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hydroxylations in VNVN motifs of ankyrin fold proteins
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The aspariginyl hydroxylase human factor inhibiting
hypoxia-inducible factor (FIH) is an important regulator of the
transcriptional activity of hypoxia-inducible factor. FIH also
catalyzes the hydroxylation of asparaginyl and other residues in
ankyrin repeat domain—containing proteins, including
apoptosis stimulating of p53 protein (ASPP) family members.
ASPP2 is reported to undergo a single FIH-catalyzed hydrox-
ylation at Asn-986. We report biochemical and crystallographic
evidence showing that FIH catalyzes the unprecedented post-
translational hydroxylation of both asparaginyl residues in
“VNVN” and related motifs of ankyrin repeat domains in
ASPPs (i.e., ASPP1, ASPP2, and iASPP) and the related ASB11
and p18-INK4C proteins. Our biochemical results extend the
substrate scope of FIH catalysis and may have implications for
its biological roles, including in the hypoxic response and ASPP
family function.

2P-Oxoglutarate (20G)-dependent oxygenases play central
roles in the responses of animals to hypoxia. When sufficient
dioxygen is present, efficient prolyl-4-hydroxylation of
hypoxia-inducible factor alpha (HIF-a) subunits (as catalyzed
by PHD or EGLN isoforms) signals for HIF-a degradation by
promoting its binding to a von Hippel-Lindau protein ubiq-
uitin ligase complex, so reducing the concentration of tran-
scriptionally active heterodimeric a,f-HIF and HIF mediated
transcription (1-3). When dioxygen levels are reduced, PHD
catalysis is decreased, with consequent increases in HIF-a and
o,B-HIF levels, leading to transcription of HIF target genes, for
example, those encoding for erythropoietin and vascular
endothelial growth factor, which act to counter the effects of
hypoxia (4—6). At least in higher animals, a second oxygenase,
factor inhibiting HIF (FIH), which like the PHDs is Fe(II) and
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20G dependent, regulates the activity of HIF-1a/2a isoforms
by catalyzing the C-3 hydroxylation of a single asparagine
residue in the HIF-1a/2a transcriptional activation domain, a
modification that decreases binding of HIF with the CBP/p300
histone acetyltransferases, which are activators of transcription
(7-10).

In addition to HIF-a, FIH also interacts with multiple
ankyrin repeat domain (ARD)-containing proteins, many, but
not all, of which it hydroxylates, in a manner regulated by the
ARD sequence and factors including the overall ARD fold
(11-15). Rather unexpectedly, given crystallographic analyses
on FIH-HIF-1la CAD fragment complexes, which suggested
rather precise binding of the asparaginyl-substrate residue at
the active site (16), FIH also catalyzes hydroxylation of aspartyl
residues, histidinyl residues, and other residues in ARDs,
often apparently within a preferred recognition sequence
(-LLxxGADVNA-, with the hydroxylation site in bold)
(17, 18).

By contrast with the apparent relatively “switch-like” role of
FIH-catalyzed asparaginyl hydroxylation in the HIF system, the
role(s) of FIH-catalyzed ARD hydroxylation is unclear. ARD
hydroxylation can thermodynamically stabilize isolated ARDs
(19, 20), but the physiological relevance of this is unclear.
Variations in the extent of ARD hydroxylation and lifetimes of
ARDs coupled with the observation that hydroxylated ARDs
bind less tightly to FIH have led to the proposal that ARD
hydroxylation is a potential mechanism for establishing “hyp-
oxic memory” (12, 21, 22).

Janke et al. (23) have reported that FIH catalyzes aspar-
aginyl hydroxylation of the ARD-containing apoptosis stimu-
lating of p53 protein (ASPP) family members; ASPP2 was
reported to undergo monohydroxylation of Asn-986. Here, we
report biochemical and biophysical studies on the extent of
FIH-catalyzed ASPP family hydroxylation; notably, the
results reveal an unprecedented double asparaginyl hydrox-
ylation of the “VNVN” motif present in the ARDs of ASPP1
and ASPP2.
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Results
Initial cell evidence for VNVN double hydroxylation

Initially, we performed coimmunoprecipitation experiments
involving vectors that overproduce V5-tagged WT ASPP2
(WT ASPP2-V5) and ASPP2 V5 variants with hemagglutinin
(HA)-tagged WT FIH (WT HA-FIH) in human bone osteo-
sarcoma epithelia cells (U20S) (Fig. 1). The ASPP2-V5 vari-
ants investigated included an N986A variant without the
reported (23) ASPP2 FIH hydroxylation site at Asp-986 and
subsequently an ASPP2 NO984A variant. Surprisingly, the
alanine variants of the “VNVN” motif in ASPP2-V5 showed
increased coimmunoprecipitation of HA-FIH compared with
WT ASPP2-V5.

To investigate the potential extent of FIH-catalyzed ASPP
ARD hydroxylation, ASPP1-V5, ASPP2-V5, and iASPP-V5
encoding vectors were transfected into U20S and U20S
“FIH CRISPR KO” cell lines (U20S FIH KO) that were
reconstituted with WT HA-FIH, a catalytically inactive HA-
FIH D201A variant or an empty vector. LC-MS/MS anal-
ysis revealed hydroxylation of iASPP-V5, ASPP1-V5, and
ASPP2-V5 in an FIH-dependent manner (Figs. S1-S4). Un-
expectedly, in addition to the single hydroxylation of the
asparaginyl residues present in the canonical ARD hydrox-
ylation motifs (L...NVN) as reported by Janke et al. (23),
evidence for a second FIH-dependent hydroxylation site was
observed at the asparagine two residues away (-2) from the
canonical FIH hydroxylation site. Thus, in the cases of
ASPP1-V5 and ASPP2-V5, there was evidence for hydroxyl-
ation at the VNVN residue (underlined), in addition to the
VNVN residue and in the case of iASPP-V5 of the ANVN
residue, in addition to the ANVN residue (Figs. S1-S4). Ev-
idence for the double VNVN hydroxylation was only
observed in samples with elevated WT HA-FIH levels. At-
tempts to determine the hydroxylation levels of endogenous
ASPPs were unsuccessful, likely because of their relatively low
abundance.

ASPP peptides are monohydroxylated by FIH

To investigate the extent of FIH-catalyzed ASPP protein
ARD hydroxylation, we then tested if ASPP peptides spanning
both potential hydroxylation regions are accepted by FIH as
substrates (Fig. 1). ASPP peptides (iASPP residues 670-693;
ASPP1 residues 932—-954; and ASPP2 residues 969-991) were
incubated with FIH in the presence of appropriate cosubstrates
(20G, O,) and the cofactor Fe(II), under conditions reported
to sustain FIH catalysis (8, 11). Following reaction, all the
peptides manifested a clear +16 Da mass shift relative to the
substrates, corresponding to a single hydroxylation reaction,
which was shown to occur in an FIH-dependent manner
(Fig. 1). The modification site was assigned for iASPP at Asn-
687, using fragmentation mass spectrometry (MS) (Fig. S5 and
Table S1). This (canonical) hydroxylation site corresponds to
the previously assigned hydroxylation site on ASPP2 at Asn-
986 (23), which is on a loop linking the second and third
ARDs of ASPP2 and which is spatially adjacent to the Src
homology 3 domain (Fig. S6).
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To investigate how the ASPPs bind to FIH, we crystallized
FIH in complex with iASPP-, ASPP1-, and ASPP2-derived
peptides containing the VNVN/ANVN motif (Fig. 2). The
structures show that, at least in the crystalline state, all
the ASPP fragment peptides bind in a conserved fashion, with
the “canonical” asparagine residue orientated for -hydroxyl-
ation, including via hydrogen bonding with GIn-239 of FIH
(16), in accord with the peptide hydroxylation data (Fig. 2).
The “second” asparagine is positioned in a similar orientation
compared with Glu-801 of human HIF-1a with a metal to C-
distance of >10 A, that is, in these structures, the “second”
asparagine is not productively positioned to be hydroxylated
(Fig. 2). The binding of the peptides implies that for protein
ASPP substrates, at least partial unfolding of the ARDs must
occur in order to bind to FIH in a catalytically productive
manner, as has been proposed for other ARD substrates (13).
Crystallization efforts of FIH in complex with larger fragments
of ASPP proteins have as yet been unsuccessful.

Overall, the biochemical and biophysical results with peptides
contrast with the cellular results for ASPP1/2 and iASPP pro-
teins, where we observed double hydroxylation, in that with the
peptides, only a single hydroxylation was observed. We inves-
tigated if substrate—enzyme interactions distant from the active
site (i.e., not observed in the peptide substrates—FIH complexes)
are needed for the VNVN double hydroxylation assigned in cells
by producing recombinant forms of the C-terminal domains of
iASPP, ASPP1, and ASPP2. Consistent with the cellular results,
the C-terminal domains of all three proteins were subjected to
FIH-catalyzed hydroxylation assays. LC—MS/MS analysis for all
proteins showed evidence for double hydroxylation of the
VNVN/ANVN motifs (Figs. S7-S9). The ASPPs were shown to
compete with a HIF-1a fragment and a previously reported
consensus ankyrin substrate (19) for FIH-catalyzed hydroxyl-
ation (Figs. S10-S12), raising the possibility that they might,
along with other FIH substrates, be involved in regulating the
role of FIH in the hypoxic response. Consensus ARD-derived
peptides (19, 20) containing VNVN, ANVN, and VNAN mo-
tifs were also shown to be FIH substrates undergoing single
hydroxylations (Fig. S13).

The combined turnover and structural studies imply that in
order for the second FIH-catalyzed hydroxylation to occur,
interactions in addition to those at the active site (Figs 1 and
S6) and which do not manifest in the FIH:peptide fragment
crystal structures are involved in the second hydroxylation. To
investigate if the VNVN double hydroxylation is specific to
ASPPs or can be manifested with other FIH substrates, we
conducted a bioinformatic search for human proteins con-
taining a “VNVN” motif in their ankyrin repeats. In the human
proteome, we found six members of the ARD family, including
ASPP1 and ASPP2, that contain a VNVN motif (Fig. 3). To
investigate if these manifest FIH-catalyzed single or double
VNVN hydroxylations, we produced recombinant forms of
ASB11 and P18-INK4C and tested them for FIH-catalyzed
hydroxylation (Fig. 3). MS fragmentation studies provided
evidence that ASB11 and P18-INK4C proteins undergo both
monohydroxylation and dihydroxylation reactions within their
VNVN motif (Figs 3, S14-and S15). Note that ASB11 has also a
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Figure 1. Evidence for FIH-catalyzed double hydroxylation of ASPP2-V5 within the same ankyrin repeat in protein from U20S cells but not in
studies with peptide fragments. A, Western Blot analysis of V5-ASPP2 variants and HA-FIH using total cell lysates from ASPP2/FIH-double KO U20S cells,
transfected with an empty vector, or cotransfected with pcDNA3 vectors encoding for HA-tagged FIH and V5-tagged WT ASPP2 or “NVN” variants,
immunoprecipitated (IP) with an anti-V5 antibody (Thermo Fisher Scientific). HA-tagged FIH, V5-ASPP2, and IgG light-chain (IgG,) levels are indicated.
B, LC-MS/MS analysis of V5-ASPP2 from U20S FIH CRISPR KO cells cotransfected with vectors encoding for V5-ASPP2 and HA-FIH. The spectrum shows
fragments from the elastase-catalyzed digestion of ASPP2 showing evidence for hydroxylation at Asp-984 and Asp-986 (indicated by lowercase n). Con-
ditions: V5-ASPP2 in pcDNA3. The vectors encoding for ASPP2 and FIH variants were transfected and overexpressed for 24 h in U20S FIH CRISPR KO cells.
Immunoprecipitation was employed with an anti-V5 antibody. Proteins were separated by SDS-PAGE; the band corresponding to ASPP2 was excised and
digested using elastase for 16 h at 37 °C. C, LC-MS-based hydroxylation assays of an ASPP1-derived peptide (residues 932-954), an ASPP2-derived peptide
(residues 969-991), and an iASPP-derived peptide (residues 670-693). Conditions: 0.1 uM FIH, 100 uM sodium ascorbate, 10 uM 20G disodium salt, 10 uM
Fe(ll), 50 mM Tris-HCI (pH 7.5), and 50 mM NaCl, at ambient temperature. 20G, 2-oxoglutarate; ASPP, apoptosis stimulating of p53 protein; FIH, factor
inhibiting hypoxia-inducible factor; HA, hemagglutinin; IgG, immunoglobulin G.
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A FIH hydroxylation site
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Figure 2. Views from crystal structures of FIH in complex with ASPP-derived peptides. A, left, sequence alignment of ASPPs with reported FIH sub-
strates. Right, overlay of crystal structure-derived views of FIH in complex with ASPP2 and HIF-1a (Protein Data Bank code: 1H2K; 2.15 A) showing the
conserved nature of substrate binding. B, views from the dimeric structure of FIH in complex with an iASPP-derived peptide (residues 670-693), an ASPP1-
derived peptide (residues 932-954), and an ASPP2-derived peptide (residues 969-991). C, close-up views from crystal structures of FIH in complex with
ASPP-derived peptides, the Fo-Fc OMIT maps, shown in green mesh, are contoured to 30. ASPP, apoptosis stimulating of p53 protein; FIH, factor inhibiting
hypoxia-inducible factor; HIF, hypoxia-inducible factor.

second assigned hydroxylation site at Asp-125 in the ARD, hydroxylation regions, analogous to the ASPP peptides, were
which is not part of a “VNVN” motif (Fig. S16). Peptides not accepted by FIH as substrates under the tested conditions
derived from ASB11 and P18-INK4C spanning potential (data not shown).
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Figure 3. Evidence that FIH catalyzes two hydroxylations of ASB11 and p18. Top, domain structure of human “VNVN” motif-containing proteins. Middle,
LC-MS/MS spectra implying a doubly hydroxylated ASB11 peptide at Asn-92 and Asn-90 (indicated by a lowercase n). Bottom, LC-MS/MS spectra for doubly
hydroxylated peptides at Asn-32 and Asn-30 (indicated by a lowercase n). Reaction conditions: 1 uM ASB11, 0.25 uM FIH, 1 mM sodium ascorbate, 1T mM
20G disodium salt, 200 pM Fe(ll), and Tris—HCl (pH 7.5) incubated for 3 h at 37 °C. 20G, 2-oxoglutarate; FIH, factor inhibiting hypoxia-inducible factor.

Discussion

The overall results show that FIH can catalyze hydroxylation
of two asparaginyl residues within the same VNVN/ANVN

isolated recombinant proteins and by analyses of full-length
proteins in cells, albeit in the latter case with elevated FIH
levels (Figs. 1-3). The ability of FIH to catalyze two hydrox-

motifs present in ARD substrates, as shown by work with ylations of the same VNVN motif in the case of ASPP1/2,
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ASBL11, P18, and ANVN, at least in the case of iASPP, within
ARDs is unprecedented.

The ability of 20G-dependent oxygenases and related
oxygenases/oxidases to catalyze a range of different types of
oxidative reactions and to accept multiple substrates is long
established in plants and microbes (24, 25). In the case of
human 20G oxygenases acting on proteins and nucleic acids,
the biologically relevant reactions catalyzed by them are
presently limited to hydroxylations (including the sequential
oxidation of methyl groups to acids) and N-methyl demethy-
lations likely proceeding via sequential hydroxylation. How-
ever, certain 20G-dependent protein hydroxylases, including
FIH, AspH, JMJD6 and some procollagen-modifying enzymes,
likely act on multiple substrates (24, 25). FIH is of particular
interest because not only can it accept both HIF-a isoforms
and multiple ARD (and other) proteins but also it can accept
different residues as substrates, including Asn, Asp, His, and,
at least in isolated form, some D-amino acids (17, 18, 26, 27) at
least in the context of ARD-derived substrates.

FIH has recently been reported to form tight complexes
with proteins in an oxygen-dependent manner, in particular
with the deubiquitinase ovarian tumor domain containing
ubiquitin aldehyde binding protein 1 (OTUBL), likely via co-
valent bond formation (28). The human 20G-dependent
prolyl hydroxylase OGFODL1 is also reported both to catalyze a
single C-3 hydroxylation of its ribosomal protein 23 substrate
and to form a (likely) covalently linked complex with it (29).
Interestingly, the yeast homolog of human OGFODI1 is re-
ported to catalyze both the single and apparent double hy-
droxylation of the analogous prolyl residue (30). In the case of
substrate analog studies with isolated FIH, we have also
observed that the double hydroxylation of a single residue can
occur (p-Leu) though there is no evidence that this reaction is
of biological relevance (27). Evidence that FIH can catalyze the
desaturation of certain residues has also been accrued (17).
Collectively, these observations imply that the range of
oxidative reactions catalyzed by animal 20G oxygenases,
including FIH, likely extend well beyond those presently
defined biochemically.

Interestingly, we observed two hydroxylations of the
VNVN/ANVN motifs with protein substrates but not with
ASPP-derived peptide substrates. In the case of peptide sub-
strates, we only observed hydroxylation at the canonical
asparagine site, that is, the second asparagine residue in the
VNVN or ANVN motifs. These observations are in accord
with proposals that enzyme—substrate interactions relatively
distant from the FIH active site, likely involving at least partial
unfolding of the stereotypically observed ARD conformation,
are involved in regulating catalysis by FIH (13, 31). The
observation of somewhat different conformations of the
VNVN-containing regions of ASPP1 and ASPP2 when com-
plexed with FIH (Fig. 2) compared with their crystal structures
when not complexed with FIH (32, 33) is consistent with this
proposal. Thus, we propose that specific and likely dynamic
interactions between FIH and VNVN/ANVN-containing ARD
proteins enable the “second” noncanonical FIH substrate
asparagine residue (VNVN/ANVN) to be positioned

6 . Biol. Chem. (2022) 298(6) 102020

productively for hydroxylation. The details of these confor-
mational changes, along with the cellular biological roles of the
double hydroxylation, are the subject of current investigations.

Experimental procedures

Recombinant forms of FIH (full length), ASPP2gg9_1125-Avi-
Hisg, and iASPPg;s5.g25-Avi-Hisg, were produced and purified
as described (8, 34). Peptides (all with C-terminal amides) were
from GL Biochem. L-(+)-ascorbic acid sodium salt (code:
11140), ammonium iron (II) sulfate hexahydrate (code:
215406), N-oxalylglycine, and 20G disodium salt hydrate
(K3752) were from Sigma—Aldrich.

Recombinant protein purification

Recombinant proteins were produced by standard proced-
ures. DNA encoding for ASPPlggs 1990 Was cloned into the
PGEX-6P2 vector between BamHI and Notl restriction sites.
The ASPPlggs_1990 encoding construct was transformed into
Escherichia coli BL21(DE3) cells and grown at 37 °C in LB—
Miller medium containing 50 pg/ml ampicillin. Recombinant
protein production was induced by addition of IPTG (final
concentration of 0.5 mM) for 16 h at 18 °C. Cells were lysed by
sonication, centrifuged (34,000¢, 30 min), and filtered (0.45 pm
filter). The glutathione-S-transferase (GST)-tagged protein
was purified using a Glutathione Sepharose column (GE
Healthcare). Fractions containing the desired protein were
combined, buffer exchanged, and the GST tag was cleaved
using the viral 3C protease. The cleaved GST tag was removed
using a Glutathione Sepharose column. The resultant cleaved
protein was further purified by size-exclusion chromatography
(Superdex-75 column; GE Healthcare).

The recombinant P18-INK4C production vector was a kind
gift from Prof Jane Endicott; P18-INK4C protein production
was induced by the addition of IPTG (final concentration of
0.5 mM) for 16 h at 18 °C, prior to cell harvesting. P18-INK4C
containing cell pellets were resuspended in 50 mM Hepes—
NaOH, 150 mM NaCl, 2 mM DTT, pH 7.5 buffer, lysed by
sonication, and cleared of cell debris by centrifugation and
filtration prior to immobilizing the GST-tagged proteins on a
Glutathione Sepharose column. The column was washed with
the same buffer (100 ml) prior to elution with 40 mM Hepes—
NaOH, 200 mM NaCl, 10 mM reduced glutathione, and pH
7.5 buffer. Fractions containing the desired protein were
pooled, the viral 3C protease (1:50 ratio) added, and the
mixture was incubated overnight at 4 °C. The GST cleaved
protein was further purified by size-exclusion chromatography
using a Superdex-75 column and 40 mM Hepes—NaOH,
200 mM NaCl, and pH 7.4 as the running buffer. DNA
encoding for ASBllgs pg; was a kind gift from Dr Alex
Bullock; the protein was purified as described: https://www.
thesgc.org/structures/4UUC.

X-ray crystallography
Crystals of FIH substrate complexes were grown in sitting

drops (300 nl) using the vapor diffusion method at 293 K in a
protein to reservoir ratio of 2:1. The FIH solution contained
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11 mg/ml FIH (0.27 mM) in 50 mM Tris—HCI (pH 7.5), N-
oxalylglycine (1 mM), and the appropriate substrate peptide
(2 mM) (16). For «crystallization purposes, Fe(Il) was
substituted for Zn(II) to avoid metal oxidation. Crystals were
cryoprotected by transfer into the crystallization buffer sup-
plemented with 20% (v/v) glycerol and freeze cooled by
plunging into liquid nitrogen. Data were collected from single
crystals at 100 K using Diamond MX beamlines (Tables S2 and
S3). The structures were solved using Phaser (35) using Protein
Data Bank code 1H2K as a search model. Alternating cycles of
refinement using PHENIX (36) and model building using
COOT (37) were performed until Ry and R, converged.

LC-MS peptide hydroxylation assays

All kinetic measurements were performed by monitoring
the appearance of hydroxylated substrate peptides using a
RapidFire RF365 high-throughput sampling robot (Agilent)
connected to an Agilent 6550 accurate mass quadrupole time-
of-flight mass spectrometer equipped with an Agilent jet
stream electrospray ionization source (38). L-ascorbic acid
(50 mM in deionized water), 20G (10 mM in deionized water),
and iron (II) sulfate (400 mM in 10 mM HCI) were prepared
freshly each day. For each assay, 50 mM Tris—HCI (pH 7.5),
50 mM NaCl (prepared freshly each day) containing 100 uM L-
ascorbic acid, 10 uM ammonium (II) sulfate, 10 pM 20G, and
10 uM peptide substrate were added to a well of a 96-deep well
polypropylene plate (Greiner Bio-One). The plate was then
transferred to a RapidFire (RF365) high-throughput sampling
robot, and reaction was initiated by adding FIH to a final
concentration of 0.15 uM. Enzyme reactions were performed
at room temperature, and assay samples were aspirated from
the plate and loaded onto a C4 solid phase extraction (SPE)
cartridge. The C4 SPE was then washed with LC-MS grade
water containing 0.1% (v/v) aqueous formic acid for 5 s to
remove nonvolatile buffer salts, and then the peptide was
eluted from the C4 SPE with an organic solvent for 5 s con-
sisting of 85% (v/v) LC-MS grade acetonitrile, 15% (v/v) LC—
MS grade water, and 0.1% (v/v) formic acid. The whole cycle of
sample loading, aqueous wash, and organic solvent elution
takes approximately 12 s, thus enabling accurate kinetic
measurements by MS. Peptide charge states were monitored in
the positive electrospray ionization mode with a drying gas
temperature of 280 °C, a drying gas flow rate of 13 /min,
nebulizer gas pressure of 40 psi, sheath gas temperature of 350
°C, sheath gas flow rate of 12 I/min, and a nozzle voltage of
1000 V. Ion chromatogram data were isolated for both the
peptide substrate and the hydroxylated peptide substrate and
integrated using RapidFire integrator software (Agilent). The
percent conversion of the peptide substrate to the +16 hy-
droxylated peptide was calculated using the equation: % con-
version = 100 x  hydroxylated/(hydroxylated  +
nonhydroxylated peptide).

MALDI-MS hydroxylation assays

MALDI-MS measurements were performed using a
Bruker Ultraflex instrument as reported (39). L-ascorbic acid
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(10 mM in deionized water), 20G (10 mM in deionized water),
and iron (II) sulfate (2 mM in 10 mM HCI) were prepared
freshly each day. For each assay, FIH (4 uM) was added to
50 mM Tris—HCI (pH 7.5), containing 1 mM v-ascorbic acid,
200 uM ammonium iron (II) sulfate, 1 mM 20G, and 100 pM
peptide substrate and incubated at 37 °C. Reactions were
halted by spotting samples onto a target plate for MALDI-MS,
mixing with either a-cyano-4-hydroxycinnamic or sinapinic
acid (10 mg/ml in 50% [v/v] acetonitrile and 0.1% [v/v] formic
acid). Hydroxylation levels were determined as reported (40).
MALDI-MS/MS measurements were performed as reported
(15).

Protein hydroxylation assays

L-ascorbic acid (10 mM in deionized water), 20G (10 mM in
deionized water), and iron (II) sulfate (2 mM in 10 mM HCI)
were prepared freshly each day. For each assay, FIH
(0.5-1 uM) was added to 50 mM Tris—HCI (pH 7.5), con-
taining 1 mM L-ascorbic acid, 200 pM ammonium iron (II)
sulfate, 1 mM 20G, and 1 to 2 uM protein substrate and
incubated at 37 °C. Reactions were quenched by methanol/
chloroform precipitation and proteins were digested using
elastase according to as reported (41).

Cell culture and immunoprecipitation

Details of the FIH KO cell line will be reported elsewhere.
U20S and U20S FIH KO cells were cultured in Dulbecco’s
modified Eagle’s medium (Gibco Life Technologies) supple-
mented with 10% (v/v) fetal bovine serum (Invitrogen),
4 mM L-glutamine, 100 U/ml penicillin, and 100 pg/ml
streptomycin (Gibco Life Technologies) at 37 °C and 5% CO,.
Cells were seeded to reach 60 to 80% confluency prior to
transfection using FUGENE 6 transfection reagent (Promega)
according to the manufacturer’s protocol. Cell monolayers
were washed with PBS and lysed for 30 min in EDTA, 20 mM
Tris—HCI (pH 7.4), 0.5% Nonidet P-40, and 150 mM MgCl,
supplemented with protease and phosphatase inhibitors. Cell
lysates were incubated for 3 h with the anti-V5 antibody
(MCA1360; Serotec) prior to addition of Dynabeads protein
G beads (Thermo Fisher Scientific) for 60 min. Immunopre-
cipitated samples were washed three times with 150 mM NaCl,
5 mM EDTA, 50 mM Tris—HCI (pH 7.5), and 0.5% Nonidet
P-40 buffer and eluted from the beads by boiling (5 min) in
2x concentrated Laemmli sample buffer (Sigma-Aldrich).
Isolated proteins were separated via SDS-PAGE on gradient
SDS-PAGE gels according to the manufacturers’ protocol (Life
Technologies).

LC-MS/MS analyses

Proteins of interest were transfected as described previously;
immunoprecipitated proteins were separated on gradient SDS-
PAGE gels (Life Technologies), and bands were visualized
using Instant Blue stain (Expedeon). Protein bands of interest
were excised from the gel and then digested using elastase
(Worthington Biochemicals) and analyzed using PEAKS7 with
a 1% false discovery rate.
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Data availability

All data are contained within the article. The MS prote-
omics data including the sample processing protocol and
search parameters have been deposited to the Proteo-
meXchange Consortium via the PRIDE (42) partner repository
with the dataset identifier PXD017278 (Project DOI: 10.6019/
PXD017278).

Supporting article  contains

information.
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