, indicating their considerably smaller body size. The curve for sauropodomorphs is on
the far right, exhibiting a reverse L-shape that is distinct from other curves, indicating their large body size and
lack of small species. Curves for extinct and extant nonplantigrade mammals are similar, although the curve
for extinct species indicates a shift toward large body sizes. The difference between these two curves is likely
due to taphonomic and sampling biases on the fossils of nonplantigrade mammals.

doi:10.1371/journal.pone.0145716.9002
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Fig 3. Femur length of terrestrial nonplantigrade and plantigrade lineages from the Middle Triassic to
Middle Jurassic. Log femur length was plotted against the midpoint of the geological age estimated for each
taxon. Mean and variance of femur length in each time bin are plotted. These values were used to fit
evolutionary models (S9 Table). A trend toward longer femur length, reflecting a larger body size, was found
in the nonplantigrade lineage (dinosauromorphs and Scleromochlus, blue triangle), whereas no directional
trend was observed in plantigrade lineages (nonornithodiran archosauromorphs, green crosses; therapsids,
gray diamonds).

doi:10.1371/journal.pone.0145716.9003

Although we could not calculate body mass, femur length is known for several nondinosaur
dinosauromorphs and Scleromochlus (S5 Table). When their femur length was compared with
that of dinosaurs, the body mass data for which were included in our data set, the femur length
of Scleromochlus (32 mm) was shorter than that of Parvicursor (52.6 mm) [4], which was esti-
mated to weigh 130 g. The femur length of Marasuchus was 56.3 mm, similar to that of Parvi-
cursor. Other nondinosaur dinosauromorphs, such as Lagerpeton, Dromomeron, and
silesaurids, had femurs longer than dinosaurs that weighed more than 1 kg, such as Pantydraco.
Based on these comparisons, we considered that only Scleromochlus and Marasuchus would
have had body mass below 500 g among nondinosaur dinosauromorphs, and assumed that
other nondinosaur dinosauromorphs had weights above 1 kg.

In summary, among 983 species of terrestrial nonplantigrades for which body mass data
have been collected here, only 13 species of macroscelid mammals and two species of alvarez-
sauroid dinosaurs weighed less than 500 g. Although not included in these 983 species, two spe-
cies of nonplantigrade ancestors of dinosaurs, Scleromochlus and Marasuchus, were also
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terrestrial nonplantigrades with body masses lighter than 500 g. These data indicate that terres-
trial nonplantigrades are typically heavier than 500 g, regardless of the taxa and geological age.

The skewness of body mass distribution indicates whether the group considered is skewed
toward heavier body mass (negative values) or lighter body mass (positive values). For extant
nonplantigrade mammals, nonvolant dinosaurs, and extinct Nearctic nonplantigrade mam-
mals, skewness was found to be negative (-0.63, —0.46, and —0.03, respectively). The skewness
of nonvolant birds and Mesozoic volant dinosaurs were found to be positive (0.363 and 0.076,
respectively). The skewness values for nonvolant Theropoda, Ornithischia, and Sauropodo-
morpha were found to be —0.34, —0.69, and —1.55, respectively (S7 Table). However, except for
nonvolant dinosaurs and two dinosaur clades (Ornithischia and Sauropodomorpha), all body
mass distributions were not significantly different from the normal distribution (p > 0.05: S7
Table). Body mass distributions were significantly different between the groups analyzed here
(p < 0.01, except for the comparison between nonvolant birds and nonplantigrade mammals,
which p < 0.05), except for two comparisons that are between Mesozoic volant dinosaur and
nonplantigrade mammals and between Mesozoic volant dinosaur and all extant mammals (S8
Table).

The evolutionary model fitting clarified that for the nonplantigrade lineage (dinosauro-
morphs + Scleromochlus), the best model was GRW with a positive step, indicating a trend
toward larger body size in this lineage from the Middle Triassic to the Middle Jurassic. Other
models were fitted poorly compared with GRW: the goodness of fit of other models were less
than 1/8 of that of the best model. For plantigrade lineages, i.e., nonornithodiran archosauro-
morphs and therapsids, the best model was URW, which indicated that no trend in body size
evolution existed among these two lineages during this time period. Nevertheless, other evolu-
tionary models were not negligible for these two lineages, because the goodness of fit of the sec-
ond best model was larger than 1/8 of that of the best model. The second best model was GRW
with a negative step for therapsids, which indicated a steady body size decrease; conversely, for
nonornithodiran archosauromorphs, the second best model is stasis that indicated an evolu-
tionary optimum femur length of approximately 126 mm. The result of model fitting for pseu-
dosuchians was almost the same as that of nonornithodiran archosauromorphs (S9 Table).

Discussion

The body size data considered in the present study indicate that a lower size limit existed for
terrestrial nonplantigrades, regardless of age and taxon. The lightest body mass for nonplanti-
grade mammals, extinct Nearctic nonplantigrade mammals, nonvolant terrestrial birds, and
nonvolant dinosaurs were 32.5 g, 827 g, 957 g, and 123 g, respectively. These smallest nonplan-
tigrades were an order of magnitude heavier than the smallest mammals and birds, which had
masses of approximately 2 g [17,18]. The smallest nonplantigrades were species of the family
Macroscelididae (elephant shrew), which is confined to Africa. Except for members of Macro-
scelididae, two species of alvarezsauroid dinosaurs (which were 130 g and 300 g) and likely two
species of nondinosaur ornithodirans (Scleromochlus and Marasuchus) were below 500 g (See
results section). Regardless of taxa or geological age, all other terrestrial nonplantigrades were
above 500 g (Fig 1), which is larger than the median body mass of both mammals (182 g) and
birds (41 g), based on a large body mass dataset [17,18]. The advantages of nonplantigrade foot
posture in large body size, namely faster speed and lower locomotor cost, have been clarified
on the basis of quantitative biomechanical comparisons with plantigrades, and the upper size
limit of plantigrades (probably because of competition with or predation by nonplantigrades)
has been highlighted often [5,24,25]. Our data indicate, at the same time, that plantigrade
mammals occupied the small body size class (<1 kg) exclusively (Fig 1), and the body mass
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distributions of nonplantigrades indicate the existence of a pronounced body size barrier for
nonplantigrades that lasted from the Mesozoic. Aves became free from this size barrier by
evolving flight ability, and the body sizes of Mesozoic volant dinosaurs are also close to or
lower than the 1 kg barrier (S4 Table, Figs 1 and 2). Nonplantigrade Macroscelididae species
are known to have made networks of trails by removing bumps [40]. These examples suggest
that the lower size limit of nonplantigrades is related to a lack of stability in nonplantigrade
foot posture during ground locomotion [32], in which even small bumps can become signifi-
cant obstacles for small animals (i.e., those with mass less than 1 kg).

Nonplantigrade foot posture cannot explain the skew toward large body sizes observed in
nonvolant dinosaur species, because this skew is in contrast with the normally distributed body
size characteristics of other nonplantigrades. Nevertheless, considering foot posture, rather
than being skewed toward small body sizes (like other major vertebrate groups that contain
species with various locomotor modes) as previously thought [14,19], the body size distribu-
tions of dinosaur species should exhibit a normal distribution (like other nonplantigrades).

Previous studies have attributed the skew toward large body size in dinosaur species body
size distributions to taphonomic and sampling biases [20] or to oviparity and ontogenetic
niche shifting of dinosaurs and the consequent occupation of small-sized niches by the juve-
niles of large dinosaurs [19]. The body size of theropods exhibits a normal distribution, when
volant species and Avialae were excluded, as for other nonplantigrades, which is interesting
considering that theropods have been sampled more intensely than other dinosaur taxa [20].
The body size of extinct Nearctic nonplantigrade mammals is generally larger than that of
extant nonplantigrade mammals, but both are normally distributed, with similar cumulative
curves (Fig 2 and S7 Table). Further, if Macroscelididae mammals that live only in Africa were
excluded, body mass distributions of extant nonplantigrade and extinct nonplantigrade Nearc-
tic mammals were only marginally different (p < 0.05 but > 0.01). If taphonomic and sampling
biases for dinosaurs are similar to those for nonplantigrade mammals, they may not be suffi-
cient to compensate for the differences between a normal distribution and the skewed distribu-
tion of dinosaurs, especially for sauropodomorphs, which have exhibited a body size
distribution strongly skewed toward large body sizes (Figs 1 and 2 and S7 Table). Nevertheless,
such taphonomic factors may affect dinosaurs more strongly than mammals owing to their
older age and because, unlike mammals, dinosaurs cannot be reliably diagnosed and weighed
based on an isolated tooth. The abundance of robust skull domes of small-bodied pachycepha-
losaurs compared with that of other similar-sized ornithischians exhibited preservational bias
toward large and robust fossils and indicate that abundances of small-bodied dinosaurs (<100
kg) are strongly underestimated [41,42]. Also, considerable efforts have been made to find
larger dinosaurs [43]. These two explanations, encompassing the taphonomic and sampling
biases and unique ecology of dinosaurs, are not mutually exclusive; therefore, both factors may
contribute to the negatively skewed body mass distribution of dinosaurs. Further study is
needed to investigate the difference in taphonomic effects on dinosaurs and mammals.

Since nonplantigrade tetrapods first appeared in the Middle Triassic, their lineage (Dino-
sauromorpha + Scleromochlus) exhibited a steady and directional change toward larger body
size, reflected in their femoral lengths, until the Middle Jurassic. During the same time interval,
two main terrestrial plantigrade tetrapod lineages, therapsids and nonornithodiran archosaur-
omorphs, exhibited no directional trend in body size (Fig 3 and S9 Table). These evolutionary
patterns are equivalent to the body size evolution of mammalian lineages with different foot
postures in North America during the Cenozoic after the emergence of nonplantigrade mam-
mals: nonplantigrade lineages exhibited an increase in body size, whereas plantigrades were
constrained to small body sizes with no directional body size change [2]. Directional evolution-
ary change is rarely found in fossil lineages [44]; however, in dinosaur lineages, directional
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body size increase is often supported [7, 27, 28] (see [6] for a differing opinion). It may be sur-
prising that, in both the Mesozoic and Cenozoic, after the emergence of nonplantigrades, the
body size of nonplantigrade lineages increased following Cope’s rule, while that of plantigrades
did not [2]. However, this trend is convincing, because in our opinion the disparity in body
size distribution between plantigrades and nonplantigrades would never have occurred unless
trends in body size evolution differed between different foot postures.

Evolution toward a larger body size is often phrased as “success” or “prosperity,” especially
when describing the early radiation of dinosaurs. However, regarding dinosauromorphs as an
analogue of Cenozoic nonplantigrade mammals, radiation and extinction of dinosauromorphs
can be understood more objectively. Body mass distributions indicate that nonplantigrades are
typically restricted to large body sizes (>500 g), and small plantigrade species are much more
abundant and diverse among modern mammals (Fig 1). In modern mammals, species with arbo-
real, semiaquatic, and fossorial locomotion are dominated by plantigrades, with nonplantigrades
restricted to cursorial or graviportal locomotion. The nonplantigrade foot posture of dinosauro-
morphs may have prevented them from evolving body sizes smaller than 500g, the body size
range that contains majority of extant mammalian species (Fig 1 and S3 Table), and left diverse
vacant niches for other tetrapods, especially for mammals that exhibited ecological diversity sim-
ilar to that of modern plantigrade mammals [47]. The nonplantigrade foot posture of dinosauro-
morphs may have allowed them to occupy mid to large body sizes in the fauna of the Jurassic
and Cretaceous. Simultaneously, it would have prevented them from evolving small body sizes
and the morphological diversity to match modern mammals [48]. The Cretaceous-Paleogene
(K-Pg) extinction was size selective [16,49]. According to Fara [49], large-sized tetrapods
(snout-vent length >150 cm) were significantly more likely to become extinct and medium-
sized tetrapods (150 cm > SVL > 15 cm) showed higher extinction rate compared with small-
sized tetrapods (15 cm > SVL) at the K-Pg extinction. The resulting lack of small-sized species
because of the restrictions of the nonplantigrade foot posture made dinosaurs vulnerable to
extinction. Avialae survived partly because of their small size (Figs 1 and 2), which they attained
owing to their flight ability, which in turn allowed them to break the body size barrier of non-
plantigrades. Although disturbed by the end-Cretaceous extinction event [2], among terrestrial
tetrapod fauna, nonplantigrades have dominated the mid to large body size classes from the
Jurassic until the present, while species with small body sizes have been exclusively plantigrades.
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