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Chronic rhinosinusitis with nasal polyps (CRSwNP) is considered a nasal sinus

inflammatory disease that can be dominated by immune cells and cytokines.

IL-10 family cytokines exert essential functions in immune responses during

infection and inflammation. Recently, the understanding of the roles of the IL-

10 family in CRSwNP is being reconsidered. IL-10 family members are now

considered complex cytokines that are capable of affecting epithelial function

and involved in allergies and infections. Furthermore, the IL-10 family responds

to glucocorticoid treatment, and there have been clinical trials of therapies

manipulating these cytokines to remedy airway inflammatory diseases. Here,

we summarize the recent progress in the understanding of IL-10 family

cytokines in CRSwNP and suggest more specific strategies to exploit these

cytokines for the effective treatment of CRSwNP.
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Introduction

Chronic rhinosinusitis (CRS) is a persistent inflammatory disease of the nasal and

paranasal sinuses lasting for more than 12 weeks, with patients presenting two or more

symptoms, including nasal congestion, loss of smell, nasal discharge and facial pain or

pressure (1). CRS is generally divided into two phenotypes: CRS with nasal polyps

(CRSwNP) and CRS without nasal polyps (CRSsNP) based on whether nasal polyps are

found during endoscopy or during surgery (1). Endotyping provides a more

comprehensive approach than phenotyping by emphasizing pathophysiological factors

involved in CRS (1). Most patients with CRSsNP present a type 1 immune response that

dominated by T helper (Th) 1 cell accompanied by tissue fibrosis with an increase in

TGF-b level (2). The inflammatory status in CRSwNP varies with the location and

environment. In Europe and North America, most inflammatory responses involve
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eosinophils, while few eosinophils and more neutrophils are

observed in the inflammatory responses in Asian patients (3).

Based on the types of cytokines secreted from Th cells, including

interleukin (IL)-1, IL-4, IL-5, IL-17 and IFN-g, CRSwNP is

commonly divided into Th1, Th2 and Th17 endotypes (4).

Approximately 80% of nasal polyps in patients from the

Western countries show type 2 characteristics compared with

approximately 20 to 60% of nasal polyps in patients from China,

South Korea and Thailand (3). Western patients with CRSwNP

have significantly increased levels of Th2 cytokines and

transcription factors, but patients with CRSwNP in China

show a predominant Th1/Th17 pattern (5). Differences in

inflammatory patterns of sinonasal inflammation may be

impacted by genetic or environmental factors such as

pollution; however, the local mucosal colonization likely is the

most important factor to determine differences in inflammation

(5, 6).

IL-10 was first identified in 1989, and was initially described

as a Th2 cell cytokine (7). A group of cytokines with similar

protein structures and receptor complexes to IL-10 are also

known as IL-10 family cytokines, including IL-19, IL-20, IL-22,

IL-24, IL-26, IL-28A, IL-28B, and IL-29 (8). Despite the

similarities in structures, members of the IL-10 family possess

different biological functions in the immune system. They are

secreted by innate and adaptive immune cells including

monocytes, B cells, T cells, NK cells or macrophages, as well as

structural cells, such as epithelial and endothelial cells (7). IL-10

family cytokines have versatile immune-mediating functions,

and many attempts have been made to use IL-10 family

members in therapeutic strategies for autoimmune diseases,

cancers and inflammatory diseases (9).

Based on accumulating evidence, the heterogeneity in CRS

manifestations may be explained by a variety of disparate

molecular and cellular pathways that result in mucosal

inflammation of CRS. The improved understandings of

different pathophysiological mechanisms of CRS facilitated the

identification of disease variants as endotypes (10). However, no

consistent effect of IL-10 family cytokines in CRSwNP has been

reported. Therefore, the current review will focus on the most

common and important roles of IL-10 family cytokines

in CRSwNP.
IL-10 family cytokines, receptors
and signaling pathways

IL-10 family cytokines consist of IL-10, IL-19, IL-20, IL-22,

IL-24, IL-26, IL-28A, IL-28B, and IL-29 (11), which are

categorized into three subgroups based on similarities

concerning the structures and genomic location of protein-

coding genes, primary and secondary protein structures, and

receptor complex utilization (7) (Figure 1). The first group

includes only IL-10, which is an anti-inflammatory cytokine
Frontiers in Immunology 02
(12) and binds to the IL-10 receptor 1 (IL-10R1) and IL-10R2

subunits. The second group, also called the IL-20 subfamily,

contains IL-19, IL-20, IL-22, IL-24 and IL-26. IL-19, IL-20, and

IL-24 bind to a cell surface receptor complex composed of two

chains, IL-20R1 and IL-20R2 (13). IL-20R2 also pairs with IL-

22R to form a receptor complex that binds IL-20 and IL-24 but

not IL-19 (13). In addition, IL-22 binds to a heterodimeric

receptor complex composed of IL-22R and IL-10R2 (14). IL-

26 binds to the IL-20RA/IL-10RB two-chain receptor complex

(15). The third group is composed of IL-28A, IL-28B, and IL-29,

which are related to type III interferons (IFN-ls) (16). IL-28A
(IFN-l2), IL-28B (IFN-l3), and IL-29 (IFN-l1) share the same

IL-10R2 chain with IL-10 and employ IL-28R as the a chain to

induce similar downstream biological effects as type I IFNs (17).

The ligand-binding chains for IL-22, IL-26, IL-28A/B, and IL-29

share a common b chain, IL-10R2, which they employ to

assemble their active receptor complexes, similar to IL-10

(11, 18).

Downstream signaling pathways of IL-10 family cytokines

have been extensively studied (7, 11). The best-characterized

signaling pathway of IL-10 is the JAK/STAT axis (19). The

downstream interaction of IL-10 with its receptors engages Janus

tyrosine kinase 1 (JAK1) and tyrosine kinase 2 (Tyk2), which are

associated with IL-10R1 and IL-10R2, respectively (20, 21). JAK1

and Tyk2 induce tyrosine phosphorylation and activation of the

latent transcription factors signal transducer and activator of

transcription 1 (STAT1), STAT3, and sometimes STAT5 (22).

IL-22 is currently the most well studied IL-20 subfamily member

and induces activation of the JAK/STAT pathway,

phosphorylation of Jak1 and Tyk2 (23), and STAT1, STAT3,

and STAT5 activation. IL-22 also activates the extracellular

signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK),

and p38 mitogen-activated protein kinase (MAPK) pathways in

a rat hepatoma cell line (23) and a human intestinal epithelial

cell line (24).

Despite similarities in specific features, IL-10 family

members exert different biological effects. IL-10 was first

described as a Th2 cytokine (25), but further evidence

suggested that IL-10 may be produced by most immune cell

types, including innate (including macrophages, monocytes,

dendritic cells (DCs), mast cells, neutrophils, eosinophils and

natural killer (NK) cells) and adaptive (including CD4+ T cells,

CD8+ T cells and B cells) immune cells (26). IL-20 subfamily

cytokines are mainly produced by immune cells, such as

monocytes, lymphocytes, NK cells, macrophages and

fibroblasts (27). In contrast to IL-10 family cytokines, IL-20

subfamily cytokines primarily function in epithelial cells,

protecting them from extracellular pathogen invasion, and

enhancing the wound-healing activities (28). The cellular

sources of the third group cytokines can be produced by

leukocytes (29). IL-28R generation is restricted to cells of

epithelial origin, including hepatocytes and myeloid lineage

cells, such as DCs and macrophages (30). IFN-ls primarily act
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on epithelial cells by binding to IL-28R/IL-10R2 to activate JAK/

STAT signaling and have exert antiviral effects similar to those of

type I IFNs (31, 32). Despite the tissue-protective function of the

IL-10 family, uncontrolled tissue repair processes may cause the

disorders in inflammatory diseases.
Differential expression of IL-10
family cytokines in individuals
with CRSwNP

Immunologic heterogeneity in different regions among

patients with the same disease has been observed in

individuals CRSwNP (3). Different immunoregulatory

activities have the capacity to participate in CRSwNP

mechanisms. Heterogeneity is also observed in the expression

of the IL-10 family. No significant difference was observed for

IL-10 between the tissue homogenates of the nasal polyps and

turbinate tissue from the control subjects in a study conducted in

Germany (33). However, in a study conducted in Korea, the

serum IL-10 level in CRSwNP patients was significantly lower

than that in healthy people, but no difference was observed

between eosinophilic CRSwNP and those with non-eosinophilic

CRSwNP (34). In new research from Brazil, the level of IL-10

protein in nasal polyps was found to be significantly lower than

that in mucosa from the control group (35). IL-10 level was

inversely correlated with olfactory function in patients with CRS

(36). The IL-19 mRNA was significantly overexpressed in the

nasal polyp group compared with that in both the CRSsNP and

control groups (37). IFN-ls are present at lower levels in the

nasal mucosa of CRS patients than in healthy controls (38). The

IL-22 expression level of was not different between control and
Frontiers in Immunology 03
CRSwNP groups, but it was significantly increased in CRSsNP

group compared to the control and CRSwNP groups (39).

According to a factor analysis based on principal component

analysis, IL-22 level positively correlated with type 2 cytokine

levels and the Lund-Mackay CT score, which is a degree of sinus

opacification ranges from 0 to 24 (39). Whereas another study

compared the levels of cytokines across three different age

groups and found significantly higher level of IL-22 in the

mucosa from CRSwNP than in the control group across all

age groups and correlated with the severity of clinical

symptoms (40).
IL-10 family cytokines play roles in
the mechanisms of CRSwNP

The effects of IL-10 family cytokines on
epithelial function

The mucosal epithelium maintains tissue defense functions

through mucociliary action, mucus production, and ion

transport, and it serves as the first barrier for pathogen defense

(41). Intercellular epithelial junctions, including tight junctions,

adherent junctions, and desmosomes, determine epithelial

barrier integrity (42). Damaged integrity of the nasal mucosal

epithelium is a common feature of CRS, which features increased

epithelial permeability and reduced antimicrobial substances

and responses (43) (Figure 2).

Some studies have demonstrated that IL-20 subfamily

cytokines affect the nasal epithelium. Pace et al. (37) observed

increased expression of the IL-19 mRNA and protein in the

epithelium of individuals with nasal polyps, which may alter the
FIGURE 1

IL-10 family cytokines, receptors and downstream pathway. Nine cytokines in the IL-10 family have been identified, and these cytokines can be
divided into three groups: the IL-10, IL-20 subfamily and group 3. DC, dendritic cells; NK cell, natural killer cell; JAK, Janus tyrosine kinase; Tyk,
tyrosine kinase; STAT, signal transducer and activator of transcription; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase;
MAPK, mitogen-activated protein kinase.
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squamous meta plasticity of the nasal epithelium of patients with

CRSwNP mediated by tyrosine phosphorylation events. IL-22

and IL-22R1 are mainly expressed in infiltrating inflammatory

cells and epithelial cells, respectively, in nasal polyps (44). In

an air-liquid interface model of nasal epithelial cells from

patients with CRS, IL-22 and IL-26 disrupted the epithelial

barrier, as evidenced by a loss of transepithelial electrical

resistance (TEER), increased paracellular permeability, and

disruption of the tight junction protein zona occludens-1

(ZO-1) (45).

Mucus is a barrier lining the respiratory epithelium

consisting of water, proteins and macromolecules that package

and remove inhaled foreign substances such as microbes and

pollutant particles (46). The overproduction of purulent mucus

is typically related to symptoms of CRS, and the secretions are

more viscous, elastic, and adhesive than normal nasal mucus

(47). A quantitative analysis of cytokines in mucus may

represent a novel method to link symptoms with an objective

measure of inflammation (48). The level of IL-10 in mucus

collected from the olfactory cleft and middle meatus of patients

was not different among CRSwNP, CRSsNP and control groups,

but it correlated with reduced olfactory identification scores (49)

and olfactory clef opacification on CT (50). Mucin (MUC)

glycoproteins comprise the major part of mucus, and they are

critical for the local defense of the airway (46). MUC5AC and

MUC5B presented at significantly higher levels in the IL-5(+)

CRSwNP group than in the IL-5(-) CRSwNP and healthy nasal

mucosa groups (51). Pretreatment with rhIL-19 upregulates

MUC5AC expression in PHNECs derived from patients with

CRS, which may occur via the STAT3 pathway (52). IL-29

increases MUC5AC and MUC5B synthesis in healthy nasal

mucosa to enhance the antibacterial function of the epithelium

(53). MUC1 expression is downregulated in patients with
Frontiers in Immunology 04
CRSwNP who are resistant to oral glucocorticoids (GCs), and

MUC1 participates in mediating corticosteroid receptor a
nuclear translocation (54). IL-22 may significantly increase

MUC1 mRNA expression in nasal polyp dispersive cells (44).

Therefore, IL-22 may reverse the corticosteroid resistance of

some difficult-to-treat nasal polyps.
The IL-10 family and allergies

A high prevalence of atopy has also been observed in

patients with CRSwNP, and it is potentially associated with

disease severity (55). IL-10 directly interacts with and

downregulates IL-2 and IFN-g production by Th1 cells and

IL-4 and IL-5 production by Th2 cells (56). Nasal polyp tissues

harvested from CRSwNP patients sensitized to aeroallergens

were digested to single cell suspensions and stimulated with

varying concentrations of cat, grass or house dust mite allergen

to which the patients were sensitized, significantly increases IL-

10 production by cell suspensions, and neutralization of IL-10

significantly increases allergen-specific IL-5 and IFN-g
production by nasal polyp cells (57) (Figure 2).
The IL-10 family and infections

Viral infections may contribute to and exacerbate CRS

(Figure 2). Virus-sensing molecules induce the production and

secretion of nuclear factor-kB (NF-kB), IFN-b, TNF-a, IL-1b, IL-6,
and IL-8, which have the potential to recruit neutrophils and

macrophages (58). Based on functional diversity in phenotype,

macrophages could be classified into classically-activated pro-

inflammatory M1 and alternatively-activated anti-inflammatory
FIGURE 2

Effects of IL-10 family cytokines on CRSwNP. IL-19, IL-22 and IL-26 are expressed in the nasal epithelium. IL-22 and IL-26 disrupt the epithelial
barrier of nasal epithelial cells from patients with CRS. IL-19 upregulates MUC5AC expression in the epithelium in CRS, and IL-29 upregulates
MUC5AC and MUC5B synthesis in the healthy nasal mucosa. IL-22 enhances MUC1 in nasal polyp cells. Upon encountering with inhaled
allergens, epithelial cells may release IL-10 and consecutively decrease allergen-induced IL-5 and IFN-g production in nasal polyps. Viral and
bacterial infections modulate the expression of IL-10 family members. Both RV16 and HSV1 elevate IL-10 expression in nasal polyps. Both RSV
and H3N2 increase IL-29 expression in the nasal epithelium of CRS. SEB induces IL-22 production, and S. aureus infection increases IL-29
expression in nasal polyps. MUC, mucin; NP, nasal polyp; SEB, staphylococcal enterotoxin B.
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M2, which are additionally sub-categorized into M2a, M2b, M2c

and M2d (59). IL-4 and IL-13 may induce the polarization of M2

macrophages, and the secretion of cytokines such as IL-10 may also

activate this process (60). M2a, M2b and M2c are related to IL-10.

The research found the combination of IL-10 and IL-4 enhanced

the expression of theM2a-related genesmore than either IL-4 or IL-

10 alone in mice bone marrow-derived macrophages (BMDMs),

and increased eosinophil migration (61). M2b cells are the main

cellular source for IL-10 playing an important role in inflammation

resolution (62). M2c could be activated by IL-10 and TGF-b, and
IL-10-stimulated M2c has a higher phagocytic capacity for

apoptotic cells in vitro (63). The increased IL-10 content induced

by these macrophages suggests their anti-inflammatory

properties (64).

The most common viruses that infect the upper airway and

cause CRS are similar to those causing acute rhinosinusitis

(ARS), including human rhinovirus (HRV), respiratory

syncytial virus (RSV) and influenza virus (58). When the

uncinate mucosa of patients with allergic CRS was treated with

RV16, a significantly elevated IL-10 level was detected (65). RSV

is a major pathogen that primarily infects the airway epithelium

in a healthy nasal turbinate and nasal polyp explant ex vivo

model. After 48 and 72 h of infection with herpes simplex virus 1

(HSV1), a type of RSV, a significantly higher level of released IL-

10, rather than IFN-l, was detected in the supernatant of nasal

polyps compared to control mucosa (66). In addition, the air-

liquid epithelium model of well-differentiated primary pediatric

nasal (WD-PNECs) generated from nasal brushes and bronchial

epithelial cells (WD-PBECs) generated from bronchial brushes

induced more IL-29 generation in the culture medium after

infected with RSV (67). Luukkainen et al. (68) assessed an in

vitro co-culture model in transwells of influenza A virus H3N2

infection of nasal epithelium isolated from biopsies of patients

with CRSwNP and observed a significant increase in IL-29 in the

epithelium after infection.

In addition to viruses, bacteria affect CRS, and an

imbalanced microbiota might be one of the initial causes of

the chronic immune response and inflammation (69). The

abundance of Staphylococcus aureus (S. aureus) is increased in

individuals with CRS (70), and S. aureus is more frequently

detected in the nasal mucosa of CRSwNP than in that of patients

with CRSsNP (71). Staphylococcal enterotoxin B (SEB) is a

specific S. aureus IgE superantigen that may skew the immune

response toward a Th2 response and trigger nasal polyps

formation (72). IL-10 family cytokines may function against

bacteria. After exposure to SEB, the IL-10 level was not

significantly different between the NP or uncinate tissue, but it

significantly negatively correlated with the eosinophil count

(73). And the presence of IL-10 may neutralize the SEB-

induced IL-13 and IFN-gamma production by NP cells (73).

Toll-like receptor (TLR)-mediated signals are known to be

associated with the pathogenesis of CRSwNP (74).

Polycytidylic acid (poly (IC)) is the ligand for TLR3, and
Frontiers in Immunology 05
exposure to poly (IC) selectively induces IL-10, but not IL-5,

IL-13, IFN-g or IL-17A, production by nasal polyp cells.

Neutralization of IL-10 significantly increased the production

of SEB-induced IL-5, IL-13, IFN-g and IL-17A by nasal polyp

cells exposed to poly (IC), which illustrates that TLR3 signaling

regulates SEB-induced cytokine production in CRSwNP via IL-

10 (75). SEB-induced IL-22 production from nasal polyp cells

significantly and negatively correlated with the degree of local

eosinophilia and the postoperative CT score, and it positively

correlated with the forced expiratory volume in 1 s (FEV1)/

forced vital capacity (FVC) ratio (44). S. aureus infection

increased IL-29 expression in nasal polyps (53). In healthy

nasal mucosa, IL-29 favors S. aureus clearance by enhancing

the antibacterial function of macrophages through the

modulation of the ROS/JAK/STAT signaling pathway, but this

phenomenon does not occur in individuals with CRSwNP (53).

This notion is consistent with the reduced capacity to

phagocytose S. aureus and reduced antibacterial function of

macrophages in CRSwNP (76).
The IL-10 family and treatment
of CRSwNP

The effect of GC treatment on the
IL-10 family

GCs are a common pharmacotherapy with anti-

inflammatory effects used to treat CRSwNP (77). GCs are

known to reduce the numbers of eosinophils, mast cells, T

lymphocytes, and DCs in the airway (78). Administration of

GCs increases the number of CD4+ FOXP3+ Tregs in CRSwNP

(79, 80). Kou et al. (79) found that TGF-b1, IL-10, p-Smad2,

SOCS3, and FOXP3 levels were increased in nasal polyps

compared to healthy nasal mucosa after GC treatment. Li et al.

(80) also reported that after intranasal GC treatment of CRSwNP

patients, Foxp3 and IL-10 expression were increased

significantly in nasal polyp specimens after intranasal GC

treatment. Similar results were reported in ECRSwNP: TGF-b
and IL-10 expression increased after transnasal budesonide

nebulization (81). All these results suggest that both IL-10 and

Tregs are involved in suppressing inflammation in individuals

with CRSwNP after GC treatment.
The IL-10 family as therapeutic agents in
airway inflammatory diseases

Although many treatments have been applied to airway

diseases, many patients are not cured using traditional

approaches. For CRS, patients who do not reach an acceptable

level of control despite appropriate surgery and intranasal or
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systemic GC treatment in the last year can be considered to have

difficult-to-treat CRS (82). Similarly, mild asthma is controlled

by inhaled GCs, but adequate control of moderate to severe

asthma is not easily achieved using these therapies, and thus new

and better treatments are needed (83). Due to the anti-

inflammatory function of IL-10 family cytokines, they may

serve as therapies for airway inflammatory diseases (Figure 3).

In ovalbumin (OVA) challenged Allergic Rhinitis (AR)

murine model, 7 days of continuous exogenous administration

recombinant mouse (rm) IL-10 reduced the infiltration of

eosinophils, mast cells and local IL-10 positive cells in the

nasal mucosa, and increased total IL-10 levels but markedly

reduced IL-5, IL-17, and TGF-b1 levels in nasal lavage fluid (84).

After a restrictive IL-10 virus vector was inserted into an

allergen-induced nasal allergic mouse model, the inflammatory

response, including edema and infiltration of mononuclear cells,

neutrophils and eosinophils, as well as increases in cytokine

concentrations in nasal secretions, were significantly decreased

(85). Treating blood monocyte-derived DCs with IL-29 led to

the induction of IL-2-dependent proliferation of Tregs (86),

which may reverse Th cell- mediated inflammation.

IFN-ls serve as therapeutic agents to help treat asthma because

of the induction of Th1 cytokines productions, thereby

antagonizing the effects of Th2 cytokines and activating functions

similar to those of IFN-g (87). Intranasal administration of

recombinant IL-28A to mice during OVA challenge effectively

decreases the number of eosinophils and neutrophils in the

bronchoalveolar lavage fluid (BALF) and inhibits the infiltration

of leukocytes in the lung andmucus secretion from goblet cells (30).

IL-28A treatment significantly reduces IL-5, IL-13 and IL-17 levels

in lung-draining mediastinal lymph nodes, upregulates IFN-g, and
Frontiers in Immunology 06
ameliorates lung function by reducing airway hyperresponsiveness

(AHR) (30). These data support a potent therapeutic effect of IL-

28A treatment on allergic airway disease. Li et al. (88) administered

an intranasal adenovirus expressing IL-29 to a murine model of

OVA-induced asthma and found that IL-29 significantly decreased

the severity of AHR and attenuated allergic airway inflammation by

decreasing eosinophil counts, serum IgE levels, the activation of

Tregs and expression of the Th2 cytokines IL-4, IL-5, and IL-13.

After the administration of IL-29, the production of Treg is

significantly induced in the mouse spleen to participate in

suppressing inflammatory (88). Although the OVA-induced

murine model is the classical model of asthma, it reflects mainly

airway inflammation instead of most of the features of the disease

due to associated immune tolerance (89). Using the OVA model

cannot mimic all the symptoms of chronic asthma, but from the

research above, the IL-10 family indeed could affect airway

inflammation. In summary, these findings related to airway

inflammation support the hypothesis that strategies targeting IL-

10 family members might be beneficial for the development of

future therapies.

IL-10 family cytokines have been utilized in clinical trials in

many diseases such as Crohn’s disease, rheumatoid arthritis,

acute pancreatitis, psoriasis, systemic lupus and pancreatic

cancer (90). Yet no therapy or clinical trial of the IL-10 family

in human airway inflammation diseases has been approved or

proceeded to date, all the findings were in animal models or in

vitro. Indeed, no animal model is available that mimics all the

symptoms of diseases in human, so the biotherapy functions of

the IL-10 family in human airway inflammation diseases still

demand prompt study.
FIGURE 3

The application of IL-10 family members may exert beneficial effects on airway inflammatory diseases. Exogenous IL-10 administration reduces
the infiltration of eosinophils and mast cells in the nasal mucosa and reduces IL-5, IL-17, and TGF-b1 levels in nasal lavage fluid. Intranasal
administration of IL-28A to OVA-challenged mice suppresses the number of eosinophils and neutrophils in the BALF and reduces IL-5, IL-13
and IL-17 levels but increases IFN-g level in lung-draining mediastinal lymph nodes. The administration of IL-29 to an OVA mouse model
decreased eosinophil count, serum IgE level, induction of Tregs production and the expression levels of the Th2 cytokines IL-4, IL-5, and IL-13.
Both IL-28A and IL-29 reduce AHR levels. BALF: bronchoalveolar lavage fluid, AHR: airway hyperresponsiveness, OVA: ovalbumin.
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Conclusions

IL-10 family cytokines possess diverse functions in CRSwNP

that are related to the epithelium, the effect of allergens, and viral

or bacterial infections, and respond to GCs. IL-10 family

cytokines have been applied in few clinical trials of airway

inflammation therapies. Therefore, IL-10 family cytokines may

provide therapeutic benefits in CRSwNP.
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