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Tropical forest loss currently exceeds forest gain, leading to a net
greenhouse gas emission that exacerbates global climate change.
This has sparked scientific debate on how to achieve natural
climate solutions. Central to this debate is whether sustainably
managing forests and protected areas will deliver global climate
mitigation benefits, while ensuring local peoples’ health and well-
being. Here, we evaluate the 10-y impact of a human-centered so-
lution to achieve natural climate mitigation through reductions in
illegal logging in rural Borneo: an intervention aimed at expanding
health care access and use for communities living near a national
park, with clinic discounts offsetting costs historically met through
illegal logging. Conservation, education, and alternative livelihood
programs were also offered. We hypothesized that this would lead
to improved health and well-being, while also alleviating illegal log-
ging activity within the protected forest. We estimated that 27.4 km2

of deforestation was averted in the national park over a decade
(∼70% reduction in deforestation compared to a synthetic control,
permuted P = 0.038). Concurrently, the intervention provided health
care access to more than 28,400 unique patients, with clinic usage and
patient visitation frequency highest in communities participating in
the intervention. Finally, we observed a dose–response in forest
change rate to intervention engagement (person-contacts with inter-
vention activities) across communities bordering the park: The great-
est logging reductions were adjacent to the most highly engaged
villages. Results suggest that this community-derived solution simul-
taneously improved health care access for local and indigenous com-
munities and sustainably conserved carbon stocks in a protected
tropical forest.

planetary health | natural climate solutions | human health | tropical
forests | conservation

Tropical forests lose more than 100 trees every second, alter-
ing landscapes and impacting livelihoods, health, biodiver-

sity, and climate change (1). Across the tropics, forest loss now
exceeds forest gain, leading to a net carbon emission from some
of the most important natural carbon stocks in the world (2).
Averting further forest loss is an important natural climate so-
lution and a high priority for science, management, and policy
from local to global scales (3, 4).
In biodiverse, carbon-rich tropical forests, the establishment of

protected areas benefits both conservation and climate mitiga-
tion goals, but often involves excluding, and thus disenfranchis-
ing, local communities that surround protected areas (5, 6).
Failure to address the needs of local people can in turn lead to
unsustainable forest use, when communities with few alternatives

illegally extract resources and convert land in order to survive (6,
7). Another major hypothesized driver of poverty is lack of ac-
cess to high-quality, affordable health care, which can lead to
vicious cycles of poor health and expanding out-of-pocket costs,
further incentivizing poor families to rely on unsustainable re-
source use, like illegal logging, in order to raise cash to meet
critical health care needs (8). Within this context, this study ex-
amines whether providing rural health care incentivizes reduc-
tions in illegal logging by local and indigenous communities
living around a national park in Indonesian Borneo (Fig. 1A),
thereby improving health and well-being and conserving biodi-
versity and globally important carbon storage.
Indonesia contains some of the most carbon-dense forests in

the world (SI Appendix, Fig. S1) (11), with the island nation
representing only 1.4% of the world’s land area, but 3.6% of
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natural forest cover (12). A 2011 moratorium on new logging
concessions was implemented to reduce total emissions from
deforestation in Indonesia (12), but, at the same time, illegal
logging was estimated to represent as much as 61% of all logging
activity (13). Protected areas, which cover 12% of Indonesia’s
land mass (10), may be key to preserving remaining carbon
stocks, biodiversity, and forest ecosystem services (14). However,
top-down law enforcement has proven insufficient to prevent
conservation threats to protected areas, like illegal encroach-
ment and fire (15). Indeed, despite protected status, more than
60% of lowland forests within protected areas in Borneo’s West
Kalimantan region were lost to illegal logging between 1985 and
2001 (16, 17), and this trend continues to accelerate across the
region (Fig. 1B).
To better understand local attitudes toward forests, conser-

vation, and drivers of illegal logging in West Kalimantan, Indo-
nesia, a nonprofit organization conducted more than 400 h of
focus groups between 2005 and 2007 with nearly 500 community
representatives (community leaders, farm group leaders, reli-
gious leaders, teachers, women’s group leaders, and interested
community members). The open-ended conversations identified
access to affordable, high-quality health care as a major basic
need, and lack of access to health care a potential driver of illegal
logging in 23 districts near Gunung Palung National Park (GPNP)
(Fig. 1C) (18). This corresponds to a broader concern in Indonesia,

which ranks in the lowest one-third of countries in terms of cov-
erage of essential health services (Fig. 1A) (9), and where many
populations contend with unmet water, sanitation, and hygiene
needs, high maternal and infant mortality, and high burdens of
infectious and noninfectious diseases (19). In response to local
health care needs and conservation implications, the nonprofit
established a local health clinic in 2007, in close partnership with
the district government and the national park management. Clinic
services and alternative payment options (e.g., barter options in-
cluding seedlings and manure used in conservation activities) were
available to anyone seeking care, complementing the limited health
care available provided by the government. With the support of the
National Park management, memorandum of understanding
(MOU) agreements were signed by the nonprofit and 21 of 23
districts (“desa” administrative units), representing 73 villages
(“dusun” administrative units), near GPNP to participate in the
health care–conservation exchange intervention. Through the in-
tervention, clinic discounts were given to villages based on
community-wide reductions in illegal logging activity, as reported
by community liaisons and through monitoring of logging trail
activity. At the request of community members in intervention
areas, conservation programs, educational programs, and alterna-
tive livelihood trainings were also facilitated periodically in part-
nership with government entities. In 2007, 2012, and 2017,
household surveys were conducted in random households across
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Fig. 1. Cross-sector global health and forest conservation needs. (A) Maps of global aboveground forest carbon density and Universal Health Coverage (9):
Tropical areas, particularly Africa and Asia, have high forest cover and low health care coverage. (B, Inset) Forest loss (resulting from deforestation and forest
degradation) accelerates over time across all 32 terrestrial IUCN Category II National Parks (10) established before 2001 in Indonesia [boxplots; forest change
data: Hansen et al. (1)]. (C) Study site and approach: locations of IUCN Category II National Parks (10) in Indonesia, with the intervention park highlighted, and
an outline of the problems and hypotheses addressed in this analysis, along with hypothesized outcomes that were tested empirically through objective earth
observation and health clinic records.
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villages that engaged with the intervention to assess self-reported
changes in well-being, knowledge, attitudes, behaviors, and liveli-
hoods, in order to adapt intervention activities accordingly to meet
community needs.
Here, we use more than 10 y of de-identified patient records

from the health clinic coupled with remotely sensed earth ob-
servation data to test the hypothesis that a multisector health
care–conservation intervention can simultaneously improve hu-
man health care access and use, and disincentivize illegal de-
forestation in a carbon-rich tropical forest. First, we use a
synthetic controls approach to compare park-level forest loss
rates in GPNP before vs. after the intervention began in 2007,
compared to all terrestrial Indonesian International Union for
Conservation of Nature (IUCN) Category II National Parks as
potential controls. MOU-signing villages bordered the national
park and were thus nonrandomly assigned, precluding analysis as
a randomized controlled trial. However, we were able to use
clinic patient records collected between 2008 and 2018 to com-
pare health care access, usage, and diagnosis trends between
MOU-signing and non–MOU-signing patient groups in a quasi-
experimental study design. We tested whether, near GPNP, 1)
the clinic increased health care usage for patients from villages
with signed MOUs compared to villages without signed MOUs,
and 2) trends in disease diagnoses changed over the same time
period for patients from villages with vs. without signed MOUs.
To establish the plausibility of a causal relationship between the
intervention and conservation outcomes, forest change data,
clinic usage data, and records on village-level engagement with
the intervention programs (i.e., health clinic use and periodic
education and livelihood programs) were then used to test for a
dose–response of village-level forest loss within the national park
to village-level intensity of engagement with the intervention and
its associated programs. Last, select responses from self-reported
household survey data collected by the intervention team in
2007, 2012, and 2017 were used to assess changes in household
livelihoods and income over the intervention period, and to gain
further insight into potential mechanisms driving conservation–
health linkages.

Results
Intervention Impact on Forest Change. Remotely sensed forest loss
rates (1) in a synthetic controls analysis (20, 21) were signifi-
cantly lower within districts intersecting the focal national park,
GPNP, compared to a synthetic control assembled from districts
in 32 control parks across Indonesia during the postintervention
period from 2008 to 2018, compared to a preintervention period
from 2001 to 2007 (estimate, 69.8% reduction of forest loss; 90%
CI, 50.8–81.4; P = 0.003; Table 1 and Fig. 2A). This translates to
an estimated 27.4 km2 of forest loss averted postintervention to
2018 (90% CI, 19.9–32.0 km2) (Table 1 and Fig. 2A). This
finding was robust to a number of alternative data subsets de-
fining the “donor pool” of possible control parks to be included
in the synthetic control (Table 1), as well as to comparison of the
intervention effect with 500 permuted “placebo” treatment re-
gions made up of randomly assigned units from the pool of
control districts (estimate, 69.8% reduction; permuted P = 0.038;
90% CI, 26.3–83.7; Fig. 2B) (21). Correspondingly, household
responses collected through monitoring and evaluation activities
during 2007 (baseline), 2012, and 2017 demonstrated a strong
and significant reduction in self-reported illegal logging activity:
The number of adult males who reported logging inside GPNP
during the intervention period compared to baseline declined
(generalized linear regression with logit link; estimate, 68.8%
reduction; 95% CI, 60.8–75.5; P < 0.001; Fig. 2A), as did the
number of households reported to rely on logging as a primary
income source (generalized linear regression with logit link; es-
timate, 90.6% reduction; 95% CI, 83.4–95.2; P < 0.001; Fig. 3C).

Intervention Impact on Forest Carbon. Using published carbon
equations parameterized specifically for Borneo (22) along with
LiDAR (light detection and ranging)-estimated canopy heights
in the focal national park, GPNP, in 2014 (Fig. 2C and SI Ap-
pendix, Fig. S2), the effect size of 69.8% reduction in annual
forest loss was estimated to equate to a cumulative 0.59 Tg of
aboveground carbon loss averted (90% CI, 0.27–1.13 Tg). Based
on the maximum trade value of $30 per ton of CO2 realized on
the European Emissions Trading System (23), the gross value of
the total carbon loss averted in GPNP on the European carbon
market would have been approximately $65.3 million USD in
2019. The estimate of aboveground carbon loss averted is con-
servative, because 1) the LiDAR flight data in GPNP covered
mixed and some previously burned forest types, and the derived
average vegetation height (27 m) is much lower than the tallest
canopy height recorded in GPNP (71 m) (Fig. 2B), and 2) the
relationship between canopy height and aboveground carbon is
convex and nonlinear, suggesting that averaging across 30 × 30-m
pixels consistently underestimates the true carbon density (22).
The carbon value of the intervention impact demonstrates a
theoretical monetary return that would more than offset inter-
vention costs if a carbon market were accessible to interventions
aiming to couple rural health programs with forest conservation
in a similar way.

Intervention Impact on Health Clinic Usage and Diagnoses. Overall,
28,462 unique patients visited the clinic at least once over the
study period from 2008 to 2018. Most patients came from dis-
tricts located on the periphery of GPNP that signed MOUs to
participate in the intervention, but a substantial fraction of pa-
tients (42%) came from districts without MOUs, who sometimes
traveled many hours or days to use clinic services (SI Appendix,
Fig. S3). Clinic affordability (MOU status and associated dis-
counts) and accessibility (estimated travel time to the clinic)
jointly influenced two metrics of clinic usage: probability of clinic
use, measured as the proportion of a district’s population that
used the clinic at least once, and individual patient visitation
frequency. Patients with shorter travel times to the clinic were
more likely to use the clinic (Poisson generalized linear mixed
model [GLMM] with population size offset and district random
effect; estimate= −1.14; SE = 0.17; P < 0.0001) and visited the
clinic more frequently (negative binomial GLMM with district
random effect; estimate = −0.180; SE = 0.035; P < 0.0001) (SI
Appendix, Fig. S4). At the same time, controlling for distance,
signing of an MOU (and receiving clinic discounts) increased
clinic use: A larger proportion of MOU-signing district pop-
ulations used the clinic (on average 27.8% vs. 2.76%; estimate =
1.93; SE = 0.36; P < 0.0001; Fig. 3A and SI Appendix, Fig. S4A),
and individual patients from MOU-signing districts visited the
clinic 33% more often, on average (2.4 visits over 10 y vs. 1.8
visits; negative binomial GLMM with district random effect;
estimate = 0.284; SE = 0.073; P < 0.0001; Fig. 3A and SI Ap-
pendix, Fig. S4B). Patients that visited more than two to three
times were usually returning repeatedly for health care related to
a chronic health condition, such as epilepsy, emphysema, or
hypertension. Overall, the clinic usage statistics confirm that,
controlling for distance effects on clinic usage, signing an MOU
to participate in the intervention incentivized increased use of
health care services at the clinic. Even so, patients without
MOUs represented more than 40% of all patient visits (SI Ap-
pendix, Fig. S5A), likely because noncash payment options like
exchange of tree seedlings, manure, handicrafts, or labor made
service affordable.

Time Trends in Disease Outcomes Based on Diagnoses at the Clinic.
De-identified diagnosis records from more than 61,000 unique
doctor visits recorded during 2008 to 2018 showed improvements in
many health outcomes for MOU and non-MOU patient populations.
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We found significant declines over time in diagnosed cases of
malaria, tuberculosis, childhood-cluster diseases, neglected tropical
diseases (NTDs), chronic obstructive pulmonary disease (COPD),
and diabetes (Fig. 3B). The only preventable and treatable diseases
considered here that increased over time were lower and upper

respiratory infections (Fig. 3B and SI Appendix, Fig. S5B). The in-
crease in diagnosed cases of respiratory diseases regionally may have
been related to region-wide fire activity that spiked in 2015 (24).
Increases in upper respiratory infections might also be due to in-
creased care-seeking for more minor illnesses as trust was built

Table 1. Results from the synthetic controls analyses on park-level forest loss in GPNP compared to a counterfactual derived from
three subsets of Indonesian IUCN Category II National Park controls: All nonmarine parks established prior to 2001, all nonmarine parks,
and all parks

Model
Forest loss, treated,

km2
Forest loss, control,

km2
%

Change P value [90% CI]
Permuted P value

[90% CI]
No.
obs.

No.
district

No.
parks

Nonmarine parks, est.
before 2001

11.891 39.30 −69.75 0.003
[−81.4, −50.8]

0.038 [−83.7, −26.3] 27,702 1,539 32

Nonmarine parks 11.891 28.36 −58.1 0.013
[−74.0–32.4]

0.062 [−78.3, −1.6] 36,738 2,041 44

All parks 11.891 28.36 −58.1 0.013
[−74.0, −32.4]

0.080 [−80.6, 0] 40,320 2,240 52

The first two columns provide estimates of forest loss (in square kilometers) in the treated region following the intervention and loss in the synthetic
control region. P values and confidence intervals are calculated from a standard normal sampling distribution and Taylor series linearization. A permuted P
value and CI were calculated using 500 permuted “placebo” treatment groups to satisfy a more robust set of assumptions and generate a more conservative
estimate of the sampling distribution [Robbins et al. (21)]. In both cases, the CIs do not contain 0, and based on a lower-tailed, one-sided hypothesis test, the
null hypothesis that there is no intervention effect is rejected [Robbins et al. (21)].
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between communities and the program. Time trends in diagnosed
cases of disease were consistent whether or not district-level distance
to the clinic was included as a covariate.
Regional diagnosis records from government clinics were not

available to use as controls against which to compare temporal
trends at the intervention clinic, but trends in diagnosis of several
diseases departed from population-based prevalence estimates
published by independent Global Burden of Disease studies for
West Kalimantan during the same time period. For example,
tuberculosis and COPD showed an upward trend regionally (25),
whereas tuberculosis declined strongly in the clinic population in
our study from 2008 to 2018, when the intervention’s health
clinic oversaw TB-DOTS treatment (i.e., directly observed
treatment short course for tuberculosis) for all regionally diag-
nosed patients (including in local government facilities).

Comparing Disease Outcomes in Patients from MOU-Signing vs.
Non-MOU Districts. We were unable to assess whether time trends
in patient diagnoses were attributable to the increased health care
access and use available through the clinic (beyond care available
to all individuals through government-supported clinics in the
region), because it would have been unethical to withhold access
to any patient and comparable records for patients at other health
facilities were not available to us for comparison over the same
time period. As a result, we lacked a matched control (or “no
clinic access”) group, but were able to statistically compare time
trends in diagnoses among patients fromMOU-signing districts vs.
patients from districts without MOUs, to test whether community
health outcomes benefited from clinic discounts associated with

the intervention. Controlling for the distance between the clinic
and patients’ home districts, we found few differences, indicating
largely equitable health outcomes in terms of change in the pro-
portion of patient diagnoses across all diseases (SI Appendix, Ta-
bles S1–S3). The few exceptions included cases of lower
respiratory infections (LRIs) and upper respiratory infections
(URIs), which increased across all patient populations over the
10 y study period, but increased significantly less in MOU-signing
patient populations (LRI estimate = −0.499; SE = 0.222; P =
0.0025; URI estimate = −0.650; SE = 0.222; P = 0.0036), as did
cases of dental diseases (estimate = −0.877; SE = 0.167; P <
0.0001). In contrast, NTD diagnoses increased more in the MOU
group than the non-MOU group in the 10-y intervention period
(estimate = 0.675; SE = 0.253; P = 0.0076), a trend largely driven
by an increase in leprosy diagnoses in the MOU group over time
(estimate = 0.864; SE = 0.354; P = 0.015). This may signify true
increases in leprosy rates in MOU-signing districts, or may signify
increased health seeking behavior for rare and difficult-to-treat
diseases, like leprosy, in MOU-signing populations compared to
non-MOU populations.

Self-Reported Well-Being and Livelihood Impacts. Household sur-
veys were conducted by the intervention team in 2007, 2012, and
2017 (see SI Appendix, Table S4 for survey demographic infor-
mation). Between 2007 and 2017, annual birth rates and infant
death rates declined significantly, and although the measurement
method used in this survey is not directly comparable to stan-
dardized US Agency for International Development (USAID)
Demographic and Health Survey (DHS) methods, these declines

DC

BA

Fig. 3. Health impacts. (A) Individual visitation frequency (Left, average visits/patient to the health clinic during the study period) and health care use (Right,
the percentage of the district population that were recorded at least once during the study period as patients at the clinic), among patients from districts that
signed an MOU and thus received discounts on care, and those that did not; partial responses to MOU status are shown after controlling for distance effects
(travel time to the clinic). (B) Change in odds of disease diagnoses from clinic patient records (presented as odds ratios for MOU and non-MOU patient
populations [controlling for distance effects], comparing odds of diagnosis in 2008 to 2009 vs. 2017 to 2018 with 95% CIs;Materials and Methods). (C) Change
in primary livelihoods including self-reported logging (proportion of households, 95% CIs) from 2007 to 2017. (D) Change in reported perceptions of
neighborhood wealth (Left, where most responses are “average” in medium pink, versus "poor" in light pink, and "wealthy" in dark pink) and mean
purchasing power parity (PPP)-adjusted household monthly incomes (Right), as reported from household surveys at 5- and 10-y follow-up periods (2012 vs.
2017). N.S., not significant; ***P < 0.001.
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are consistent with substantial regional declines apparent in
DHS data for the same region (SI Appendix, Table S5) (26, 27).
As illegal logging declined as a livelihood in the 10-y intervention
period, the decline did not correspond with significant changes in
unemployment, as employment increased in other sectors
(Fig. 3C). Monthly household income across all surveyed
households in all districts was unchanged from 2012 to 2017
(t test, P = 0.28), but after adjusting income for change in pur-
chasing power parity (PPP) (28), median household PPP-
adjusted income decreased by 2.6% (t test, P = 0.001 Fig. 3D).
However, in rural and low-income settings, national-level PPP
adjustment of income may not accurately represent wealth,
which might be better estimated by asset-ownership (29). Addi-
tionally, household perceptions of neighborhood wealth were not
significantly changed over time (Fig. 3D).

Dose–Response of the Intervention’s Effect on Deforestation. We
found evidence of a dose–response across 36 villages (dusun
administrative units) with an access area >0.30 km2 inside
GPNP, whereby forest loss declined with increasing intervention
engagement (engagement was defined as the sum of recorded
person-contacts across all intervention activities, including clinic
patient visits, forest liaisons meetings, conservation education
activities, livelihoods training, and a number of other smaller
programs; SI Appendix, Fig. S6). Comparing average forest loss
rates over time (in three time periods: the preintervention period
in 2002 to 2006, the first 5 y of the intervention in 2008 to 2012,
and the most recent 5 y of the intervention in 2013 to 2017),
forest loss rates near highly engaged villages decreased signifi-
cantly (−0.15 ± 0.048%; P = 0.007), while forest loss rates near
medium engaged villages did not change (0.06 ± 0.042%; P =
0.147), and forest loss rates near the least engaged villages
showed an increasing trend (0.16 ± 0.085%; P = 0.067; Fig. 2D).
There was also a dose–response in the probability that any 30-m2

forested pixel was lost across the entire intervention period:
controlling for slope; elevation; distance to nearest river, road,
and park edge; and logging pressure (forest loss) outside the
park, we found that highly engaged villages’ access areas inside
GPNP lost significantly fewer forest pixels compared to that lost
in low-engaged villages’ access areas (estimate = −0.85; SE =
0.013; P < 0.0001; Table 2), whereas medium-engaged villages’
access areas lost equivalent forest pixels to low-engaged villages’
access areas (estimate = −0.0087; SE = 0.012; P = 0.46). GPNP
forest loss also decreased with average elevation of forest in
GPNP access areas (estimate = −1.83; SE = 0.75; P = 0.015;
Table 2) and increased with logging pressure outside of the park
(estimate = 0.11; SE = 0.0073; P < 0.0001; Table 2). The
dose–response of the intervention effect is consistent with a causal
association between the intervention—consisting of expanded
health care access and use, plus livelihood, education, and conser-
vation programs—and ultimate reduced deforestation outcomes.

Discussion
Our results offer objective evidence that increasing access to
affordable, high-quality health care as part of a comprehensive
conservation intervention—in this case, to rural communities
with limited resources and income options living near a densely
forested national park in Indonesia—benefits both conservation
and human health. In addition, community members self-reported
that the intervention was working: By 2012, more than 97% of
surveyed households indicated that they believed the intervention
was reducing illegal logging. Further insight into mechanisms by
which the intervention was reducing illegal logging was gained in
2017 via a household survey question asking, “which programs are
most helpful” to stop logging in GPNP. Among the subset of
households that interacted with intervention programs, roughly
half identified health care discounts alone or in combination with
other intervention activities (representing a plurality of responses)

as the most important incentive to reduce illegal logging in the
park, roughly one-quarter identified livelihood programs alone or
in combination with other activities (including health care) as most
important, while only a few (6%) indicated that the intervention is
not effective at reducing illegal logging. Further investigation is
required to establish whether this approach may be effective in
other tropical forest parks where high tree cover, high poverty, and
lack of access to affordable, high-quality health care fuel illegal
logging and forest loss, even within protected areas (30).
Early and continued collaboration with local communities,

who identified mechanisms driving linked health–environment
problems and potential regional solutions, was essential to the
intervention’s multisector success. Globally, about 35% of pro-
tected areas are traditionally owned, managed, used, or occupied
by indigenous and local communities, yet the perspective and
guidance of indigenous peoples and local communities is rarely
considered in the design of conservation and climate mitigation
programs (31). As a result, many interventions have had negative
consequences for local communities that rely on natural re-
sources for subsistence (31). Incentive-based conservation ap-
proaches, developed to integrate community development and
conservation, have had mixed success, as benefits are not always
distributed equitably or do not reflect community needs (32). In
contrast, we found that community leadership in the design and
implementation of a conservation intervention focusing on pressing
health and well-being needs resulted in strong positive benefits to
local communities as well as to global conservation goals.
This work demonstrates an actionable framework for aligning

cross-sectoral goals. Frameworks such as this are urgently
needed to advance effective policy efforts aimed at achieving the

Table 2. Dose–response of forest change to the intervention:
Results of a generalized linear mixed-effects regression of forest
loss within GPNP over time and the effect of engagement level
of each village with the intervention’s programs and activities
(see SI Appendix, Fig. S6, for details on engagement activities
and quantification of engagement levels)

Log-odds CI P

Intercept −0.12 −8.40–8.16 0.977
Population −0.47 −1.15–0.20 0.171
Forest lost outside 0.11 0.09–0.12 <0.001
Average elevation −1.83 −3.31 – −0.36 0.015
Average slope 1.7 −0.68–4.08 0.162
Distance to nearest river 0.47 −0.48–1.42 0.335
Distance to nearest road −0.12 −1.00–0.76 0.792
Distance to park edge 0.03 −0.60–0.65 0.936
Medium engagement −0.02 −0.88–0.83 0.955
High engagement 0.80 −0.14–1.74 0.096
Year 0.34 0.32–0.35 <0.001
Interaction terms estimating engagement effect

Medium engagement*year −0.01 −0.03–0.01 0.456
High engagement*year −0.85 −0.88 – −0.83 <0.001

Random effects
σ2 3.29
τ00: Village 0.83
Marginal R2 0.134
Conditional R2 0.308
No. obs. 108 obs.

36 villages

Log-odds are presented for centered and scaled predictors. The effect of
interest is the interaction of engagement level with year, with log-odds es-
timates representing the outcome in villages with that engagement level
compared to outcomes in low-engaged villages (as a comparison group).
Coefficients can be backtransformed to the response scale using a logit link
function. Bolded P values represent statistically significant factors.
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United Nations’ Sustainable Development Goals (SDGs) (31,
33, 34). Here, we evaluated outcomes related to conservation
(Life on land, SDG 15) and health (Good health and well-being,
SDG 3) resulting from an intervention that actually addressed
several additional goals, including Climate action (SDG 13),
Decent work and economic growth (SDG 8), and Partnerships
for the goals (SDG 17). Because the SDGs are deeply inter-
connected, there is both opportunity and urgency to address
multiple targets at once. This intervention offers a case study of
how programs can be designed, implemented, and evaluated to
address health and conservation goals simultaneously.
The forest carbon results reported here do not include mea-

sures of belowground carbon conservation in mineral soils or
peatland, the latter of which stores more carbon than above-
ground forest biomass in Borneo (35) and is particularly vul-
nerable to carbon loss and subsidence following deforestation
events (36). We also do not include measures of forest regrowth
in preserved areas or previously degraded areas being restored
through intervention activities (37), which undoubtedly amplified
carbon storage and sequestration benefits of the intervention.
Furthermore, over the long term, preserving and restoring
forest-related ecosystem services might also benefit human
health by reducing the risk of waterborne diarrheal disease (38),
lowering heat stress (39), or reducing vectors of malaria and
arboviruses (40). Measuring these longer-term effects of eco-
system integrity on human health remains an important goal for
future linked conservation and public health interventions.
A more nuanced assessment of how health care–conservation

exchange programs influence disease occurrence is another im-
portant future direction for research. In the context of this study,
clinic health records offered a rich dataset on more than 1,250
unique ICD-10 (10th revision of the International Statistical
Classification of Diseases and Related Health Problems) codes
detected in the patient population (SI Appendix, Table S6).
However, ethical and logistical constraints prevented the estab-
lishment of a control group for evaluating health care outcomes:
Denying health care access to certain individuals was antithetical
to the intervention’s goal to improve health and well-being, and
measuring disease occurrence for hundreds of ICD-10 codes in a
group of nonpatient individuals was unrealistic. Therefore, we
cannot fully account for the contribution of 10 y of regional
improvements in government health systems and infrastructure
development. However, by comparing clinic usage and diagnosis
trends in MOU-signing patients receiving clinic discounts vs.
non-MOU signing patients, we established that the intervention
incentivized increased health-seeking behavior (with higher
clinic usage in MOU-signing districts) and led to potential ben-
efits for common diseases including respiratory infections and
dental diseases. In the future, statistical inference on health
outcomes of improved clinic access and affordability could be
achieved through 1) close collaboration with existing health care
facilities that serve distinct patient populations not exposed to
the intervention in order to generate comparable datasets, and/
or 2) adherence to pragmatic experimental designs, such as
stepped wedge cluster randomized trials, that randomly expose
groups to an intervention incrementally, thus generating a
varying number of control groups at each time point while
eventually exposing all groups to the intervention (41).
Deforestation in tropical rainforests has doubled since 2008

(1). Tropical Asia contains some of the most carbon-dense for-
ests in the world (SI Appendix, Fig. S1), and Indonesia has
ranked consistently among the top countries for forest loss
worldwide, not far behind much larger and wealthier countries
including Brazil, Russia, and the United States (1). Meanwhile,
human health and livelihoods are intimately linked to environ-
mental change. Here, we show that amid this challenging con-
text, local community stewards are both critical actors in, and
beneficiaries of, integrated conservation and health solutions.

Where health care access is limited and the conservation value of
tropical forests is high, reducing rural health care gaps through
conservation–health interventions may offer a synergistic means
to enhance health and well-being benefits to local communities,
while simultaneously conserving critical forest carbon and
biodiversity resources.

Materials and Methods
Intervention Impact on Forest Change. We examined the effect of the inter-
vention on rates of forest loss in GPNP compared to other national parks
across Indonesia, using an ex post facto research design (nonrandomized
control groups designated after the fact) and a synthetic controls analysis,
with nearly two decades of earth observation data quantifying forest change.
“Annual forest loss” and “total forest cover” were downloaded from the
Hansen Global Forest Change dataset (1) [version 1.6, 2000 to 2018; acces-
sible through the Google Earth Engine data repository (42), 30-m pixel res-
olution]. Area of forest lost by year was extracted by district-level
administrative unit (desa) in Google Earth Engine for all districts whose
boundaries intersected GPNP and all other Indonesian national park
boundaries.

We used time-varying and time-invariant characteristics to match treated
units (districts in GPNP) to untreated units (districts in other parks) to as-
semble the weighted synthetic control group. Time-varying characteristics
included forest lost inside and outside park boundaries, forest fires inside
and outside park boundaries, and human population density inside and
outside park boundaries. Time-invariant characteristics included area of the
district inside and outside park boundaries, area of the focal park, marine
area of the focal park (to capture information indicating a coast adjacent or
a primarily marine park), year established as a National Park, and average
slope within the park (to capture ease of logging access). Total forest cover
estimates inside national park boundaries were included to represent total
forest available to log, and total forest cover estimates outside national park
boundaries were included as a proxy for potential logging pressure outside
the park.

To estimate changes in human population density during the evaluation
period, we extracted population density estimates from WorldPop (www.
worldpop.org/) by district and year from 2000 to 2018, both within and
adjacent to park boundaries, using the Google Earth Engine platform (42).
The effect of forest fires was controlled for using the MODIS Burned Area
Monthly Global data product (500 m), which provides the burn status of
each 500-m pixel at a monthly resolution. The park characteristics were ac-
quired from the World Database on Protected Areas (10).

We ran synthetic controls models using three different data subsets de-
fining the donor pool of possible control units. These subsets included 1) all
districts in terrestrial (nonmarine) parks established before 2001
(i.e., dropping any parks that are designated as marine only parks and those
that were established after the start of the deforestation dataset in 2001); 2)
all districts in all terrestrial parks (i.e., dropping only entirely marine parks,
but ignoring year of establishment); and 3) all districts in all National Parks in
Indonesia (i.e., the most inclusive group of possible control districts in Na-
tional Parks). Models were run using annual data using 2001 to 2007 as the
preintervention period (since the intervention was not expected to lead to
immediate changes in deforestation rates in mid-2007, when the interven-
tion started), and 2008 to 2018 as the postintervention period.

In each model, P values and 90% confidence intervals (for a one-tailed
lower test) were calculated using a standard normal sampling distribution
and Taylor series linearization to estimate the variance and produce CIs (21).
In addition, P values and CIs were also calculated using 500 permuted pla-
cebo treatment groups for comparison with the estimated effect for the
actual treatment group to satisfy a more robust set of assumptions and to
generate a more robust and conservative estimate of the sampling distri-
bution (21). These “permutations” are placebo tests in that they randomly
assign districts in the “control” group to the placebo treatment group, the
synthetic controls model is rerun, and the magnitude of the placebo treat-
ment result is compared to the actual treatment group result (21). All models
were run using the “microsynth” package in R (43, 44) following established
methods outlined in Robbins et al. (21).

Intervention Impact on Forest Carbon. We evaluated the intervention impact
in terms of forest loss rates, and then estimated the quantity of aboveground
forest carbon conserved from the quantity of forest loss averted estimated by
the synthetic controls analysis. Following Jucker et al. (22), we estimated
forest carbon stocks in GPNP using canopy heights derived by LiDAR (light
detection and ranging), accessed from National Aeronautics and Space
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Administration and Oak Ridge National Laboratory Distributed Active Ar-
chive Center (SI Appendix, Fig. S2 and see SI Appendix, text, for conversion
equations and details) (45). Then we used the effect size of 69.8%
forest-loss-rate reduction to estimate the total aboveground carbon stock (in
teragrams carbon per hectare) conserved in the period from 2008 to 2018.
This method is conservative, as using the mean pixel height of the LiDAR
flight is an underestimation of the average top-of-canopy height of trees
targeted by illegal loggers, who target the largest and most valuable trees.
Even so, carbon densities were high, in part, because this region of South-
east Asia contains forests with some of the largest and most carbon-dense
trees in the world (SI Appendix, Fig. S1).

Intervention Impact on Health Clinic Usage and Diagnoses. The Alam Sehat
Lestari (ASRI) medical center opened in July 2007 and remains open. Our
analyses consider the period from 2008 to 2018, beginning with the first
full year of data and ending with the last full year of data before compre-
hensive evaluation began. For all patients who visited the ASRI medical
center, patient records included only a unique ID to maintain patient privacy,
the date of the visit, the patient’s home village (dusun administrative unit)
and district (desa administrative unit), the patient’s age, and the diagnosis
(ICD-10 code) given during the visit and/or the reason for visiting (e.g.,
medical checkup, fill prescription). Acquisition and analytical use of fully de-
identified health clinic records was submitted for review to the Institutional
Review Board of Stanford University and was determined to contain no
identifiable data, requiring no further review as human subjects research.
The clinic data were gathered within routine operations of the ASRI medical
clinic (Indonesian nonprofit Alam Sehat Lestari is registered by the Indone-
sian Ministry of Cultural Affairs, #AHU-08962.50.10.2014; clinic operations
are permitted by the Kayong Utara Department of Health in Indonesia).

We were interested in understanding how increases in clinic affordability
(discounts provided to patients fromMOU-signing villages/districts) impacted
clinic usage, while controlling for clinic accessibility (estimated mean travel
time from the patients’ district to the clinic). We quantified clinic usage at
the district-level in two ways: 1) the frequency of patient visits, defined as
the number of visits per patient (i.e., the number of unique months that a
patient occurred in the database; see SI Appendix, text for details); and 2)
the proportion of the population in each district that used the clinic at least
once during the evaluation period. Clinic access was estimated for each
district as the mean travel time (in minutes) from 10 randomly distributed
points in each district, weighted by the point’s population density (see SI
Appendix, text, for details).

To understand how patient-level visit frequency was affected by afford-
ability (MOU status) and access (travel time), we ran a negative binomial
GLMM with a random effect for district that quantified how the number of
visits per patient varied with MOU status and the estimated travel time (in
minutes) from the patient’s district to the clinic. Next, we used a Poisson
generalized linear model to quantify how the number of unique patients
per district varied with MOU status and estimated travel time to the clinic,
where the 2018 population size in each district was included as an offset. For
this analysis, we excluded patients from unknown districts (recorded only as
“far” in the patient records) because district-level population size for this
group of patients could not be determined. For both clinic usage analyses,
we were unable to estimate travel time for one island district (Pelapis), and
therefore excluded it from analysis. Details on how travel time was esti-
mated for the far (SI Appendix, Fig. S3) districts are available in SI Appendix.

Overall, 1,255 unique ICD-10 codes (46) were applied to at least one pa-
tient between 2008 and 2018. Before analyzing how the proportion of
unique patients that received a diagnosis (ICD-10 code) of a particular dis-
ease changed over the intervention period, we classified 824 ICD-10 codes
that contributed to the most common disease categories (see SI Appendix,
text, for details) into the following groups to be tracked: childhood-cluster
diseases, COPD, dental disease, diabetes, diarrheal diseases, heart disease,
liver disease, lower respiratory infections, upper respiratory infections,
malaria, malnutrition, NTDs, trauma, and tuberculosis. Other unspecified
diseases were grouped and appear in the text and figures as “untracked”
(see SI Appendix, Table S6, for a full list of the 824 ICD-10 codes tracked), and
the unique patients to which the untracked ICD-10 codes were assigned are
included in the total patient population.

To track changes in disease occurrence in the patient population, we
estimated the proportion of unique patients that received a diagnosis for
each disease in each district, annually. Each patient only counts toward one
instance of any particular disease per year, and the denominator is the total
unique patients that received any diagnosis in a year. For each disease, we
used a binomial GLMM with a logit link (which yields coefficients that can be
exponentiated to derive odds ratios) and a random effect for district to

quantify differences in the proportion of disease diagnoses over time (early,
2008 to 2009, vs. late, 2017 to 2018) for two populations: patients from
districts with and without MOUs. The model was run with and without
controlling for district distance to the clinic, with nearly identical outcomes.
The full time series showing changes in the period prevalence of each disease
in the patient population are shown in SI Appendix, Fig. S5.

We also tested whether MOU status impacted disease outcomes among
patients over time, while controlling for a patient’s average distance (in
minutes) from district to clinic (see SI Appendix for details on calculating
travel time). To do so, we used binomial GLMMs with a logit link, using
probability of a diagnosis of each disease as the outcome, and including
scaled travel time and an interaction term for time by MOU status as pre-
dictors, and a random effect for district to control for repeated-measures
and unmeasured district-level effects.

Self-Reported Well-Being and Livelihood Impacts. At baseline in 2007 and at
follow-ups in 2012 and 2017, detailed household surveys were conducted
in districts surrounding the national park (SI Appendix, Table S4; and see SI
Appendix, text, for details on surveyor selection and training). Within each
district, a list of all households in the villages was provided by village heads
and from that list, ∼10% of households (and, correspondingly, ∼10% of the
total population of ∼60,000 people) were randomly selected for participa-
tion. In total, 1,348, 1,498, and 1,379 households were surveyed in 2007,
2012, and 2017, respectively (see SI Appendix, Table S4, for details on the
surveyed household demographics). At each time point, the survey instru-
ment contained modules for the following: demography (age, sex, births,
etc.), health, wealth (income), perceptions of wealth (designation of the
household or neighborhood as “wealthy,” “average,” or “poor”), liveli-
hoods (including logging activity and other occupations), and perceptions of
nature, natural resources, conservation, and the intervention. Acquisition
and analytical use of fully de-identified household survey data was sub-
mitted for review to the Institutional Review Board of Stanford University
and was determined to contain no identifiable data, requiring no further
review as human subjects research. Surveys were administered as part of
routine monitoring and evaluation of ASRI program activities in 2007, 2012,
and 2017 (Indonesian nonprofit Alam Sehat Lestari is registered by the In-
donesian Ministry of Cultural Affairs, #AHU-08962.50.10.2014), following
approval by local heads of participating desa and “kecamatan” adminis-
trative units in Indonesia.

From demographic characteristics, including ages, gender, births, and
deaths in surveyed households, we calculated average annual infant mor-
tality rates, defined as average annual infant deaths per 1,000 live births
among household women in the 3-y period preceding the survey, and av-
erage annual births, defined as average annual births per women ages 19 to
59 (SI Appendix, Table S5). For reference, we also extracted infant mortality
rates (IMR) and general fertility rates (GFR) in a 5-y period from USAID De-
mographic and Health Survey data for Indonesia in 2007 and 2017 (26, 27).
We report IMR and GFR for the province of West Kalimantan and for “rural”
West Kalimantan, which we expect to be a more accurate representation of
the rural communities in and around GPNP (SI Appendix, Table S5). From
reported incomes and household perceptions of neighborhood wealth, we
calculated the average monthly income at the household level and the
proportion of households that felt neighborhood wealth had increased,
decreased, or remained the same at each time point. We also calculated the
proportions of households that reported members engaged in various live-
lihoods (logger, fisher, farmer, civil servant, company employee, unem-
ployed, and “other”). Last, to infer mechanisms by which the intervention
may have reduced illegal logging rates, we calculated household responses
to a 2017 survey question that specifically asked what intervention programs
provide the strongest incentive to help stop logging inside GPNP.

For reported livelihoods and perceptions of neighborhood wealth, we
quantified change over time using generalized linear models with binomial
error distributions and logit links. For livelihoods, we computed the percent
change in the proportion of households reporting each livelihood as a pri-
mary income source derived from the log-odds that livelihood changed over
time. We used t tests to test for a change in average monthly income and
PPP-adjusted monthly income over time. Due to slight variations in survey
question wording, only 5-y comparison data (2012 vs. 2017) were available
for monthly incomes and perceptions of neighborhood wealth.

Dose–Response of the Intervention’s Effect on Deforestation within GPNP.
After demonstrating a significant correlation between the intervention
and pre-intervention to postintervention forest loss trajectories in GPNP
compared to a synthetic control, we tested whether there was any evidence
of a dose–response relationship within GPNP, among villages (dusun) with
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varying levels of engagement with the intervention programs (including use
of the health clinic, and other periodic programs; SI Appendix, Fig. S6) and
forest loss rates. To answer this question, we quantified engagement effort
as cumulative person-contacts (i.e., number of contacts with persons reached
by all program activities associated with the intervention from 2007 to 2017,
allowing for repeated contacts with the same individuals over time)
achieved through the following: the health care intervention (ASRI clinic
visits, mosquito net distribution), conservation programs (Community Con-
servation Liaisons or “Forest Guardian” Program, Chainsaw Buyback Pro-
gram, and Reforestation Program), alternative livelihood trainings (Organic
Agriculture Program, Goats for Widows Program, Green Kitchen Program),
and education activities (ASRI Kids Program, Community Education Program)
(SI Appendix, Fig. S6). Engagement effort was not distributed evenly across
all villages and was predominated by frequent engagement with community
liaisons for the intervention as well as doctor–patient contacts at the clinic
(SI Appendix, Fig. S6). Variation in engagement across the participating vil-
lages intersecting GPNP allowed us to test for evidence of a dose–response
of intervention effort on deforestation within different access areas nearest
each village around the park.

We used a k-means clustering algorithm to bin engagement [cumulative
person-contacts in each village across all of the intervention programs from
2007 to 2018 (SI Appendix, Fig. S6)] into low, medium, and high categories [R
package “classInt” (47)]. We examined the effect of cumulative engagement
effort on the proportion of forest lost in each village’s access area in the
national park (number of remotely sensed 30-m2 pixels lost out of total
forested pixels remaining). Village-level access areas inside GPNP were de-
termined by a local team that mapped the parts of each village bordering
GPNP that extended into GPNP and represented that village’s typical access
area for illegal logging. Ultimately, 36 villages bordering GPNP with logging
access areas >0.30 km2 were included in the analysis. As in the synthetic
controls analysis, forest change data were obtained from the Hansen Global
Forest Change dataset [version 1.6, 2000 to 2018, 30-m pixel resolution (1)].
Total forest cover by village was estimated annually by subtracting forest
loss in each subsequent year from total remaining forest cover in the
previous year (e.g., forest cover in 2002 = forest cover in 2000 – forest loss in
2001 – forest loss in 2002).

Changes in forest loss rates associatedwith engagementwere estimated in
two ways. First, for each engagement category (high, medium, and low), we
estimated change in average annual forest loss rates over time, from before
the intervention (2002 to 2006) to forest loss rates during the first 5 y (2007 to
2012) to the most recent 5 y (2013 to 2017) using amixed-effects linear model
with time as a predictor and nested random effects of village within district
repeated over time. Next, we fit a binomial GLMM to estimate the proba-
bility that, over time, any 30-m2 forested pixel in a medium- or highly

engaged village’s access area within GPNP was lost, compared to the prob-
ability that any 30-m2 forested pixel was lost in a low-engaged village’s
access area. We controlled for village population size (supplied by village
leaders in 2017), proportion of forest lost within village boundaries outside
of the park (as a proxy for outside logging pressure), average slope and
elevation of pixels inside the park, average distance of pixels to the nearest
river, road, and park boundary, and nested random effects of village within
district. We did not include data on fires because fire activity was relatively
low in GPNP during the time period under consideration.

Data and Code Availability. Data and code have been deposited in Github
(https://github.com/deleo-lab/Papers/tree/main/Jones_etal_PNAS_2020).
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