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Two types of potential functions and
their use in the modeling of
information: two applications from
the social sciences

Emmanuel E. Haven*

School of Management, Institute for Quantum Social and Cognitive Science and Institute of Finance, University of Leicester,

Leicester, UK

In this paper we consider how two types of potential functions, the real and quantum

potential can be shown to be of use in a social science context. The real potential function

is a key ingredient in the Hamiltonian framework used in both classical and quantum

mechanics. The quantum potential however emerges in a different way in quantum

mechanics. In this paper we consider both potentials and we attempt to give them a

social science interpretation within the setting of two applications.

Keywords: potential functions, quantum mechanics

1. Introduction

Potential functions are to physicists what utility functions are to economists: they are both examples
of fundamental workhorse tools. But can there exist some connection? Utility functions, u, are
defined as: u : C → R, where C is a set of objects. A preference relation on two objects, x and y
such that, say, x ≻ y will imply that u(x) > u(y) under the necessary conditions that the preference
relation is transitive and asymmetric. This paper will not pretend to be at a level of rigor which
has been attained in economics based preference theory. Examples of such rigor abound in the
various expected utility frameworks, and some papers in this special issue will be devoted to probing
how deviations from central axioms like the sure-thing principle can be explained with the aid of
quantum structures. Our objective in this paper is modest: we would like to inform (and maybe
convince) the reader that with the help of two types of potential functions we can model, in a
reasonably successful way, information. This information can include parameters which refer to
attitudes toward risk (preferences for risk).

In the next section we introduce the basic structure where those two potential functions can
exist. In the next two sections we consider two applications from the social sciences which will
attempt to highlight the possible added value of using those potential functions in a non-physics
setting. We also consider in the last section of the paper a brief discussion on the relevance of such
potential functions in real world market settings.

2. Basic Structure where Two Potential Functions can Occur

The so called stochastic equivalent of the Hamilton-Jacobi equations provides for at least, according
to the author of this paper, a sort of twilight state where we move from classical mechanics to
stochastics and then to quantum mechanics. The hydrodynamic approach to quantum mechanics
was developed by Edward Nelson, and in this section we will provide for the essentials of the basic
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structure which we need, to develop the examples in Sections 3
and 4. We use elements from the set up in the paper by Haven
(2015). For a lot more detail, the paper by Nelson (1966) is the
essential reference. The book by Paul and Baschnagel (1999) is
also an excellent source (see also Haven and Khrennikov, 2013).

We will follow, as in the paper by Haven (2015) and Paul
and Baschnagel (1999) approach to Nelson’s theory. We also use
the same notation. Consider a position in space, x, indexed by
time (which we denote here by the index n). Let time contract
to zero, one can then write as in Nelson (1966) and Paul and
Baschnagel (1999), that dx+

dt
≃

xn+1−xn
ǫ

and dx−
dt

≃
xn−xn−1

ǫ
,

where ǫ denotes the difference in time t, and d indicates the
infinitesimal differential operator. In the area of finance, the so
called Brownian motion is a very common way of describing the
random evolution of an asset price over time. Brownian motions
are well-known in physics, especially with the formalization
Einstein gave of such motions. As we mention in Haven (2015),
Nelson (1966), and Paul and Baschnagel (1999), define two
Brownian motions of the following types:

dx(t) = b+(x, t)dt + σdW(t); (1)

where dW(t) is a Wiener process; σ is the diffusion coefficient
and b+(x, t) is the so called drift function. They also define:

dx(t) = b−(x, t)dt + σdW(t). (2)

What is now the difference between the two drift functions? Still
following the set up inHaven (2015), Nelson (1966), and Paul and
Baschnagel (1999) define:

D+x(t) = lim
ǫ→0

E

[

xn+1 − xn

ǫ

]

= b+(x, t), (3)

and also:

D−x(t) = lim
ǫ→0

E

[

xn − xn−1

ǫ

]

= b−(x, t). (4)

Note that E is the expectation operator. This paper hasmentioned
in its introduction that we consider two types of potentials.
But what are they? The real potential is the first type, well-
known from elementary classical mechanics. The real potential
formalizes potential energy. The second type, is the so called
quantum potential which emerges from inserting the polar form
of a wave function into the Schrödinger partial differential
equation. The uses of those potentials were first proposed by
Khrennikov (1999) already more than 10 years ago. Haven
(2015)1, indicates that a key component of the so called quantum
potential, can be written as follows:

∇2R′

R′
=

1

σ 2

∂

∂x

[

1

2

(

b+(x, t)− b−(x, t)
)

]

+
1

4σ 4

[

b+(x, t)
2 − 2b+(x, t)b−(x, t)+ b−(x, t)

2
]

, (5)

1This is Equation (25) in that paper.

where R′ is a scalar field. We then argue in Haven (2015)2

that if we set b+(x, t) = b and b−(x, t) = c where
b 6= c; b, c ∈ R:

∇2R′

R′
=

1

4σ 4

[

b2 − 2bc+ c2
]

=
1

4σ 4

(

b− c
)2
. (6)

If one consider the classical mechanical equivalent of the

quantum potential, one multiplies ∇2R′

R′ with −mσ 4

2 , where
m is mass. We note that use is made of the conversion:
σ 2 = h̄

m . We note that such conversion requires further
discussion (see Nelson, 1985). Hence, we obtain, as in Haven
(2015)3:

−mσ 4

2

∇2R′

R′
=

−m

8
(b− c)2. (7)

We are now ready to consider our first application.

3. Application 1: Three Examples Showing

Which Additional Information is Brought on

by the Use of the Quantum Potential

The Newtonian motion with both the real and quantum
potentials is: m.a = −∇ (V + Q) (see for instance Haven and
Khrennikov, 2013, for more detail). If one consider the force,
−∇Q, to be applied on Equation (7), one can see immediately
that:

−∇Q = −
∂

∂x

[

−mσ 4

2

∇2R′

R′

]

=
−∂

∂x

[

−m

8
(b− c)2

]

= 0. (8)

The force derived from the real potential, −∇V , is −b+(x, t)
or −b−(x, t). From an economics point of view, such force can
be interpreted as an expected return. Hence, this force can thus
incorporate preferences for risk.

In order to give an interpretation to the quantum potential,
we need to re-consider Equation (5) but now for the case where
b+(x, t) and/or b−(x, t) are not constant. Hence, let us consider
the simple case where b+(x, t) = µx, where we can set that µ is
now the expected return. We note that making µ to be such an
expected return follows in parallel to what is done in financial
economics, where the drift term of the geometric Brownian
motion is a product of the expected return and the position
variable (i.e., the value of the stock price for instance). Let us
assume, for easiness of purpose, that b−(x, t) = 0. In this case,
we are not in Newtonian mechanics since we are now explicitly
imposing that b+(x, t) 6= b−(x, t). We re-consider Equation (5)
again:

∇2R′

R′
=

1

σ 2

∂

∂x

[

1

2
(µx)

]

+
1

4σ 4

[

µ2x2
]

. (9)

2This is Equation (26).
3This is Equation (36).
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The quantum potential, Q, is written as: −mσ 4

2
∇2R′

R′ =

−mσ 2

2
∂
∂x

[

1
2 (µx)

]

− m
8

[

µ2x2
]

. The force is then:

− ∇Q = −
∂

∂x

[

−mσ 2

2

∂

∂x

[

1

2
(µx)

]

−
m

8

[

µ2x2
]

]

. (10)

This yields then:

− ∇Q =
m

4
µ2x. (11)

If we assume that the force on the real potential, −∇V =

−b+(x, t) = −µx, then, one can also write that:

− ∇V − ∇Q = −µx+
m

4
µ2x (12)

We observe from the above, that besides the information
received, via the force on the real potential, i.e., the expected
return times the position, additional information is now injected
via the force on the quantum potential.

If we were to let b+(x, t) = µx2, then using Equation (5):

∇2R′

R′
=

1

σ 2

∂

∂x

[

1

2

(

µx2
)

]

+
1

4σ 4

[

µ2x4
]

. (13)

Using −mσ 4

2
∇2R′

R′ then the force delivered by both the quantum

and real potentials (assuming−∇V = −b+(x, t) = −µx2) is:

− ∇V − ∇Q = −µx2 +
mµ2

2
x3 +

mσ 2

2
µ. (14)

If we would set b+(x, t) = µ, then [see Equation (8)], we would
only be able to write that:

−∇V − ∇Q = −µ (15)

Let us compare those simple cases, Equations (12, 14 and 15).
We can observe that additional terms are added to the force on
the real potential. Remark however that we have assumed that
the drift term in the pure Newtonian environment, is the same
as the drift terms b+(x, t) and b−(x, t). If we translate the pure
Newtonian environment, into the Nelson framework we obtain

∇R(x, t) =
E
[

dx+
dt

−
dx−
dt

]

2σ 2 = 0 and therefore, in that setting,
R(x, t) is constant. This would mean that the density function, in
the Nelson framework e2R(x,t) would be constant. The quantum
potential would also be zero. Hence, the equivalent information
of the pure Newtonian setting into a Nelsonian setting would be
senseless. However, the quantum potential still is comparable to
the real potential, after all one can write:−∇V−∇Q = m.a! This
is in some sense a dilemma.

Consider again Equations (12, 14 and 15), and let us re-write
slightly, as follows:

• Under the Newtonian based theory if the expected return
(i.e., force on real potential) is the expected return µ then
the additional information (brought by the gradient of the
quantum potential) is nil

• Under the Newtonian based theory if the expected return
(i.e., force on real potential) is the expected return µx then
the additional information (brought by the gradient of the
quantum potential) is [set m = 1 (please see below for a
comment on such setting)]: 14µ

2x
• Under the Newtonian based theory if the expected return

(i.e., force on real potential) is the expected return µx2 then
the additional information (brought by the gradient of the
quantum potential) is [set m = 1 (please see below for a

comment on such setting)]: σ 2µ
2 +

µ2

2 x3

Given the reasonableness of this force on the quantum potential
to exist (i.e., volatility is not zero and the uncertainty given by
(

xn+1−xn
ǫ

)

6=

(

xn−xn−1
ǫ

)

to exist, it would then be reasonable to

claim that if the expected drift is given as µx in a Newtonian

world [where
(

xn+1−xn
ǫ

)

=

(

xn−xn−1
ǫ

)

and σ = 0] then in

a Nelson world this information would need to be augmented
with: 1

4µ
2x. Similarly, if the expected drift is given as µx2 in

a Newtonian world [where
(

xn+1−xn
ǫ

)

=

(

xn−xn−1
ǫ

)

and σ =

0] then in a Nelson world this information would need to be

augmented with: σ 2µ
2 +

µ2

2 x3.
Remark one very important issue which refers to the setting

of m = 1 in the above discussion. The Nelson theory allows for
a transition from pure Newtonian mechanics, into a stochastic
environment [with the use of R(x, t) as a scalar field] and from
there, into a further transition into quantum mechanics [with
the use of R(x, t) now as an input into the wave function]. This
transition from stochastics to quantum mechanics, also goes via

the setting of σ 2 = h̄
m .

For a given finite σ 2, in a quantum mechanical context
when h̄ = σ 2m, it would mean that m should be extremely!!!
small indeed. The question becomes, whether the level of m
has a continuum of values when transiting from the stochastic
environment toward the quantum mechanics environment.
If one considers the case −µx + m

4 µ2x then when m is
extremely small, the term m

4 µ2x would need to be extremely

small. The same can be said for: −µx2 +
mµ2

2 x3 + mσ 2

2 µ,
where the terms which are added to µx2 are then small too,

because of small m :
mµ2

2 x3 + mσ 2

2 µ. It would be a major
achievement, if indeed we could find how m behaves when
transiting from Newtonian → stochastics (with R as scalar
field) → quantum mechanics (with R as an input to the wave
function).

4. Application 2. An Example of How the

Real and Quantum Potentials can be used

in Lux’s Noise Trader Infection Model

The “noise trader/infection” model was developed by Lux (1997)
and we use it here to highlight the applications we can make,
in a financial economics framework, of the potentials we have
treated in our paper. From Equation (5), we can observe that σ 2

is essential to define the quantum potential. We will make the
simple assumption, for the purposes of the model treated here,
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that E
(

dx−
dt

)

= 0. There is a non-zero uncertainty due to the fact

that E
(

dx+
dt

)

6= E
(

dx−
dt

)

.

4.1. Brief Set up of the Lux Model
The model has two main types of traders, fundamental and
chartist (or also called noise) traders. The total number of chartist
traders is 2N. They are divided into two subgroups, n+ (the
number of noise traders who are positive about the development
of the market) and n− (the number of noise traders who are
negative about the development of the market) and hence n+ +

n− = 2N. An opinion index, which is, in the words of Lux (1997)
(p. 8) “the distribution of attitudes among the ‘population’” is
also constructed and it is defined as: x =

n+−n−
2N . Remark that

in the model, chartist traders may change from one subgroup to
the other. The smallest difference in the opinion index is given
by ± 1

N and the asset price’s minimal change is ± one cent. The
central equation in which we are interested in for the purposes of
our paper, is as follows (Equation 3.7b in Lux, 1997):

dp

dt
= β

(

xTc + Tf

(

pf − p
))

; (16)

where β is defined as (Lux, 1997, p. 8): “a parameter for the
average speed of price adjustment in the presence of excess
demand.”; x is the average distribution of attitudes; Tc measures
the trading volume of the chartist traders; Tf measures the
trading volume of the fundamental traders; pf is the perceived
fundamental value of the asset and p is the expected price.

4.2. Embedding Lux’s Model in the Quantum/Real

Potential Environment
If we want to embed the above model in the quantum/real
potential model presented here in this paper, then a departure
of Lux’s model could be as follows:

dp = β
(

xTc + Tf

(

pf − p
))

dt + dW; (17)

where dW is a Wiener process as defined before. Embedding this
departure of Lux’s model in the quantum/real potential model,
we can then write that:

E

[

dp

dt

]

= xβTc + βTf pf − pβTf + E(dW); (18)

which can then be re-written as, using E(dW) = 0:

E

[

dp

dt

]

= xβTc + βTf pf − pβTf . (19)

Remark that the x parameter could be interpreted as being closely
linked to some implicit preference functional, which in this
model, is driven by chartists. We remark that Equation (3.7a; p.
13) in Lux’s paper Lux (1997) provides for the time dependent
evolution of the x parameter.

4.3. Consequence of the Absence of Expectation

Operators
Remark that if we were to write Equation (16) (as it is thus
written in Lux’s model), as a result of having it embedded in
our quantum/real potential model (thus nowwithout expectation
operator) then this would imply that dW

dt
= 0. If we now go back

to the importance of expectation operators in Nelson’s theory
we can say the following. Imagine we were to not use such an

operator on dW
dt

. For instance, can we then still write that dx+
dt

=

b+(x, t), using the Brownian motion Equation (1)? The answer
to this question would impose the requirement that no time
reversibility can exist. The argument is quite straightforward. Let
us follow the arguments of Merton (1990) (please see also Neftci,
2000, for a treatment of Merton’s arguments which we follow

here) who shows that dW
dt

, as is well-known, can not be defined
with ordinary derivatives. This problem is circumvented in the

Nelson theory by using E
[

dW
dt

]

, where E(dW) = 0.

Assume we want to impose that dW
dt

= 0 and we thus allow
for the use of no expectation operators. We note again, we are

well aware that dW
dt

does not exist. But let us do a quick thought
experiment and assume it were to exist. What would be the
consequences?

Define elapsed time as h = tk − tk−1 and let n = T
hm

with
m > 1, where T is total time. Following Neftci (2000), assume

there exists a quantity A2 so that: ∞ > A2 >
∞
∑

k= 1

E
[

1W2
k

]

and

there exists a quantity A3 so that
E
[

1W2
k

]

Vmax
> A3 with A3 ∈]0, 1[

where Vmax = maxk E
[

1W2
k

]

. From the proof which allows

for showing that E
[

1W2
k

]

= σ 2
k
h, the following relation is

essential (see Neftci, 2000): h
T
A2
A3

> E
[

1W2
k

]

>
A3A1
T h, where

0 < A1 < E
[

1W2
k

]

. In order to come to show under what

conditions dW
dt

= 0 (thus without expectation operator) we want

to impose, using n = T
hm

(m > 1), that hm

T
A2
A3

> Vmax. Clearly, if
h is small (<1) then hm (m > 1) will be smaller than h. Hence, it
is reasonable to write that: hm

T
A2
A3

< h
T
A2
A3
. Hence, if we still want

hm

T
A2
A3

> Vmax, we must impose that m >
logVmax+log

A3
A2

T

log h
. We

know that A3 > 0; A2 > A1 > 0. However, h = tk − tk−1 must
clearly be positive! We can then write that: h

m

T
A2
A3

> E
[

1W2
k

]

>
A3A1
T hm and one can then define that: E

[

1W2
k

]

= σ 2
k
hm. We can

approximate: dW
dt

≃ limh→0
1W
h

= limh→0
h
m
2

h
= limh→0 h

m−2
2

which form > 2 will yield 0. Thus, we obtain that dW
dt

≃ 0 in non

expectation operator form when: (i)m >
logVmax+log

A3
A2

T

log h
and (ii)

m > 2 and therefore we must impose that
logVmax+log

A3
A2

T

log h
= 2

and this condition would mean that the uncertainty concentrates

in a very specific period of time, Vmax = h2A2
A3T

. It is clear from

the condition
logVmax+log

A3
A2

T

log h
= 2 that there can not exist time

reversibility since h > 0 (and h 6= 1) for the logh to be valid. This
may on prima facie, “prove” that the expectation operators which

have been imposed on dW
dt

in Nelson’s theory are intrinsically
connected to time reversibility.
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A commutativity rule such as,

E
[

xn

(

xn+1−xn
ǫ

)

−

(

xn−xn−1
ǫ

)

xn

]

≡ E(C), also needs to

use such operators. Without the expectation operators, setting

xn fixed: xn.
[

dx+
dt

− E( dx−
dt

)
]

, is possible. Time reversibility is

obtained via the expectation operator. In the set up by Nelson, a
function u(x, t) is defined as: u(x, t) = 1

2 (b+(x, t)−b−(x, t)), and
this function is zero in Newtonian mechanics. We also remark
in Haven (2015)4 that Nelson (1966) and Paul and Baschnagel

(1999) define u(x, t) = σ 2

2 ∇ ln f , where f is a probability density

function (for instance f = e2R(x,t)).

From the above, we can not define dx−
dt

(since this would
require time reversibility) and hence, we can not define u(x, t) =
σ 2

2 ∇ ln f . This is the case, because the relation is obtained

under time reversal on the Fokker-Planck pde:
∂f (x,t)

∂t +

∇
(

b+(x, t)f (x, t)
)

+ σ 2

2 1f (x, t) = 0, which is now impossible

since logh is to exist. If u(x, t) can not be defined then ∇2R′

R′ =

1R+

(

u(x,t)
σ 2

)2
is not definable.

4.4. What are the Real and Quantum Potential in

Lux’s Model?
We can write that using the real potential, V , E

[

dx
dt

]

= ∇V =

b±(x, t). In full analogy with this, we write Equation (19) now as:

∇V = xβTc + βTf pf − pβTf ; (20)

which we write in shorthand format as: ∇V = α − pβTf .
Recall Equation (5) which gave the expression for the “quantum
potential”:

∇2R′

R′
=

1

σ 2

∂

∂x

[

1

2

(

b+(x, t)− b−(x, t)
)

]

+
1

4σ 4

[

b+(x, t)
2 − 2b+(x, t)b−(x, t)+ b−(x, t)

2
]

. (5)

Using Equation (20) in Equation (5), we obtain:

∇2R′

R′
=

1

σ 2

∂

∂p

[

1

2
(α − pβTf )

]

+
1

4σ 4

[

(α − pβTf )
2
]

; (21)

where we have to note that x is calculated as per Lux (1997),
∑

x

∑

p x.L(x, p; t); where L(x, p; t) is defined as the probability

to occupy a state
(

x, p
)

; i.e., where x is the distribution of
attitudes and p is price and hence indirectly x is a function of p,
via the probability L. Similarly, note that p =

∑

x

∑

p p.L(x, p; t).

Similarly, Tc in Lux (1997) is defined as: Tc ≡ 2Ntc, where
2N is the total noise trader population and tc is the amount
the chartist, individually buys or sells. We assume that tc is not
dependent on p.

Simplifying Equation (21) is now straightforward and leads to:

∇2R′

R′
=

1

σ 2

1

2
(−βTf )+

1

4σ 4

[

(α − pβTf )
2
]

(22)

4This is Equation (19).

Thenmultiplying Equation (22) with −mσ 4

2 and also taking −d
dp

so

as to get the force, we obtain:

− ∇Q = −
d

dp

[(

−mσ 4

2

)

∇2R′

R′

]

=
m

4

(

α − pβTf

)

(−βTf ).

(23)
Recall from Equation (20), that we now can write:

− ∇V = pβTf − α. (24)

Recall that the m factor in −∇Q can indeed be very small if we
move toward a quantum mechanical environment. If we thus
write:−∇V − ∇Q, we then obtain:

− ∇V − ∇Q = pβTf − α +
m

4

(

α − pβTf

)

(−βTf ). (25)

This can be simplified to:

(pβTf − α)
[

1+ βTf

(m

4

)]

. (26)

Clearly, ifm → 0 and σ 2 6= 0 then βTf

(

m
4

)

is indeed very small.

We can also write: ∇V
∇R = 2σ 2 and hence: ∇R = ∇V

2σ 2 . We can
then write that:

R(p) =
1

2σ 2

∫

α − pβTf dp; (27)

which is worked out as: R(p) = 1
2σ 2 (αp)−

1
4σ 2 βTf p

2
+ C. Recall

that s = 1
1+r

∫

exp(2R(p, t))dp, where s is the state price. In the
context of the model we consider here this would yield:

s =
1

1+ r

∫

exp

((

1

σ 2
(αp)−

1

2σ 2
βTf p

2
+ C

))

d p. (28)

This means that the state price (an insurance price which is
paid to guarantee a financial outcome when a particular state
of nature occurs) is now dependent, using Lux’s model which
is embedded in our quantum/real potential model, on the (i)
volatility; (ii) the expected price of an asset (which chartists and
fundamental buyers buy); (iii) the parameter β for the average
speed of price adjustment in the presence of excess demand; (iv)
the term α = xβTc + βTf pf . Remark that this density function

used the amplitude function R from ∇R = ∇V
2σ 2 . The quantum

potential in its full form is absent from this relation, but parts of
that potential (i.e., ∇R) are still figuring in the equation. In this
formulation the preference factor (via x) would be embedded in
p. The volatility parameter seems to be the “conduit” factor which
links the changes in R with the changes in V , via ∇V = 2σ 2∇R.
Thus, Equation (28) does only exist here if this “conduit” factor
exists (i.e., if σ 2is not zero).
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5. What is the Relevance of Real and

Quantum Potentials in Empirical Work?

This paper has not yet answered a crucial question, for which
we have to thank one of the referees of this paper. Can the
quantum and/or real potentials have empirical relevance? The
answer is fortunately enough positive. Recent work by Belal
Baaquie shows quite clearly how real potential functions can be
estimated for traded commodities. Please consult Baaquie (2013).
The same author also shows how the minimization of a real
potential function, when that function is defined as being equal to
the sum of supply and demand functions, yields a more general
version of the equilibrium price which is well-known in basic
economics. The quantum potential can also be estimated from
real market data. In the paper by Tahmasebi et al. (2015) the
quantum potential is estimated for the Standards and Poor (S&P)
Index. More work is needed on how the path derived from the
extended Newtonian motion (i.e., with thus two potentials), can
be used to emulate price behavior over time.

6. Conclusion

We have attempted to show that preferences for risk seem to be
captured by both types of potentials (i.e., the real and quantum

potentials). When embedding the basics of the Lux model in the
types of potential approach proposed in this paper, we seem to
find that the quantum potential’s influence depends on the mass
parameter. This parameter varies depending on whether we are
far removed (or not) from the quantum physical limit. The last
section of the paper does indicate that the real and quantum
potentials can be estimated within real financial data settings. But
the question may remain, if the proposed analysis in this paper
is of any value, how one can interpret the quantum potential in
light of those real data interpretations? In the paper by Tahmasebi
et al. (2015) it is shown quite clearly that a quantum potential
with infinite walls occurs for the S&P Index for short time scales,
and when the time scale grows those infinite walls disappear
and the quantum potential for the S&P index for large time
scales resembles the quantum potential for Gaussian white noise.
Price variation is deemed to be very small for small time scales,
but allowed to be larger for large time scales. This is intuitively
acceptable.

From a Newtonian price path point of view, considering
for instance Equation (25), our analysis in this paper seems to
indicate, that the influence of the quantum potential (next to the
real potential) on the price path, may vary. But to pinpoint, in an
economics sense, what this parameter of variation really means is
very difficult.
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