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Abstract

Activin, a member of the transforming growth factor-b superfamily, is an endocrine hormone that regulates differentiation
and proliferation of a wide variety of cells. In the brain, activin protects neurons from ischemic damage. In this study, we
demonstrate that activin modulates anxiety-related behavior by analyzing ACM4 and FSM transgenic mice in which activin
and follistatin (which antagonizes the activin signal), respectively, were overexpressed in a forebrain-specific manner under
the control of the aCaMKII promoter. Behavioral analyses revealed that FSM mice exhibited enhanced anxiety compared to
wild-type littermates, while ACM4 mice showed reduced anxiety. Importantly, survival of newly formed neurons in the
subgranular zone of adult hippocampus was significantly decreased in FSM mice, which was partially rescued in ACM4/FSM
double transgenic mice. Our findings demonstrate that the level of activin in the adult brain bi-directionally influences
anxiety-related behavior. These results further suggest that decreases in postnatal neurogenesis caused by activin inhibition
affect an anxiety-related behavior in adulthood. Activin and its signaling pathway may represent novel therapeutic targets
for anxiety disorder as well as ischemic brain injury.

Citation: Ageta H, Murayama A, Migishima R, Kida S, Tsuchida K, et al. (2008) Activin in the Brain Modulates Anxiety-Related Behavior and Adult
Neurogenesis. PLoS ONE 3(4): e1869. doi:10.1371/journal.pone.0001869

Editor: Seth G. N. Grant, Wellcome Trust Sanger Institute, United Kingdom

Received August 24, 2007; Accepted February 22, 2008; Published April 2, 2008

Copyright: � 2008 Ageta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Special Coordinate Funds for Promoting Science and Technology from MEXT of the Japanese Government (K.I.), and in
part by a Grant-in-Aid for Scientific Research on Priority Areas ‘‘Neural Circuit Project’’, ‘‘Advanced Brain Science Project’’, and ‘‘Molecular Brain Science’’, from
MEXT of the Japanese Government (K.I.).

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kaoru@mitils.jp

Introduction

Anxiety disorder represents one of the most common mental

illnesses [1–3]. Recently, disturbance in adult hippocampal

neurogenesis was proposed to underlie anxiety-like behavior in

rodents [4,5]; however, molecular mechanisms that link hippo-

campal neurogenesis to anxiety disorder remains poorly under-

stood.

Activin, a member of the transforming growth factor-b
superfamily, is an endocrine hormone that regulates differentiation

and proliferation of a wide variety of cells [6]. In the brain, activin

receptor ActRII is highly expressed in forebrain region [7,8], and

its scaffold protein ARIP/S-SCAM is also localized in synaptic

region [9,10]. Furthermore, activin protects neurons from

ischemic damage [11], and its expression is upregulated by

neuronal activity [12,13]. Recently, we showed that activin

modulates dendritic spin morphology that is important for

synaptic plasticity in the hippocampus [14,15].

In this study, we generated and analyzed transgenic mice in

which activin function in the forebrain is either suppressed or

enhanced. We found that the activin activity in the adult forebrain

influences locomotor activity, anxiety-related behavior, and

hippocampal neurogenesis.

Results

We explored the role activin plays in anxiety-related behavior

using a transgenic mouse model that overexpresses activin or

follistatin, an activin-inhibitory protein, in a forebrain-specific

manner. Disturbance of activin signal during the developmental

stage causes a lethal phenotype in mammals [16,17]. To achieve

postnatal, forebrain-specific expression, the aCaMKII promoter

was used to drive expression of a transgene (Fig. 1A) [18,19]. We

microinjected activin and follistatin transgenes into 549 and 1183

fertilized eggs, and obtained 42 and 55 weaned mice, respectively.

From these, two lines of activin transgene-integrated mice

(designated ACM3 and ACM4) and one line of follistatin

transgene-integrated mice (designated FSM) were obtained.

Transgene-integrated mice were generated in 1% of microinjected

fertilized eggs [20]. This low efficacy may have been caused by

unexpected transgene expression in various tissues during the

embryonic stage, because the activin signal is important for normal

development. In contrast to previously generated activin- or

follistatin-transgenic mice [21–23], these heterozygous transgenic

mice were fertile and bred healthily, and their body weight (data

not shown) and muscular strength were normal when compared to

their wild-type littermates (Figure S1). Since ACM3 mice showed
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phenotypes similar to ACM4 mice in behavioral experiments, we

hereafter describe the phenotypes of ACM4 and FSM mice.

In situ hybridization analyses of brain sections revealed that

transgene expression was restricted to the forebrain such as the

hippocampus and neocortex in the adult brain (Fig. 1B). ELISA

analyses also showed forebrain-specific expression of activin and

follistatin in ACM4 and FSM adult mice, respectively (Fig. 1C).

Low level of endogenous activin was detected in the hippocampus

and neocortex in wild-type mice. Follistatin level in FSM was

enough to antagonize this level of activin activity [24]. Follistatin

was not detected in the infant hippocampus of FSM mice

(Fig. 1C). RT-PCR revealed that follistatin- and activin-transgene

were not expressed in peripheral tissues including, heart, lung,

spleen, liver and kidney (Figure S2). Nissel staining showed no

apparent structural abnormality in the hippocampus of each

transgenic mice (Figure S3).

Open field tests were performed on transgenic mice to

investigate locomotor activity (Fig. 2). FSM mice showed a

decrease in time spent in locomotion and rearing when compared

with wild-type littermates. In contrast, ACM4 mice showed a

significant increase in rearing time. There was no genotype effect

in the walking speed (Fig. 2B) and the total pathlength (Fig. 2C),

indicating that walking ability of FSM and ACM4 mice was

normal. These results indicate that the level of functional activin in

the brain is related to general locomotor activity in a novel

environment.

In open field tests, the amount of time spent in the center of the

field is strongly correlated with an animal’s level of anxiety, a

characteristic called risk-taking behavior [25,26]. FSM mice

showed decreased performance in risk-taking behavior (Fig. 2D),

while ACM4 mice showed increased performance. To further

assess these differences, a light and dark choice test and elevated

plus-maze test were conducted. In the light and dark test, ACM4

mice accessed the lighted compartment significantly more often

than wild-type littermates (Fig. 3A), however, FSM mice spent

significantly more time in the dark compartment as compared to

wild-type littermates. In the elevated plus-maze test, ACM4 mice

spent significantly more time in the open arms of the testing

apparatus than did wild-type and FSM mice (Fig. 3B). FSM mice

showed no significant change in phenotype for this test.

Figure 1. Generation of transgenic mice and expression analysis of the transgene. (A) Schematic representation of transgene constructs.
Narrow arrows indicate the location and direction of RT-PCR primers (Figure S2). (B) Photographs of typical in situ hybridization are shown. DIG-
labeled cRNA probe corresponding to the SV40 polyA sequence was hybridized to sagittal sections of the brain from 16–22 week-old wild-type, FSM
and ACM4 mice. Scale bars, 500 mm. (C) Follistatin and activin protein levels in the hippocampus (Hip), cortex (CTX), cerebellum (Cbm) and medulla
(Med) in wild-type, FSM and ACM4 mice measured by ELISA. Results are shown as mean6s. e. m. (n = 4) Except for activin in CTX in wild-type (n = 1).
Adult indicates 16–22 weeks-old. P7, postnatal day 7.
doi:10.1371/journal.pone.0001869.g001
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We next designed and performed an original behavioral test to

measure anxiety levels (Fig. 3C), based on the observation that

mice generally prefer novel objects encountered in a familiar place

[27]. In this test, mice were placed in a closed box on the first day

to become familiar with the box. On the second day mice were

placed in the same box to which a cylinder with two entrances

(novel area) had been added. FSM mice spent significantly less

time accessing the novel area as compared to wild-type mice, while

the total distance they traveled during the test was normal. This

suggests that higher anxiety in FSM mice resulted in lower access

to the novel area. Taken together, the level of functional activin in

the brain modulates anxiety-related behavior. Finally, no depres-

sive behavior was observed in FSM mice in the forced swimming

test (Figure S4).

Adult neurogenesis is the production of new neurons in areas of

the adult brain including the subventricular zone (SVZ) and

subgranular zone (SGZ) of the hippocampus [28]. This formation

of new neurons plays a number of physiological roles including

damaged neuron replacement[29,30], memory formation [31,32]

and response to stress [33]. Moreover, some reports have recently

shown that neurogenesis is involved in depression [34,35].

We therefore examined adult neurogenesis in hippocampal

SGZ of FSM and ACM4 mice (Fig. 4) using 5-bromodeoxyur-

idine (BrdU)-labeling experiments. Transgenic mice were injected

with BrdU (75 mg/kg body weight) three times per day for three

consecutive days. Mice were sacrificed either 24 h or 4 weeks after

the final injection day. BrdU is incorporated into genomic DNA

by cells at S-phase, therefore, by staining with a neuronal marker

(NeuN) and an anti-BrdU antibody, newly generated neurons

were easily detected. A significant difference between FSM and

ACM4 mice was observed in the number of SGZ BrdU-positive

cells after 24 h (Fig. 4A, B). No significant difference, however,

was observed between transgenic mice and wild-type littermates,

indicating that the number of neuronal progenitor cells and the

rate of BrdU incorporation into progenitor cells in transgenic mice

were essentially normal. At the 4-week stage, however, the number

of BrdU- and NeuN-double positive cells in FSM mice was

markedly decreased (Fig. 4C). This reduction was partially

rescued by crossing with ACM4 (Fig. 4D). These results indicated

that the level of activin in the brain is crucial for the maturation

and maintenance of newly generated neurons.

The decrease in BrdU- and NeuN-double positive cells at the

4-week stage may be attributed to a decrease in the survival rate

of newly formed neurons or a decrease in the rate for neuronal

differentiation of new cells. Therefore, the change in the number

of BrdU- and NeuN-double positive cells following BrdU

Figure 2. Activin protein levels in the brain influence locomotor activity. (A) Statistical analyses of the open field test showing time spent in
locomotion and rearing [wild-type littermates (black circles), n = 34; FSM (blue squares), n = 18; ACM4 (red triangles), n = 11]. Each plot represents an
average of 5 minutes. *, p,0.05; **, p,0.001; Fisher’s test. (B and C) Statistical analyses of walking velocity (B) and total pathlength (C) during
30 minutes of open field test. (D) Risk taking behavior test. Left panel, overhead view of the box used for open field test. #, area defined as a center
region. Mid panel, time spent in the center region during the 30 minutes of open field testing. Right panel, the percentage pathlength in the center
region. Results are shown as mean6s. e. m.
doi:10.1371/journal.pone.0001869.g002
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injections (Fig. 4E) was monitored at various developmental

stages. The number of BrdU- and NeuN-double positive cells

was normal at the 1-week stage in FSM mice, suggesting a

normal differentiation rate. However, a marked decrease was

observed in the number of BrdU- and NeuN-double positive cells

at 2- and 3-week stages compared with wild-type littermates.

Therefore, in FSM mice, the survival of newly generated neurons

is significantly decreased. This indicates that activin signal is

essential for the maintenance of newly generated neurons.

Activin overexpression did not enhance the number of BrdU-

and NeuN-double positive cells at 4 weeks, suggesting that

activin overexpression is not sufficient for enhancement of adult

neurogenesis (Fig. 4C).

Taken together, FSM and ACM4 mice showed opposite

phenotypes in behavior. Furthermore, decrease in neurogenesis

in FSM mice was partially rescued in FSM/ACM4 double

transgenic mice. These results strongly suggest that the

observed effects of overexpression, either follistatin or activin,

are not positional transgene effects such as insertional

mutations.

Discussion

There is a marked overlap and coincidence between anxiety and

depression [1–3]. Depression is a serious disorder in our current

society. Many popularly prescribed antidepressant drugs work to

modulate monoamine neurotransmission, and take six to eight weeks

to exert their effects [3]. Each drug is efficacious in only 60–70% of

patients. Therefore, a conceptually novel antidepressant that acts

rapidly and safely in a high proportion of patients would be highly

advantageous [3]. We show here that activin in the forebrain bi-

directionally influences anxiety-related behavior. Depression is

usually seen in anxiety patients, and anxiety is often reported in

depressed patients [1–3]. A recent paper by Dow et al. showed that

activin infusion into the hippocampus produced an antidepressant-

like effect [36]. Therefore, the level of activin in the hippocampus

modulates both depressive and anxiety-related behavior. Therefore,

activin may represent a new contributing factor for the modulation

of anxiety. The transgenic mice used in this study may be useful for

screening compounds in the development of new mechanistically-

novel anti-depressant drugs.

Figure 3. Activin protein levels in the brain modulate anxiety-related behavior. (A) Upper panels, typical traces in the light and dark test
for each genotype. Lower panels, time (%) spent in the dark compartment was measured over 30 min. Wild-type littermates (black circles), n = 34;
FSM (blue squares), n = 18; ACM4 (red triangles), n = 11. *, p,0.05, Fisher’s test. (B) Statistical analyses of elevated plus-maze. Wild-type littermates,
n = 26; FSM, n = 7; ACM4, n = 11. p values indicate ANOVA for genotype effect. *, p,0.05; t-test. (C) Left panels shows the apparatus used for the
novel-area accessing test. Arrows indicate points of entry to the cylinder. Small picture shows side view of the cylinder. Bar graphs show time spent in
novel area (inside cylinder) and distance traveled during 10 min testing. *, p,0.05, t-test. Results are shown as mean6s. e. m.
doi:10.1371/journal.pone.0001869.g003
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Materials and Methods

Transgene construction and generation of transgenic
mice

Coding region for mouse activin or human follistatin was

amplified by PCR using specific PCR primers designed to add a

Kozac sequence at the N-terminus and a myc-tag sequence at the

C-terminus. The resulting cDNAs were cloned into pcDNAI

(Invitrogen) to append an SV40 intron/polyadenylation signal at

the 39-end. These constructs were inserted into the Not I site of

pMM403 vector (kindly provided by Dr. M. Mayford) [18] which

contains the alpha calcium/calmodulin-dependent protein kinase

II (aCaMKII) promoter to generate pCaM-activin-Myc and

pCaM-follistatin-Myc plasmids. Sfi I fragments were isolated from

Figure 4. Activin signal is essential for survival of newly generated neurons. (A) BrdU positive cells (green) in the SGZ. Mice were sacrificed
1 day (upper panels) or 4 weeks (lower panels) after BrdU administration. At 4 weeks, most BrdU-positive cells were co-labeled with NeuN (red), a
marker for mature neurons. Propidium iodide (PI, red) was used as a nuclear marker. (B) Number of BrdU-positive cells in the SGZ. The Y-axis indicates
the number of BrdU-positive cells of the entire hippocampus. ACM4 had more BrdU-positive cells than FSM (wild-type, n = 21 animals; ACM4, n = 6
animals; FSM, n = 10 animals). (C) Number of BrdU-positive cells differentiated to neurons (NeuN+/BrdU+) or differentiated to another cell type (non-
NeuN+/BrdU+) in the SGZ (wild-type, n = 25; ACM4, n = 14; FSM, n = 9). Animals were sacrificed 4 weeks after BrdU administration. (D) Number of BrdU-
and NeuN-double positive cells in the SGZ (wild-type, n = 32; ACM4/FSM, n = 9; FSM, n = 14). Animals were sacrificed 4 weeks after BrdU
administration. (E) Number of BrdU/NeuN-double positive cells in the SGZ. Animals were sacrificed 1, 2, or 3 weeks after BrdU administration. At the
2-week stage (wild-type, n = 7; FSM, n = 8), but not at the 1-week stage (wild-type, n = 7; FSM, n = 9), the number of double positive cells was
significantly decreased in FSM mice compared with wild-type littermates. Error bars indicate the s. e. m. *, p,0.05; **, p,0.01; t-test.
doi:10.1371/journal.pone.0001869.g004
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pCaM-activin-Myc or pCaM-follistatin-Myc and microinjected

into the pronuclei of one-cell embryos of C57BL/6J mice to

produce transgenic mice [37]. Microinjected embryos were

transferred to the oviducts of pseudo-pregnant females. Founder

transgenic mice were identified by Southern blot analyses and

PCR analysis with genomic DNA prepared from tail, and bred

with C57BL/6J mice. Forward (f) and reverse (r) PCR primers for

genotyping were as follows: ACM, f-59-CACCCACTAGCCGT-

TACCAT-39and r-59-ATCCTCTCAGCCAAAGCAAG-39; FSM,

f-59-GAGGTAGGAAGAGCGATGAT-39and r-59-CTCCATCA-

TTCCCACAGAGA -39. C57BL/6J mice were purchased from

Clea Japan Inc. (Tokyo, Japan)

ELISA analysis
After removal of the brain, each neuronal tissue (hippocampus,

cortex, cerebellum and medulla) was quickly dissected out. Tissues

were homogenized in lysis buffer [5 mM Tris-HCl, pH 8.0,

0.32 M sucrose, protease inhibitor cocktail (Sigma)], and homog-

enates were centrifuged at 20,0006g at 4uC for 10 min.

Supernatant was collected and assayed for quantification of total

protein with the BCATM Protein Assay Kit (Pierce). Follistatin and

activin levels were assayed by using commercial ELISA kits

(Human Follistatin Immunoassay, AN’ALYZA and Activin-A

ASSAY, Oxford Bio-Innovation, respectively).

Neurogenesis
Male mice at 5 weeks-old received daily intraperitoneal

injections of BrdU (Sigma) in 0.9% NaCl solution (75mg/kg,

three times per day for three days). Animals were sacrificed with

an overdose of anesthetics and perfused transcardially with 0.9%

saline followed by 4% paraformaldehyde (PFA) in PBS. Brains

were stored in fixative (4% PFA in PBS) for 3 h at 4uC, and

incubated overnight in 30% sucrose, and then immersed in dry ice

powder. A cryostat was used to collect sagittal sections of 14-mm

thickness. The sections were boiled for 10 min, and then treated

with 2M HCl for 30 min. After rinsing in 0.1 M boric acid

(pH 8.5) for 10 min, tissues were incubated in 1% H202 in PBS for

30 min, and then blocked with 0.1% BSA and 3% goat serum in

PBS containing with 0.1% Tween20 (PBST) at room temperature

for 1 h. After blocking, tissues were incubated with blocking

solution containing rat monoclonal anti-BrdU (1:250; Accurate)

and mouse monoclonal anti-NeuN (1:200; Chemicon) antibodies.

Sections were then incubated with anti-rat IgG-FITC and anti-

mouse IgG-Rhodamine.

For quantification, three consecutive serial sections at section-

interval 13 were used for counting BrdU-positive cells though an

640 objective (BX41, OLYMPUS) in a genotype-blinded

manner. Total number of BrdU-positive cells was obtained by

multiplying the number of BrdU-positive cells counted in all the

sections by 13/3. Figures were imaged by confocal microscopy

operated under manual control (LSM5 PASCAL, ZEISS).

Animal care and data analysis
All procedures involving mice were performed in compliance

with National Institutes of Health guidelines and were approved

by the Animal Care and Use Committee of Mitsubishi Kagaku

Institute of Life Sciences, MITILS. We abided by MITILS

guidelines on animal husbandry. All behavior experiments were

conducted in a blinded fashion on male, heterozygous transgenic

mice and their wild-type littermates (5–6 months). Two weeks

before behavioral analysis, animals were housed individually in

plastic cages and maintained on a 12:12-h light:dark cycle. Food

and water were provided ad libitum. For five days before behavioral

analysis, the mice were handled daily. Statistical analyses were

conducted using StatView (Abacus Concepts). Values were

expressed as mean6s. e. m..

In situ hybridization
To detect transgene expression the SV40 poly A signal

sequence, which is found in each transgene, was used as an

antisense probe (Fig 1A). To prepare the probe, this region was

subcloned into pBluescript II (Stratagene) to generate pSV40.

pSV40 was digested with BamHI to generate DNA template for in

vitro transcription of antisense cRNA probe. Digoxigenin-labeled

antisense cRNA probe was produced by transcription with T7

polymerase. For hybridization experiments, animals were sacri-

ficed with an overdose of anesthetics, and the brain was dissected

and immediately frozen on dry ice. Cryostat sections (20-mm

thickness) were cut and mounted onto polylysine-coated glass

slides. Sections were air-dried and stored at 280uC until use in

hybridization. In situ hybridization was carried out as described

previously [38].

Behavioral analysis
Behavioral experiments were basically carried out as described

previously [39]. In the open field test, spontaneous locomotor

activity was measured in a square arena (50650630 cm;

Muromachi Kikai, Japan) by using a device outfitted with

photo-beam detectors for monitoring horizontal and vertical

activity, namely, distance traveled, time spent in locomotion,

rearing counts and time in rearing. For statistical analysis on the

percentage pathlength in the center region, we used ImageJ

program (developed at the U. S. National Institutes of Health, and

available on the Internet at http://rsb.info.nih.gov/ij/), Mice were

allowed to explore freely while data was collected for 30 min. In

the light and dark test, the square arena was divided into light and

dark compartments. Data was collected as mice were allowed to

freely traverse the arena among the two compartments for 30 min.

The elevated plus-maze comprises areas of two opposing open

arms (256560.5 cm) and two opposing enclosed arms

(2565615 cm), connected by a central platform (O’HARA &

Co, Japan). Mice were placed in the center area, and allowed to

explore for 10 min. Their activity was recorded by video camera.

Results were analyzed on a Macintosh computer using Image

EP2.13 (O’HARA & Co), modified software of the public domain

NIH Image program (developed at the U. S. National Institutes of

Health, and available on the Internet at http://rsb.info.nih.gov/

nih-image/).

In the novel-area accessing test (Fig. 3C), mice were placed in

the center of a box (60660650 cm) for 10 min on the first day in

order to habituate the apparatus. The next day mice were placed

in the same box to which a novel cylinder (13 cm in diameter) with

two entrances (663.5 cm) was added. Mice were allowed to

explore for 10 min, while their activity was recorded by video

camera. Results were analyzed on a Macintosh computer using

Image OEC 1.02r1 (O’HARA & Co), a modified software of the

public domain NIH Image program.

Supporting Information

Figure S1 Traction test indicates that grip strength was

comparable between transgenic mice and wild-type littermates.

Forelimb grip strength was quantitatively assessed using a spring

strain gauge (O’HARA & Co., Japan). Animals held by the tail

grasped a wire netting and were gently pulled away from the bar

with a smooth steady pull until they released the wire netting. The

Y-axis indicates grip strength (g).

Found at: doi:10.1371/journal.pone.0001869.s001 (0.16 MB TIF)
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Figure S2 Transgene expression was not detected in the internal

organs of FSM and ACM4 mice. RT-PCR-based identification of

transgene expression was carried out in various internal organs.

Transgene plasmid DNA and total cellular RNA prepared from

cortex of each transgenic mice line served as a positive control.

Water and total cellular RNA from cortex of wild-type mice served

as a negative control. Actin gene was used as an internal control.

Unspliced products were detected at the upper position of mature

and spliced product when transgene plasmid DNA or ACM4’s

cortex RNA were used as a template. To rule out the possibility

that genomic DNA was amplified, we performed RT-PCR

without reverse transcription (middle row panels, RT-), which

showed no signals.

Found at: doi:10.1371/journal.pone.0001869.s002 (0.56 MB TIF)

Figure S3 Nissl staining of the coronal brain section from wild-

type, FSM and ACM4. Lower panels, high magnification images

of the hippocampus. Scale bar, 500 mm. Method. Animals were

sacrificed with an overdose of anesthetics, and the brain was

dissected and immediately frozen on dry ice. Cryostat sections (18-

mm thickness) were cut and mounted onto polylysine-coated glass

slides. Sections were air-dried and stored at 280uC until use.

Slides were immersed in the 10% formalin solution for 30 min at

4uC for the fixation, and washed twice with PBS for 15 min at

room temperature. Slides were then stained with 0.1% Cresyl

Violet for 10 min. They were differentiated in H2O for 3–5 min

and then dehydrated through 70%, 95%, 100% and 100%

alcohol. They were then put in xylene and cover-slipped.

Found at: doi:10.1371/journal.pone.0001869.s003 (0.76 MB TIF)

Figure S4 Analysis of forced swimming test [wild-type litter-

mates (black circles), n = 18; FSM (blue squares), n = 8] on day 2.

The immobilizing time (sec) was plotted for each minute. No

significant genotype effect was observed for FSM. On day 1, mice

were placed in a container with water at a depth of 20 cm (23–

25uC) for 15 min. and forced to swim as they were unable to touch

the bottom with their hind limbs. On day 2, the mice were placed

back into 20 cm deep water for 5 min. When mice were unable to

avoid the forced swimming, they exhibited immobility. Immobility

was monitored by infra-red detector (CompACT FSS, Muromachi

Kikai).

Found at: doi:10.1371/journal.pone.0001869.s004 (0.13 MB TIF)
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