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ABSTRACT: The distribution of SO2 in a boiler is an important
factor affecting tube corrosion in a furnace. To investigate the
correlation between SO2 distribution and numerous variables (e.g.,
temperature, O2 distribution, etc.), a hybrid deep learning model is
developed via the computational fluid dynamics (CFD) simulation
data. First, the combustion process under typical working
conditions is simulated to output the training data set. Then, a
LASSO algorithm is adopted to select input variables with a high
correlation with SO2 distribution. Finally, a deep belief network
combined with a restricted belief machine and a fully connected
layer is developed to describe the nonlinear relationship. The
proposed model is the first work to use a deep learning algorithm
to obtain the correlation between SO2 distribution and other products of combustion. The results show that O2 concentration has
the highest influence on SO2 distribution.

1. INTRODUCTION
The combustion process in coal-fired boilers includes complex
physical and chemical reactions in the furnace. In this process,
excessive SO2 is generated, which will damage the internal
structure of the boiler.1−3 Therefore, it is necessary to study the
influence of the products of combustion (POCs) in the furnace
on SO2 distribution and provide theoretical support for the
subsequent control and emission reduction of SO2 and other
gases. However, the distribution of SO2 in the furnace is affected
by the pulverized coal composition, air distribution mode,
different operating conditions, boiler structure, and many other
factors.4 This makes the study of SO2 distribution a difficult
problem in the current research.
Computational fluid dynamics (CFD) technology is widely

used to analyze and simulate the distribution of POCs, such as
temperature field,5−8 O2 distribution,

9 NOx emission,
10,11 and

NOx distribution,12 in the combustion boiler. The accuracy of
the simulations of CFD technology had been validated.13,14 Du
et al.13 performed numerical validation on a 500 MW wall-fired
boiler, and Tan et al.14 developed and validated a numerical
model to study the effect of burner tilt angle on the temperature
and species distribution of a 700MWpulverized coal-fired boiler
with deep space staging technology. Therefore, it is feasible to
select CFD simulation data to analyze SO2 distribution.
With the development of computing technology, machine

learning methods including artificial neural network (ANN),15

support vector regression (SVR),16 extreme learning machine
(ELM),17 and Kriging18 have been applied in various fields. Also,
these methods were successfully applied to construct the

relationship between boiler emission products and operating
parameters, involving boiler temperature prediction,19 NOx
emission prediction,20−23 and SO2 emission prediction.

24−29

Krzywanski et al.24,25 established a SO2 emission prediction
model for a coal-fired boiler based on ANN; Wen et al.26

established a SO2 emission model based on a 12/6/1 three-
layered back-propagation neural network (BPNN); Yu et al.27

took an ELM as the main model to predict SO2 emissions from a
CFB boiler; Peng et al.28 adopted fuzzy association rule mining
to establish a SO2 emission model; and Pai et al.

29 used the gray
model (GM) to predict CO2, SO2, and O2 in the emissions. The
above studies have effectively mined the relationships between
data and used data-driven algorithms to establish a SO2 emission
prediction model. From the literature survey, the research on
SO2 by machine learning methods mainly focuses on emission
prediction, but there is little research on the correlation between
SO2 and other POC. It is very necessary for accurate control of
the combustion process to improve the corrosion of the internal
tube wall of the boiler, which is the authors’ motivation.
The deep belief network (DBN) is a deep learning algorithm

consisting of a restricted Boltzmann machine (RBM) and
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BPNN. Since DBN was proposed by Hinton et al.,30 it has been
widely used in the fields of pattern recognition, image
classification, and fault diagnosis.31,32 DBN used in the
multiobjective optimization for combustion system operations
offered a more accurate and robust performance.22 The least
absolute shrinkage and selection operator (LASSO) algorithm33

can select the feature variables with high correlation and remove
some redundant variables from numerous variables, not only
decreasing the training time but also improving the quality of the
model. Therefore, in this paper, a novel deep learningmodel, i.e.,
a numerical simulation data-based LASSO-DBN algorithm, is
proposed for the first time to analyze the correlation between the
SO2 distribution of a 30 MW boiler and other POCs.
The contributions of this work are as follows:

(1) The correlation between boiler SO2 concentration
distribution and other POCs was studied. Since it is
difficult to obtain all of the SO2 at each point inside the
furnace, the CFD numerical simulation data is used as the
experimental data of the model, which provides the data
basis for establishing the model.

(2) The LDBN model was established based on the feature
selection method of removing redundant features and the
deep learning model, and it revealed the relationship
between SO2 distribution, temperature, O2, CO, and
many other variables.

The rest of this paper is as follows. In Section 2, to obtain
numerical simulation data of SO2 distribution, a CFD model for
a 30 MW furnace is established according to the geometry and
physical parameters of the furnace and then SO2 distribution is
simulated under typical working conditions by the CFD model
using ANSYS Fluent commercial software. Section 3 presents
the modeling process to predict SO2 distribution and a LASSO
algorithm to determine the selected variables from numerous
variables of the normalized raw data obtained in Section 2 and
develops a DBN model to construct SO2 distribution with high
correlation variables in real time. Section 4 analyzes and
discusses related experimental results, including sensitivity
analysis of variables of SO2 distribution and comparison of the
proposed deep learning model with three other models to

Figure 1. 30 MW test furnace: (a), (b) its schematic diagram and physical model.
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validate the effectiveness and accuracy. Section 5 draws
conclusions.

2. CFD SIMULATIONS OF SO2 DISTRIBUTION IN THE
FURNACE UNDER TYPICAL OPERATING
CONDITIONS

The research object of this study is a 30 MW furnace of a coal-
fired boiler. To establish a deep learning model of SO2
distribution in the furnace, the driving data of the model
needs to be determined first. To this end, the CFDmodel of the
furnace is established and CFD simulations under typical
operating conditions are conducted by ANSYS FLUENT in this
section.
2.1. Description of the 30 MW Furnace. The 30 MW

furnace is equipped with a single 1:1 swirl burner, as shown in
Figure 1a. The furnace has a hearth section of 3 m × 4 m and a
combustion zone length of 21 m. The whole test bench adopts a
modular assembly structure, which is mainly composed of six
modules. The internal top and bottom sides of the furnace are
arranged with water-wall tubes to absorb the radiation heat from
the high-temperature combustion products in the furnace
chamber. The adiabatic insulation structure is formed on the
left and right sides to facilitate the simulation of the actual boiler
flue gas flow field temperature. The furnace is horizontally
arranged in a U shape, and three groups of overfire air burners
are respectively arranged on both sides of the hearth at 8, 10.5,
and 13.5 m away from the burner nozzle for combustion
adjustment.
According to the configuration and the size of the furnace, and

to facilitate the simulation of the furnace by CFD, it is assumed
that only the combustion area and the tail flue area are
considered, and the burnt-out windpipe 13.5 m away from the
burner nozzle is reserved for regulating combustion. Thus, the
furnace is simplified for the establishment of the physical model,
as shown in Figure 1b. The entire physical model has a length of
3 m, a width of 4 m, and a height of 26.3 m. The tail flue is 5 m in
length, and the coordinate origin is set at the geometric center
point of the bottom. A single swirl burner is arranged at the
bottom. The load for numerical simulations is 30 MW. The
design angles of the swirl burner blades are from 0 to 60°. In this
numerical simulation, six burner blade angles, i.e., 10, 20, 30, 45,
55, and 65°, are designed. The air distribution method of the
burner is as follows: the primary air is mixed with pulverized
coal, the primary air and the secondary air enter the furnace,
respectively, and then the tertiary air and central air are omitted.
The main simulation process of pulverized coal concentration in
the furnace includes the determination of main parameters, the
establishment of a combustion model, analysis of numerical
simulation results, etc. According to the basic conservation
equation and the physical structure of the actual combustion test
bench,34 the following assumptions are made:
(1) The working fluid of flue gas in the furnace is an

incompressible ideal gas.
(2) All temperature distributions and changes are uniformly

changed.
(3) The water wall and other media are regarded as ash.
(4) Convective heat transfer is not considered, and only

radiation heat transfer is considered.
(5) There is no heat dissipation and air leakage inside.
2.2. CFD Modeling of the Furnace. The mesh division is

mainly conducted by preprocessing software GAMBIT of
Fluent. The calculation area adopts the hybrid grid, which can

adapt to various complex geometric models and has a good local
encryption function. The main areas of the furnace including the
burner area, the upper part of the burner, and the tail flue area are
all structuredmesh. Themain combustion reaction occurs in the
interval of 0−15 m, which is of high importance. The analysis of
the combustion results should focus on this area. Therefore, the
grid in this interval needs to be refined. However, the physical
structure of the overfire air tube is complex, and there is no need
to pay attention to the internal combustion situation, so the
unstructured grid drawing method is adopted for the overfire air
tube on both sides. The number of grids after division is 1.2
million. The sectional views of the mesh section are shown in
Figure 2.

According to the analysis of the actual operation of the
furnace, the realizable k−ε model, stochastic particle orbit
model, single-rate equation model, species transport model,
kinetics/diffusion model, and DOmodel are selected by ANSYS
Fluent software for numerical simulations, and the boundary
conditions are set as shown in Table 1.
2.3. CFDAnalysis of the Furnace.The oxygen content and

outlet velocity are selected as the convergence judgment
conditions. Meanwhile, simulation calculations are conducted
for the operating conditions of burner swing angles of 10, 20, 30,
45, 55, and 65°. The results of the temperature distribution, SO2
concentration distribution, O2 concentration distribution, and
other data in the furnace during steady-state operation of the
boiler are obtained. Then, the simulation results are output by
the export function of ANSYS Fluent software. The results of the
simulation of SO2 distribution of the angle to 30° condition and
55° condition are shown in Figure 3.

Figure 2. Burner cross-sectional grid: (a) grid in the x−z direction and
(b) grid in the x−y direction.
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The CFD simulation results under the typical operating
conditions provide raw data onto the deep learning model for
correlation analysis of SO2 distribution in the furnace.

3. LASSO-DBN MODEL OF SO2 DISTRIBUTION IN THE
FURNACE

The establishment of the correlation analysis model of SO2
distribution in the furnace mainly consists of three parts: data
preprocessing, variable selection, and LDBN algorithm model-
ing. The whole process of modeling is shown in Section 3.1. The
min−max method is used for data normalization in data
preprocessing, and it is described in Section 3.2. The selection of
variables is divided into two parts: mechanism analysis and
feature selection, and the specific method is shown in Section
3.3. Finally, as shown in Section 3.4, the correlation analysis
between the SO2 concentration distribution and other POCs is
realized using the DBN algorithm.
3.1. Description of LDBN Modeling. The process of

establishing the SO2 distribution correlation analysis model is
shown in Figure 4.
Step 1: Select the data output by CFD simulations as the

modeling data.
Step 2: Preprocess the simulation data to build a reliable data

set.
Step 3: Select relevant variables according to experience and

mechanism analysis and use the Lasso method to select variables
and remove some redundant variables.
Step 4: Select highly correlated variables as the modeling

input and establish a DBN-based correlation model of SO2
distribution in the furnace. Compare the established model with
other algorithmmodels to verify the accuracy and stability of the
model.
3.2. Normalization. The simulation data have different

dimensions and orders of magnitude. If the original data is
directly used as the input data for model training, only the
influence of the data with a higher numerical value will be
highlighted in the modeling process, and the data with a lower
numerical level will be ignored. Therefore, to eliminate the
difference in dimensionality, the min−max method is used to
normalize the simulation data. The normalization is defined as
follows

* =y
y y

y yi
i min

max min (1)

where yi is the original value, yi* is the normalized value, and ymin
and ymax are the minimum and maximum values, respectively.
3.3. Variables’ Selection. 3.3.1. Mechanistic Analysis.

According to the combustion mechanism, the thermal stability
of different sulfur components in the fuel in the furnace is
different. The sulfur element in the fuel is mainly separated out

Table 1. Description of Boundary Conditions

serial number name of the variables unit values

1 moisture (received basis) % 20.00
2 ash (received basis) % 10.00
3 calorific value (received basis) kJ/kg 20 933
4 volatile (received basis) % 39.56
5 average excess air coefficient 1.20
6 carbon (received basis) % 55.10
7 hydrogen (received basis) % 3.50
8 oxygen (received basis) % 9.60
9 nitrogen (received basis) % 0.80
10 sulfur (received basis) % 1.00
11 the total amount of coal t/h 5.196
12 total air flow t/h 86.123
13 primary air flow t/h 14.745
14 secondary air flow t/h 44.234
15 overfire air flow t/h 27.144
16 primary air temperature °C 300
17 secondary air temperature °C 350
18 environment temperature °C 30

Figure 3. Result of CFD analysis of SO2 distribution of the angle: (a)
30° condition and (b) 55° condition.
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as H2S and COS. Combustible sulfur reacts with O2 to generate
SO2, while noncombustible sulfur is easy to decompose at high
temperatures to generate SO2.

35 The chemical equations are
shown as follows

+S O SO2 2 (2)

+ +FeS O Fe SO SO2 2 2 3 2 (3)

+ + +H S Fe O Fe O SO H O2 2 3 3 4 2 2 (4)

+ + +COS Fe O Fe O CO SO2 3 3 4 2 2 (5)

+ + +CaSO CO CaO SO CO4 2 2 (6)

+ +CaSO CaO SO O4 2 2 (7)

It can be seen from the above combustion mechanisms that the
formation of SO2 in the furnace is related to the temperature,
total energy, O2 concentration, CO concentration, and other
POC concentrations. Therefore, 23 relevant variables are
selected from the simulation data based on experience and
mechanism analysis.

3.3.2. Feature Selection. Because the simulation data has the
characteristics of uneven quality, high dimension, and little
correlation, it will not only increase the training time but also
reduce the quality of themodel. Thus, it is necessary to select the
features of this data.
Tibshirani33 proposed the Lasso algorithm, which can select

the variables with high correlation and remove some redundant
variables that do not affect or even reduce the accuracy of the
model. In this study, the Lasso method is adopted to screen out
ten variables highly correlated with SO2 concentration by
formulas 8 and 9 from 23 variables such as temperature, energy,
x-velocity, y-velocity, and z-velocity.
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where βj is the regression coefficient of the jth variable; s ≥ 0 is
the adjustment parameter, and it is a normal punishment for the
regression coefficient.
According to the screening results, 13 variables are removed,

and the remaining 10 variables, such as O2 concentration and
temperature, are highly correlated with SO2 concentration.
3.4. DBN Algorithm of SO2 Distribution. The DBN

model consists of a restricted Boltzmann machine (RBM) and a
back-propagation neural network (BPNN). A single RBM is
composed of a visible layer (v) and a hidden layer (h). The
neurons in the same layer are not connected and do not affect
each other, while the neurons in different layers are connected
unidirectionally. The structure of the SO2 distribution
correlation analysis model based on DBN is shown in Figure
5. First, the parameters of the whole DBN model are initialized

layer by layer by using the left-to-right unsupervised learning
method. Then, the right-to-left supervised learning method is
used to fine-tune the network parameters.
In the process of unsupervised learning, the simulation data is

input through the bottom layer of DBN, and the parameters of
the RBM network are initialized randomly. Meanwhile, the
number of layer nodes and the maximum number of layers of the
DBN network are set. The output of low-level RBM is used as
the input of high-level RBM. Each RBM is fully trained, and the
network parameters are continuously updated. In the fine-tuning
stage, the BPNN of the last layer is trained. The errors are
propagated back layer by layer, and the overall weight is fine-
tuned and optimized. Finally, a correlation analysis model
between SO2 concentration distribution and other POCs is
established.
The correlation analysis model of SO2 in the furnace based on

DBN can be written as follows

=Y f N w w w b( , , , , )so so 1 2 32 2 (10)

where Ysod2
is the sth value of SO2 concentration; Nsod2

is an input
variable for SO2 concentration; w1, w2, and w3 represent the
weights of different layers in the SO2 distribution correlation
analysis model based on DBN; and b is the bias.

Figure 4. Framework of the SO2 distribution correlation model based
on LDBN.

Figure 5. DBN model for SO2 distribution correlation analysis.
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4. RESULTS AND DISCUSSION
In this study, the combustion state can be changed by changing
the swing angle of the burner while the working conditions such
as boiler load, coal type, and air flow are fixed. Therefore, this
design can establish the overall distribution of SO2 in the furnace
under different burner blade swing angles.
To verify the validity of the model established in this paper,

the correlation analysis of SO2 concentration under different
working conditions is performed. Since there are about 1.2
million three-dimensional coordinate points in the boiler
furnace, it takes a long time to build a distributed model using
all the data. Therefore, the furnace is partitioned according to
the standard of x-coordinate in ascending order, and the
simulation data is divided into eight data sets. For the
convenience of subsequent description, the data sets are
denoted Data 1, Data 2, Data 3, Data 4, Data 5, Data 6, Data
7, and Data 8.
In Section 2, the origin of coordinates is set at the bottom

center, but there is a tail flue area in the furnace, and the x-
coordinate range is [−6.03, 3.19]. The modeling data division is
shown in Table 2. The Lasso method is used to select the

features of the eight data sets. From 23 variables such as energy,
temperature, coordinates, and furnace product concentration,
10 variables with high correlation are selected as the input of the
DBNmodel, and SO2 concentration in the furnace is used as the
output variable for the model. The sort order for the importance
of the variables and modeling data information is shown in
Tables 3 and 4.
4.1. Evaluation Criteria. To quantitatively describe the

performance of the model, the indicators of mean absolute
percentage error (MAPE), mean-squared error (MSE), and R-
squared (R2) are used to measure the performance of the model.
MAPE reflects the accuracy of the model, MSE reflects the
deviation between simulation data and modeling results, and R2
represents the matching degree between the modeling results
and simulation data.
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where n is the number of samples, zi is themodeling results of the
model, and yi is the simulation value.

4.2. Result Analysis. 4.2.1. Distribution of the Prediction
Error. To demonstrate the feasibility of using the LDBN model
for correlation analysis of SO2 distribution with other POCs, the
absolute error between the simulation data and the modeling
data of LDBN is displayed in Figure 6.
A comparison of the simulation data with the modeling data

shows that the combustion model based on CFD can reasonably
simulate the combustion process of the furnace.
Thus, the simulation data obtained by CFD simulations can

be used to correlate SO2 distribution with other POCs.
In Figure 6a,b, most areas of the XOZ section and XOY

section are blue (error less than 3.7 × 10−7 kmol/m3). However,
due to the chemical reaction in the middle bottom area during
the combustion of the furnace, a few areas at the bottom of the
furnace are green (error less than 9.6 × 10−7 kmol/m3) in the
XOZ section.
It can be seen from Figure 6 that most of the error distribution

areas are blue, which indicates that LDBN can mine deep data
information, so it is feasible to use LDBN to reveal the
correlation between SO2 distribution and combustion products.

Table 2. Data Division

data
set x-coordinate range

number of
training set data

number of
test set data

Data 1 [−6.03 × 100, −1.26 × 100] 662 409 134 371
Data 2 [−1.25 × 100, −8.21 × 10−1] 746 977 151 625
Data 3 [−8.20 × 10−1, −4.46 × 10−1] 741 846 148 847
Data 4 [−4.45 × 10−1, −4.16 × 10_2] 755 877 150 057
Data 5 [−4.15 × 10−2, 3.16 × 10−1] 762 412 151 459
Data 6 [3.62 × 10−1, 7.59 × 10−1] 764 341 152 389
Data 7 [7.60 × 10−1, 1.13 × 100] 659 177 131 446
Data 8 [1.14 × 100, 3.19 × 100] 653 746 131 076

Table 3. Sort Order by Variables’ Importance

sort variables importance coefficient

1 x-coordinate 1.000 × 100

2 O2 concentration 1.569 × 10−1

3 CO concentration 5.321 × 10−2

4 z-coordinate 4.752 × 10−2

5 y-coordinate 4.067 × 10−2

6 pressure 4.057 × 10−2

7 temperature 2.675 × 10−2

8 the total energy 1.482 × 10−2

9 H2O concentration 1.252 × 10−2

10 volatile concentration 6.993 × 10−3

11 CO2 concentration 4.583e × 10−4

12 z-velocity 3.522 × 10−4

13 radial velocity 1.325 × 10−4

14 relative velocity angle 8.658 × 10−5

15 x-velocity 7.051 × 10−5

16 y-velocity 2.701 × 10−5

17 total pressure 2.188 × 10−5

18 N2 concentration 1.357 × 10−5

19 radiation temperature 1.238 × 10−5

20 x-vorticity 1.697 × 10−7

21 y-vorticity 5.881 × 10−13

22 z-vorticity 0
23 density 0

Table 4. Modeling Data Information

variables range unit

temperature [330.52, 1852.86] K
x-coordinates [−6.03, 3.19] m
y-coordinates [−2, 2] m
z-coordinates [0, 26.38] m
CO concentration [0, 0.0014] kmol/m3

O2 concentration [1.60 × 10−11, 0.0069] kmol/m3

H2O concentration [0, 0.00117] kmol/m3

volatile concentration [10, 65] mol/m3

SO2 concentration [0, 1.87 × 10−5] kmol/m3

total energy [−2 336 317, 448 157] J/kg
pressure [−553.73, 2980.15] Pa
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4.2.2. Influence of Feature Selection on Modeling
Accuracy. To verify the influence of the Lasso method for
feature selection on modeling efficiency, three groups of
comparative experiments are conducted on the DBN model
(Table 5). The first group takes the input of 10 variables after
Lasso feature selection, the second group takes the input of 10

variables after feature selection by Pearson correlation, and the
third group takes the input of 23 variables without feature
selection. The results show that when the swing angle is 30°, the
R2 values of the eight data sets before and after using Lasso
feature selection are similar, but the modeling time after Lasso
feature selection is reduced by 7.2% on average. The MAPE and

Figure 6. Distribution of the error of different swing angles: (a) angle equal to 30° and (b) angle equal to 55°.

Table 5. Influence of Feature Selection on Modeling Results

30° 55°

data set evaluation criteria Lasso Pearson none Lasso Pearson none

Data 1 MAPE 1.600a 3.419 1.610 1.320a 8.112 1.450
MSE 4.84 × 10−15a 2.01 × 10−14 5.41 × 10−15 8.55 × 10−15a 5.24 × 10−13 1.19 × 10−14

R2 0.999a 0.997 0.998 0.999a 0.940 0.998
time 6271.420a 6447.027 6685.680 5318.900a 5489.073 5771.160

Data 2 MAPE 2.940 4.671 2.640a 1.490a 4.952 1.590
MSE 1.28 × 10−14 3.67 × 10−14 1.19 × 10−14a 6.31 × 10−15a 1.08 × 10−13 7.60 × 10−15

R2 0.998 0.995 0.999a 0.999a 0.915 0.998
time 6097.690a 6437.314 7000.120 6324.860a 6480.189 6685.620

Data 3 MAPE 3.050 4.812 3.020a 1.720a 2.200 1.819
MSE 2.65 × 10−14 4.35 × 10−14 2.55 × 10−14a 9.27 × 10−15a 1.47 × 10−14 9.23 × 10−14

R2 0.996 0.994 0.997a 0.998a 0.982 0.997
time 6254.540a 6467.775 6270.610 6089.450a 6474.579 6313.940

Data 4 MAPE 5.530a 6.396 6.810 4.470 2.797a 4.710
MSE 3.09 × 10−14 1.88 × 10−13 2.76 × 10−14a 2.36 × 10−14 4.91 × 10−14 1.74 × 10−14a

R2 0.997 0.972 0.998a 0.997 0.975 0.998a

time 6578.880a 6612.006 6972.400 6088.880a 6477.989 6839.440
Data 5 MAPE 6.610 7.020 6.530a 3.960 1.456a 5.380

MSE 3.42 × 10−14 2.47 × 10−13 2.61 × 10−14a 1.66 × 10−14 1.57 × 10−14a 1.78 × 10−14

R2 0.996 0.968 0.997a 0.997a 0.993 0.996
time 6045.890a 6406.274 6693.440 6327.040a 6482.084 6676.350

Data 6 MAPE 3.820 22.026 3.090a 2.400 2.518 1.680a

MSE 2.21 × 10−14 1.14 × 10−13 1.64 × 10−14a 1.24 × 10−14 1.55 × 10−14 9.21 × 10−15a

R2 0.996 0.982 0.997a 0.997 0.995 0.998a

time 5911.370a 6406.274 6947.740 6119.520a 6486.819 6981.860
Data 7 MAPE 2.600 4.452 2.340a 1.380 1.153 0.960a

MSE 1.06 × 10−14a 3.79 × 10−14 1.11 × 10−14 5.69 × 10−15 4.67 × 10−15 3.98 × 10−15a

R2 0.999a 0.994 0.998 0.999 0.999 0.999
time 5504.840a 5624.638 5697.030 5191.720a 5425.850 5683.490

Data 8 MAPE 2.280a 4.722 2.430 1.150 2.100 1.140a

MSE 7.41 × 10−15a 6.00 × 10−14 8.89 × 10−15 4.75 × 10−15a 1.64 × 10−14 5.87 × 10−15

R2 0.999a 0.995 0.998 0.999a 0.998 0.996
time 5412.640a 5478.110 5656.880 5491.670 5420.303a 5629.590

aThe evaluation index of the results in bold is significantly better than other algorithms.
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MSE of Data 1 after Lasso feature selection are improved by 0.6
and 10.54%, respectively; the MAPE andMSE of Data 8 are also
improved by 6.17 and 16.64%, respectively. When the swing
angle is 55°, the time of Data 1 is reduced by about 7.8%, and the
MAPE and MSE are improved by 6.2 and 28.15%, respectively,
after Lasso feature selection. As for Data 2, there is no significant
change in accuracy before and after Lasso feature selection, but

the modeling time is reduced by about 361 s. Therefore, the
efficiency of the model is improved after feature selection.
Compared with using the Pearson correlation method, the
model built using the lasso method for feature selection has
higher accuracy. On Data 2 of 30° swing angle, theMAPE,MSE,
and R2 of the Lasso are respectively improved by 43.46, 65.12,
and 0.2%. On Data 3 of 55° swing angle, the MAPE, MSE, and

Figure 7. Results of different algorithms under a swing angle of 30°: (a) Data 1, (b) Data 2, (c) Data 3, (d) Data 4, (e) Data 5, (f) Data 6, (g) Data 7,
and (h) Data 8.
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R2 of the Lasso are respectively improved by 83.9, 36.93, and
1.6%. Since the Pearson correlation method can only select
linearly correlated features, some nonlinearly correlated features
are not screened out. Therefore, the Lasso method is more
suitable for selecting feature variables than the Pearson
correlation method.

4.2.3. Influence of Different Algorithms on Modeling
Accuracy. To more intuitively reflect the accuracy and
generalization ability of the SO2 distribution model based on
LDBN, the results of our proposed model are compared with
those of the BP neural network, extreme learning machine

(ELM), and support vector regression (SVR). Figures 7 and 8
respectively show the results of the four different algorithms on
the eight data sets under the swing angles of 30 and 55°. It can be
seen from the figures that the four algorithms achieve good
correlation analysis results for SO2 in the furnace.
In comparison, the variation trend of the results obtained by

LDBN is closer to the simulation data trend, indicating that the
model based on LDBN has a better fitting ability. It can be seen
from the box diagram in Figure 9 that compared with other
algorithms, the error of LDBN is closer to error line 0 and there
are relatively fewer outliers. In contrast, the excessive error of

Figure 8. Results of different algorithms under a swing angle of 55°: (a) Data 1, (b) Data 2, (c) Data 3, (d) Data 4, (e) Data 5, (f) Data 6, (g) Data 7,
and (h) Data 8.
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ELMmay be due to the fact that as a shallow network, the ability
to map to high-dimensional space is insufficient and the
correlation between variables cannot be explored more deeply.
To further analyze the fitting effect of LDBN and the other three
algorithms, the values of the error evaluation indicators on the
eight data sets under the two swing angles are listed in Tables 6
and 7.
In Table 6, themean values ofMAPE of LDBN, BP, ELM, and

SVR algorithms are 3.55, 4.59, 9.85, and 29.48%; the average
values of MSE are 1.87 × 10−14, 3.10 × 10−14, 1.55 × 10−13, and
1.55 × 10−13 kmol/m3; and the average values of R2 reach 0.998,
0.996, 0.981, and 0.968, respectively. These results indicate that
the model based on LDBN has better fitting effect.
Meanwhile, as shown in Table 7, compared with the ELM

algorithm, the MAPE andMSE of the LDBN algorithm on Data
1 are respectively improved by 76.4 and 34.6%, and the
difference of R2 is 0.0274. DBN can dig out the deep feature
information contained in the data, so the values of MAPE and
MSE are much better. OnData 2, theMAPE,MSE, andR2 of the

LDBN algorithm are respectively improved by 81.9, 59.9, and
4.3%. On Data 3, the MAPE and R2 of the LDBN algorithm are
improved by 10.67% and 0.0648, respectively, while the MSE is
improved by about 53%. In summary, the fitting ability of LDBN
is improved under the swing angles of 30 and 55°, and all of the
error evaluation indicators are optimal. These results indicate
that LDBN achieves a better effect in the correlation analysis of
SO2 distribution in the furnace.
The relationship between SO2 distribution and other

combustion products in the process of coal combustion is very
complicated, but LDBN can still capture the relevant regulations
through data. It can fully learn and dig into the correlation
between SO2 distribution regulations and other combustion
products.
4.3. Sensitivity Analysis. To reveal the influence of various

parameters of SO2 distribution in the furnace, a sensitivity
analysis was conducted. In the sensitivity analysis, the
parameters and other conditions of the model are kept the
same, and only the influence of the changes of each input

Figure 9. Boxplot of the error of different algorithms on different data sets under the two swing angles of (a) 30° and (b) 55°.

Table 6. Comparison of Performance of Different Models under a Swing Angle of 30°

data set evaluation criteria LDBN BP ELM SVR

Data 1 MAPE 1.600a 1.770 6.030 10.210
MSE 4.84 × 10−15a 7.26 × 10−15 8.45 × 10−14 1.47 × 10−13

R2 0.999a 0.998 0.993 0.986
Data 2 MAPE 2.940a 4.300 11.720 20.740

MSE 1.28 × 10−14a 2.98 × 10−14 2.35 × 10−13 2.51 × 10−13

R2 0.998a 0.996 0.969 0.962
Data 3 MAPE 3.050a 3.690 7.560 18.470

MSE 2.65 × 10−14a 4.26 × 10−14 3.08 × 10−13 3.67 × 10−13

R2 0.997a 0.994 0.958 0.949
Data 4 MAPE 5.530a 7.120 14.880 80.860

MSE 3.09 × 10−14a 4.50 × 10−14 1.07 × 10−13 3.19 × 10−13

R2 0.997a 0.996 0.990 0.968
Data 5 MAPE 6.610a 8.390 14.870 56.350

MSE 3.42 × 10−14a 4.12 × 10−14 1.02 × 10−13 1.47 × 10−13

R2 0.996a 0.995 0.987 0.980
Data 6 MAPE 3.802a 4.540 7.110 6.340

MSE 2.21 × 10−14a 3.91 × 10−14 8.07 × 10−14 7.31 × 10−14

R2 0.997a 0.994 0.987 0.988
Data 7 MAPE 2.600a 4.310 10.940 20.290

MSE 1.06 × 10−14a 3.14 × 10−14 2.50 × 10−13 3.16 × 10−13

R2 0.999a 0.996 0.968 0.949
Data 8 MAPE 2.280a 2.620 5.650 22.540

MSE 7.40 × 10−15a 1.15 × 10−14 7.24 × 10−14 4.90 × 10−13

R2 0.999a 0.998 0.996 0.960
aThe evaluation index of the results is significantly better than other algorithms.
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variable on the SO2 distribution is studied. Therefore, when
analyzing each variable, each input variable is replaced by the
mean value sequence, and a SO2 distribution model is
established to obtain MAPE. The results are shown in Figure
10. The first column shows the MAPE of the original model

without changing the input variables, and the 2nd−11th
columns show the MAPE of the model established after each
input variable is replaced by the mean. It can be seen from the
figure that when the mean value is used instead of O2, the error
of the training set and the test set increases the most and the
MAPE reaches 3.8671, which is a 23.97% increase in MAPE
compared with the original model origin. CO also has a great
influence on SO2 distribution, with a 23.64% increase in MAPE.
In contrast, the total energy has the least impact on SO2
distribution, and MAPE is increased by 2.97%. The above
results show that there is a strong correlation between the
concentration of O2 and the concentration of CO in SO2
distribution.

4.4. Discussion of Results. According to the analysis of the
results in the previous section, the following observations can be
made:

(1) Data preprocessing can improve the accuracy of the
model. Because there is no combustion reaction or
insufficient combustion in some areas of the furnace, there
are some zero values and minimum values in the
simulation data of CFD, which will affect the accuracy
of the model. Therefore, the accuracy of the model is
improved by data preprocessing.

(2) Feature selection can improve the modeling accuracy.
The characteristics of uneven quality, high dimension,
and little correlation of the data affect the accuracy of the
model. Thus, it is necessary to select features. In this
study, the Lasso method is used to select features from the
simulation data, and the results show that feature selection
can effectively improve the modeling accuracy and reduce
the modeling time.

(3) LDBN is suitable for modeling SO2 distribution in
furnaces. The comparison of the results of LDBN to those
of BP, ELM, and SVR shows that LDBN achieves higher
accuracy and better fitting ability in the correlation model
of SO2 distribution in the furnace. The sensitivity analysis
is performed to determine the correlation between the
input variables for SO2 distribution, and the analysis is
conducted by changing the values of the input variables.
The results show that O2 concentration has the highest
influence on SO2 distribution, followed by CO concen-
tration. The total energy has the least influence on SO2
distribution. The slight changes in O2 concentration, CO
concentration, and total energy lead to improvements in
MAPE by about 23.97, 23.64, and 2.97%, respectively.

Table 7. Comparison of Performance of Different Models under a Swing Angle of 55°
data set evaluation criteria LDBN BP ELM SVR

Data 1 MAPE 1.320a 9.850 5.590 8.120
MSE 8.55 × 10−15a 4.35 × 10−13 1.77 × 10−13 1.20 × 10−13

R2 0.999a 0.934 0.971 0.975
Data 2 MAPE 1.490a 17.350 8.220 11.290

MSE 6.31 × 10−15a 7.43 × 10−13 2.13 × 10−13 1.78 × 10−13

R2 0.999a 0.720 0.956 0.957
Data 3 MAPE 1.720a 22.870 12.390 16.350

MSE 9.27 × 10−15a 2.24 × 10−13 2.67 × 10−13 3.27 × 10−13

R2 0.998a 0.946 0.933 0.910
Data 4 MAPE 4.470a 4.920 13.970 56.970

MSE 2.36 × 10−14a 2.58 × 10−14 9.44 × 10−14 2.17 × 10−13

R2 0.997a 0.997 0.988 0.971
Data 5 MAPE 3.960a 28.680 29.200 34.900

MSE 1.66 × 10−14a 4.63 × 10−13 3.28 × 10−13 1.77 × 10−13

R2 0.997a 0.939 0.947 0.975
Data 6 MAPE 2.400a 8.170 12.050 3.630

MSE 1.24 × 10−14a 6.44 × 10−14 4.51 × 10−13 3.93 × 10−14

R2 0.998a 0.988 0.904 0.992
Data 7 MAPE 1.380a 3.540 8.530 10.560

MSE 5.69 × 10−15a 4.69 × 10−14 5.49 × 10−13 2.08 × 10−13

R2 0.999a 0.995 0.928 0.966
Data 8 MAPE 1.150a 4.000 5.250 13.190

MSE 4.75 × 10−15a 8.80 × 10−14 3.11 × 10−13 4.12 × 10−13

R2 0.999a 0.995 0.981 0.968
aThe evaluation index of the results is significantly better than other algorithms.

Figure 10. Sensitivity analysis results.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c03468
ACS Omega 2022, 7, 41943−41955

41953

https://pubs.acs.org/doi/10.1021/acsomega.2c03468?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03468?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03468?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c03468?fig=fig10&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c03468?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


5. CONCLUSIONS
A model based on LDBN is proposed in this paper, which uses
the CFD simulation data of a 30 MW furnace to analyze the
relationship between SO2 distribution and other POCs in the
furnace. First, the CFD numerical simulation is conducted on
the test bench under different burner swing angles and the
obtained simulation data is taken as the experimental data. Then,
the Lasso method is used to select ten variables with a high
correlation with SO2 distribution as the input of the DBNmodel,
and a correlation model of SO2 distribution in the furnace based
on LDBN is established. By comparing the analysis results of
LDBN to those of BP, ELM, and SVR, it is verified that the
correlation model established in this paper can accurately
predict the SO2 distribution in the furnace with better prediction
accuracy and generalization ability. It is proved that there is a
strong correlation between SO2 distribution, O2 concentration,
and CO concentration. This makes it convenient for operators
to understand the combustion situation and provide theoretical
support for the subsequent control and emission reduction of
SO2 and other gases.
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