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Abstract
An important data gap in our understanding of the phyllosphere surrounds the origin of the

many microbes described as phyllosphere communities. Most sampling in phyllosphere

research has focused on the collection of microbiota without the use of a control, so the

opportunity to determine which taxa are actually driven by the biology and physiology of

plants as opposed to introduced by environmental forces has yet to be fully realized. To

address this data gap, we used plastic plants as inanimate controls adjacent to live tomato

plants (phyllosphere) in the field with the hope of distinguishing between bacterial micro-

biota that may be endemic to plants as opposed to introduced by environmental forces.

Using 16S rRNA gene amplicons to study bacterial membership at four time points, we

found that the vast majority of all species-level operational taxonomic units were shared at

all time-points. Very few taxa were unique to phyllosphere samples. A higher taxonomic

diversity was consistently observed in the control samples. The high level of shared taxon-

omy suggests that environmental forces likely play a very important role in the introduction

of microbes to plant surfaces. The observation that very few taxa were unique to the plants

compared to the number that were unique to controls was surprising and further suggests

that a subset of environmentally introduced taxa thrive on plants. This finding has important

implications for improving our approach to the description of core phytobiomes as well as

potentially helping us better understand how foodborne pathogens may become associated

with plant surfaces.

Introduction

Culture independent phyllosphere research has greatly expanded our understanding of the
diversity of microbes associated with plant surfaces [1–13]. Food safety initiatives have played
a small but important role in the advancement of culture independent phytobiome research.
The microbiology of living surfaces of fresh produce has clear implications for public health
and food safety [14]. The description of agro-ecologies (beginningwith crop phytobiomes)
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along the farm to fork continuum has begun to establish microbial baselines that will contrib-
ute to an improved understanding of precisely where and how human pathogens may become
associated with food plant ecologies in agricultural settings. At least nineteen Salmonella–
tomato associated outbreaks occurred between the years of 1990 and 2014, causing thousands
of illnesses (FDA internal document) [7]. Understanding how contamination events occur is
extremely important and thus, the tomato microbiome has become an important study system
for food safety research.

Agriculturalmanagement practices for food crops have been studied to better understand
the role they may play in shaping phyllosphere microbiota. For example, the impact on phyllo-
sphere microbiota by different irrigation waters has been studied [15, 16] as well as the impact
of different pesticide schedules [17–19] and even organic and conventional management [8].
Seasonality and biogeography have also been contrasted to farming systems[20–22]. An inter-
esting trend that was observed in many of these studies was the lack of statistically significant
differences in plant microbial communities that correlated to the treatment queried. For exam-
ple, Telias et al. studied water sources used in agriculture (ground water compared to surface
pond water) and showed that the microbial communities of water sources were highly diver-
gent, but the communities collected from tomatoes treated with the different waters did not
exhibit those same differences [15, 16] This suggests that environmental pressures (potentially
air) in the phyllosphere exerted stronger pressures than either water source did. Work by Per-
azzolli et al. supported this observation by demonstrating that different pesticides used on the
same crop had less influence on phyllosphere crop microbiota than biogeographical factors did
[22]. They found that epiphytic microbes associated with grape vines were not significantly
altered by different pesticides treatments (bio-control and traditional pesticide). Instead, the
primary driver of microbial differences appeared to be biogeography–which suggests that envi-
ronmental parameters such as wind and air associated with each region likely influenced the
consortia of microbes found on the grape plant surfaces.

Furthermore, work that examined the influence of two very different pesticides on tomato
crop microflora, found that the most striking differences in microbial composition were associ-
ated with the sampling time-points and not with the pesticide treatments [18] suggesting once
again, that environmental parameters, largely unaccounted for to date, may be the most influ-
ential drivers of the microbiology of the phyllosphere. Marine et al. demonstrated that for leafy
greens grown in the mid-Atlantic region, seasonal events and weather conditions, as opposed
to farming systems, were the most important risk determinants for crop contamination by
human pathogens [20]. The overall importance of seasonality on phyllosphere community
structure and membership has been demonstrated by both culture dependent and culture inde-
pendent research studies [23–26].

While these studies all suggest that environmental factors may play the most significant
roles in microbiologically seeding the phyllosphere, there is also evidence that host plant spe-
cies play significant roles in the shaping of phyllosphere microbial ecology and succession[27–
30].

While there are undoubtedly important drivers from both host plants and environmental
factors, the fact remains that almost every phyllosphere study in the literature to date has sam-
pled microbes from surfaces of plants and described these consortia as phyllosphere microbiota
without any type of control–such as an inanimate surface placed at a similar elevation to the
plant part sampled. Thus we have an opportunity to learn more about drivers of phyllosphere
microbiota by employing an inanimate control to help us better understand differences
between environmentally introducedmicrobial species and endemic or host plant mediated
microbiota.

Distinguishing between Host Plant Mediated and Environmentally Introduced Phyllosphere Microbiota
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To attempt to distinguish between host plant mediated and environmentally introduced
microbiota, we interspersed sterilized plastic plants in a row of live tomato plants and sampled
each surface type at four time-points throughout a growing season. DNA was extracted and
used with 16S rRNA amplicon sequencing to describe bacterialmembership for each sample
type.

Results

Shared and Unique Bacterial Communities

A total of eight independent replicates for each treatment (n = 2) and time-point (n = 4) were
used to compare the bacterial composition associated with each surface type (i.e. control (plas-
tic) and phyllosphere). 16S rRNA amplicon sequences were filtered for quality and clustered
into operational taxonomic units (OTUs) using the QIIME package (see methods). To normal-
ize for differences in sequencing depth, all replicates were subsampled to 2,500 sequences prior
to downstream statistical comparisons. Excluding low abundance taxa–(less than 0.5% of
libraries), we observedvery high percentages of shared OTUs. Shared bacterial taxa ranged
from 92.59% to 100% for all time-points (Table 1). Only 2 unique OTUs were observed in con-
trol samples on August 15th 2013, and 2 OTUs unique to phyllosphere were observedon June
30th 2014 and July 31st 2014 (Table 1). When Time-point 0 was examined independently at a
deeper level of sequencing depth (16,074 sequences per sample), the percentage of shared taxa
remained high at 94.7%.With the inclusion of low abundance OTUs (all those that occurred in
less than 0.5% of the data), an interesting trend was observed. For almost every time point–
there was a greater diversity of low abundance OTUs present in control samples when com-
pared to phyllosphere samples (Table 2). This implies that the air is host to a greater diversity
of microbes than can be found on the surfaces of plants and that a subset of bacterialmembers
thrive in the phyllosphere. This trend was evenmore pronounced in Time-point 0, when it was
examined independently. Without rarefying to 2500 but instead maintaining all 16,074
sequences recovered for each replicate and including the low abundance OTUs—3,249
sequences were uniquely associated with controls (representing 198 OTUs) while only 63
sequences (representing 36 OTUs) were uniquely associated with phyllosphere samples (live
tomato plants) (Fig 1). The most abundant phyllosphere unique taxa were Rubrobacter, Acido-
vorax, Peptoniphilus, Porphyromonas and undefinedmembers of Acidimicrobiaceae, Nitros-
piraceae families and the phylum Chloroflexi. Dominant unique taxa for controls were
Turicibacter, Vagococcus, Bacteriodes,Wohlfahrtimonas, Prevotella, and undeterminedmem-
bers of Lachnospiraceae, Ruminococcaceae and Veillonellaceae families (Fig 1). Profiles of
dominant bacterial families observed in our rarefied datasets for all time-points and treat-
ments, including the store microbiota are shown by independent replicate in S1 Fig. Fig 2
shows the most abundant families that were observed in 16S rRNA gene libraries for merged

Table 1. Shared and Unique OTUs for Phyllosphere and Control Environments.

Date Shared OTUs Unique Control Unique Phyllo Percent Shared

AUG 15th 2013 25 2 0 92.59

JUNE 30th 2014 32 0 2 94.12

JULY 16TH2014 25 0 0 100

JULY 31ST2014 22 0 2 91.67

Using the rarified data set of 2500 sequences per independent replicate, and excluding all sequences that represented less that .5% of the libraries, only 2

OTUs were unique to control samples on August 15th 2013 and 2 were unique to phyllosphere samples at each of two time-points (June 30th and July 31st,

2014).

doi:10.1371/journal.pone.0163482.t001

Distinguishing between Host Plant Mediated and Environmentally Introduced Phyllosphere Microbiota
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independent replicates of phyllosphere (P) and control (C) samples. Despite the dominance of
Enterobacteriaceae in phyllosphere and control samples, high-resolution taxonomic analysis
using the Resphera Insight protocol describedPantoea, Erwinia and Serratia species, but found
no evidence of Salmonella across the sample set in either phyllosphere or control samples.

Little separation by treatment (control and phyllosphere) was evident using nonmetric
Multi Dimensional Scaling (nMDS) ordinations to look at Bray Curtis dissimilarity of bacterial
communities (Fig 3). Microbiota that was washed off plastic plants pre-surface sterilization
however, was clearly different frommicrobiota associated with plastic and live plants from the
field environment. The washing step was performed to ensure that microbiota from the store
environment where plants were purchased was not erroneously described as part of the
environmentally driven consortia. Fig 3A shows nMDS ordination of 16S libraries for all envi-
ronments: store, control (plastic plants) and phyllo (phyllosphere, live tomato plants). Fig 3B
shows an nMDS ordination of the same data separated by time point. To further test the global
null hypothesis of independence for covariate variables (store, phyllo, enviro, and time-points:
T0, T1, T2, T3) and associated response variables, a conditional inference regression tree was
modeled onto the data. Nodes were generated by performing a binary split on all covariates
(where the null hypothesis could not be rejected) using a p value set at 0.1 as a cutoff (Fig 4)
[31]. For ordination component MDS2, the time at which the samples were collected deter-
mines their position in the ordination (Fig 4A). However, for component MDS1, whether or
not the plant was real (phyllo) or plastic (control) does not play a significant role in its location
on the ordination chart. Nonparametric significance tests comparing the MDS1 component
for time point 0 (p< 0.001) and time-points 1, 2, and 3 (p< 0.001) support this conclusion.
The distances between control and phyllosphere samples from the same time-point were sig-
nificantly closer to each other than they were to other time-points of same treatment (P = 2e-
16; Mann-Whitney), suggesting that temporal changes are more influential drivers of commu-
nity composition than treatment alone (Fig 4B). Additionally, we performed an analysis of
multivariate homogeneity of group dispersions (using the permutest in the Vegan package).
Significant differences in dispersion were identified between T0 compared to T1 and T1 com-
pared to T2 (P<0.007 for each comparison).We did not identify significant differences in dis-
persions among time-points within each environment (control and phyllosphere), most likely
due to limited group sizes (S2 Fig).

Differential Abundance of Bacterial Communities

For every time-point there were numerous taxa that were significantly differentially enriched
from one treatment to the other. For example, in Time-point 0, five different genus level OTUs
in the Family Sphingomonadaceae were differentially enriched–with each one occurring in
greater abundance in control samples. There is research that describes the protective effect that
specific Sphingomonadaceae taxa can have on host plants [32]. There is even a species of

Table 2. Unique OTUs in Control and Phyllosphere Environments.

Date Unique Control Unique Phyllo

AUG 15th 2013 227 33

JUNE 30th 2014 254 72

JULY 16TH2014 194 97

JULY 31ST2014 285 29

Using the rarified dataset without the .5% cutoff, OTUs unique to control samples were more numerous than

OTUs for phyllosphere samples at every time-point.

doi:10.1371/journal.pone.0163482.t002

Distinguishing between Host Plant Mediated and Environmentally Introduced Phyllosphere Microbiota
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Sphingomonas with the species epitaph, “phyllosphaerae” [33]. The enhanced abundance of
Sphingomonas OTUs in control samples suggests that these taxa may not actually be endemic
to the phyllosphere but rather, adapted to this niche.

The composition itself (shared incidence of each taxa in each sample) was highly similar for
both sample types. The differential abundance of specific groups described above provided the
first insight into microbiota that were responding to host plant physiology in contrast to

Fig 1. Bacterial Genera Unique to Phyllosphere and Control Samples. Using the total depth of sequences generated for Time-point 0 (16,074

sequences per independent replicate) (N = 9) for phyllosphere (live tomato plants) and control (plastic plants), we were able to identify 63 OTUs that were

unique to the phyllosphere environment and 3, 249 OTUs that were unique to the control (plastic plant) environment.

doi:10.1371/journal.pone.0163482.g001

Distinguishing between Host Plant Mediated and Environmentally Introduced Phyllosphere Microbiota
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environmental deposition. To further explore bacterial relationships thriving in response to
biological and physiological drivers from living leaves, we performed a network analysis by
computing Spearman’s correlation coefficientswith corresponding P values for all pairwise
distances of bacteria in phyllosphere and control samples (Fig 5). Examining significant pair-
wise correlations (P< 0.05 with False Discovery Rate (FDR) correction[34], a total of 23 unique
correlations were identified in control samples. For phyllosphere samples, 37 unique correla-
tions were observed and 21 significant correlations were shared between the two sample types
(Fig 5).

Discussion

Work supporting the observation that microbial consortia associated with plant surfacesmay
be heavily influenced by air was recently presented at the 15th’International Symposium for
Microbial Ecology (2014) [35]. Looking to understand the origins of the microbes that inhabit
clouds, Santl-Temkiv et al. examined 16S rRNA and rDNA from soil, water, plant surfaces and
air, and showed that communities from air and plant surfaces were the most similar [35].
Work by Gales et al., actually demonstrated that plant surfaces are useful for the monitoring of

Fig 2. Bacterial Families in Control and Phyllosphere. Percentage of library represented by the most abundant

bacterial families identified using 16S rRNA gene amplicons for merged independent replicates of control (C) and

phyllosphere (P) at all time-points. Taxonomy was assigned using the RDP classifier trained on the GreenGenes

database.

doi:10.1371/journal.pone.0163482.g002

Distinguishing between Host Plant Mediated and Environmentally Introduced Phyllosphere Microbiota
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Fig 3. NDMS of 16S Communities from Store, Control and Phyllosphere Environments at 4 time-points. 3a Bray-Curtis ordination colored by

environment (control (plastic), phyllosphere, and store bacterial communities). A very clear separation of store microbiota (green) is evident,

however no significant separation between communities associated with control (red) and phyllosphere (purple) is evident. 3b Bray Curtis

ordination colored by time-point. Time-point 0 (T0) and Time-point 1 (T1) appear to separate from each other and also from time-points 2 (T2) and 3

(T3), however T2 and T3 are more similar. For both 1a and 1b, the ellipse defines the upper 95th percentile limit of the assumed distribution.

doi:10.1371/journal.pone.0163482.g003

Distinguishing between Host Plant Mediated and Environmentally Introduced Phyllosphere Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0163482 September 26, 2016 7 / 16



bioaerosol emissions from a composting plant [36] because of their accurate representation of
how far airbornemicrobiota actually travel from the composting plant. As previously men-
tioned, a number of studies suggest that seasonal and/or biogeographic factors (potentially air-
borne or other environmental pressures) appear to have a stronger influence on the
composition of phyllosphere microbiota than pesticides [18], water sources [15] and other
agriculturalmanagement practices [20, 22, 25].

In contrast to these findings, other work has describedphyllosphere and air bacterial com-
munities as distinct from one another other, with only 18% of OTUS at 97% shared in a study
done comparing greenhouse air (represented by glass slides placed adjacent to plants) and Ara-
bidopsis thaliana plant surfaces [30, 37]. Maignien et al. describe the combination of selective
and random forces that shape the microbial ecology of epiphytic bacterial populations of sur-
faces of Arabidopsis thaliana leaves grown in a green house. They suggest that proximity of
plants may play a role in the bacterial community development and succession but they also
acknowledge that random and stochastic processes appear to contribute to the development of
phyllosphere bacterial communities that remain distinct from greenhouse air communities.
The greenhouse air however, was constant in temperature and without wind pressures and
thus does represent the pressures that occur in field conditions. Indeed, the authors mention
that greenhouseArabidopsis phyllosphere communities differed from those of field grown
plants. Research by Williams et al. also supports the observation that microbiota of laboratory
grown plants is significantly distinct from that of plants grown in field conditions [38]. Inter-
estingly however, and consistent with the results presented here, Maignien et al. described a
greater diversity of unique OTUs (1,003) associatedwith greenhouse air (measured using depo-
sition on glass slides) compared to surfaces of greenhouse grown plants (435 OTUs). This

Fig 4. MDS2 Regressed onto Time and Treatment and Distances Within and Between Time and Treatment. 4a To test the global null hypothesis of

independence for covariate variables (store, phyllo, enviro, and time-points: T0, T1, T2, T3) and associated response variables (MDS1 and 2), a conditional

inference regression tree was modeled onto the data after nMDS scaling. For ordination component MDS2, the time at which the samples were collected

determines their position in the ordination. 4b Distances between control and phyllosphere samples from the same time-point were significantly closer to

each other than they were to treatment (environment) (P = 2e-16; Mann-Whitney).

doi:10.1371/journal.pone.0163482.g004

Distinguishing between Host Plant Mediated and Environmentally Introduced Phyllosphere Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0163482 September 26, 2016 8 / 16



observation supports the hypothesis that microbial colonizers of the phyllosphere represent a
subset of the microbiota associated with air. A second study that suggests that microbiota from
plant surfaces is distinct from air microbiota was conducted by Vokou et al. [37]. However, the
total number of sequences generated for this study was not sufficient to make robust inference
about the scope of alpha or beta community diversity for phyllosphere or air communities.

While air may play a poorly described but important role in phyllopshere microbial compo-
sition, it is well documented that host plants themselves mediate important microbial dynamics
in the phyllosphere. We saw evidence of this in the differential abundance of certain taxa
between control and phyllosphere samples. Especially within the family Sphingomonadaceae.
Other important evidence of influence of host plant on phyllosphere bacterialmicrobiota was
evident in the network analyses (Fig 5). As previously mentioned, 21 correlations were shared
between the two sample types with 37 unique to phyllosphere in contrast to only 23 unique to
controls. A greater number of unique phyllosphere relationships, despite the fact that there
were less unique phyllosphere OTUs, demonstrates the robust influence of host plant biology
on phyllosphere microbiota. Correlations unique to the phyllosphere appeared among mem-
bers of Bacilli, and Betaproteobacteria including genera such as Ralstonia, Staphylococcus, and
Arthrobacter (Fig 5). The examination of the Ralstonia node for control and phyllosphere

Fig 5. Network relationships in Control and Phyllosphere. Computing Spearman’s correlation coefficients with

associated P values, (P< 0.05) after correction using FDR for all pairwise relationships of genera in control and

phyllosphere samples (using Cytoscape v3x for visualization www.Cytoscape.org), 21 pairwise correlations were

shared (C) between control and phyllosphere samples. A total of 37 correlations were unique to phyllosphere (B)

and 23 correlations were unique to controls (A). Correlations unique to the phyllosphere appear increased among

members of Bacilli, and Betaproteobacteria, including genera such as Ralstonia, Staphylococcus, and

Arthrobacter. For example, Ralstonia has many significant relationships in phyllosphere samples but none in

controls.

doi:10.1371/journal.pone.0163482.g005
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samples is particularly striking.Ralstonia is an important and well known plant pathogen of
many plants. Ralstonia solanacearum causes wilt in a variety of plants–notably tomato. A com-
plex network of relationships betweenRalstonia and other bacteria is easily observed in phyllo-
sphere while no relationships betweenRalstonia and other genera are evident in control
samples (Fig 5).

Conclusions

The most surprising observation for the bacterial taxa associated with control and phyllosphere
samples was the high percentage of shared taxonomy for each sample type. These findings sug-
gest that airborne or other environmental pressures may play an important role in driving the
consortia of microbes that are associated with phytobiomes. These results also highlight the
need for enhanced sampling methodologies to more comprehensively describe endophytic and
epiphytic core phytobiomes. More sophisticated air sampling will be needed for future work to
exclude the possibility that live plants may have introduced bacterialmicrobiota to controls. A
repertoire of “usual suspects” spanning numerous bacterial and fungal phyla has been reported
across a variety of plant phytobiomes, however the delineation of a core microbiome for any
plant remains elusive. Efforts to describe core endophytes are closer to accomplishing this goal
than efforts to describe core epiphytes. Indeed, the delineation of a “core microbiome” for the
well studied human GI tract also has yet to be established. There are so many genetic, temporal,
physiological, and stochastic environmental factors that exert small yet significant pressures on
undescribedand interwoven ecologies.

A research goal for both human microbiome and phytobiome research is the description of
core microbiota and how endemic, established or introduced taxa play a role in community sta-
bility, persistence, and antagonism or suppression of pathogens that enter the host microbiome.
The observations presented here using plastic plants as a control surface, and by Maignien et al.,
using glass slides, demonstrated that more bacterial diversity was associatedwith representative
air samples (plastic plants and glass slides) than with surfaces of plants. This suggests that
improved methods need to be developed in replicated and diverse biogeographic regions before a
core phytobiome can be described for any plant species. The great diversity of microbes in agri-
cultural air systems is worthy of further study with state of the art air monitoring and integrative
data techniques. Because of the proximity of the plastic plants used in this study to the live plants,
we cannot rule out the possibility that the community composition of plastic plants actually rep-
resents local dispersal from colonizers of living tomato plants. However this does not explain the
augmented diversity of OTUs associatedwith the control environment. The many (37) signifi-
cant unique correlations between genera in phyllosphere samples observed in the network analy-
sis (Fig 5) definitely provide an exciting insight into relationships that are host plant mediated.
There was also evidence of many shared relationships between the two sample types as well (21)
(Fig 5). These results suggest that stochastic processes, including wind driven dispersal and drift
may play a significant role in the structuringof phyllosphere communities. They also provide
very interesting insight into some of the potentially host plant mediated dynamics of the phyto-
biome. Continued examination of both control and phyllosphere samples will help us improve
our understanding of whichmicrobiota in phyllosphere communities are host plant mediated
and whichmay be introduced by environmental forces.

Materials and Methods

Field Collection

Commercial tomato plants, variety BHN 602, were planted a minimum of 60 cm (2 feet) apart
in 23 meter rows comprised of approximately 25 plants at the Wye Research and Education

Distinguishing between Host Plant Mediated and Environmentally Introduced Phyllosphere Microbiota
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Center of the University of Maryland. The plants were border plants surrounding another
5experiment and received no treatment inputs such as pesticide applications. Plastic plants
(figs) were purchased from Ikea to serve as non living controls possessing roughly same
color, height and surface area of mid season tomato plants. The selection of the plastic plants
for use as a control was made based on similarity of height, color, and surface area of plastic
leaves to live tomato leaves. Several other materials were used in preliminary trials such as
yellow and green sticky cards but these were determined to be too differentially selective for
insect microbiota and DNA recovery was also significantly more challenging. The lack of
sticky surface associated with the plastic plants provided a less biased surface to estimate bac-
terial deposition by environmental forces. Cost and availability were also practical consider-
ations for selections of the controls. Plastic plants were washed thoroughly and rinsed with a
3% bleach solution for “sterilization”. Plants were approximately 60 centimeters tall, which
matched the height of the tomatoes at sampling time. Plastic plants were interspersed
between live plants with a range of approximately 30 centimeters to 60 cm at the base of each
plastic and live plant. All plants were supported by the same twine system, installed to sup-
port the tomato plants. In general, plastic and live plants were spatially separated by at least
12 cm at leaf tips, however this distance became smaller for a few live and plastic plant pairs
over the six weeks of the experiment. In 2013 tomato phyllosphere samples and plastic leaves
were collected on August 15, 2013 after plastic plants had been in the field for approximately
three weeks. In 2014, plastic plants were placed in the field on June 13th, and sampled along-
side real tomato leaves at three time points at two week intervals, June 30th, 2014, July 16th,
2014 and July 31st, 2014. Thus, at the first collection, samples had been in the field for two
weeks, at second collection samples had been in the field for 4 weeks and by the third collec-
tion samples had been in the field for 6 weeks. Time-points are described as Time-point 0
(T0: August 15th 2013), Time-point 1 (T1: June 30th, 2014, Time-point 2 (T2: July16th, 2014)
and Time-point 3 (T3: July 31st 2014). Additional sequencing of the microbiota associated
with the plastic plants post purchase and pre- washing and “sterilization” was performed to
provide an understanding of how effective our washing techniques were and to ensure that
diversity described from the controls did not represent the store environment. Using sterile
water and sonication, store microflora wash was removed, centrifuged and DNA was
extracted from the pellet. All plastic and living leaves were collected from similar altitudes on
the adjacent plants and from the front of each plant to ensure that no plastic and living leaves
that had been physically touching were collected. Field collected samples were placed in zip-
lock bags and stored at approximately 4°C in a cooler with ice packs for transportation back
to the lab. Samples were sonicated in 200 ml of sterile water to disrupt biofilms associated
with plastic leaf and tomato leaf surfaces. The resulting “wash” water was centrifuged and
DNA was extracted from the pellet. No specific permissions were required for collection
from these research fields other than the consent of the Wye Research and Education Center
(WREC) scientists and extension agents who direct the activities of the WREC Station. The
field studies did not involve endangered or protected species.

16S rRNA Gene Tailed-End Amplicon Sequencing

16S rRNA gene amplicon sequencing was performed on all samples according to Illumina’s
“Overviewof tailed amplicon sequencing approach with MiSeq” protocol. This two-step PCR
approach utilizes sequence specific primers and Nextera DNA Index Kit (Illumina, San Diego,
CA) with 16S rRNA gene primers for theV4 region (515f, 805r), GTGCCAGCMGCCGCGGT
AA (forward) GGACTACHVGGGTWTCTAAT (reverse)[39].

Distinguishing between Host Plant Mediated and Environmentally Introduced Phyllosphere Microbiota
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Bioinformatic Methods

16S amplicon sequence analysis

Raw fastq files reflecting forward reads output by the MiSeq platform were initially filtered for
quality and length (�200bp) using QIIME [40, 41]and spurious hits to the PhiX control
genome were identified using BLASTN and removed. Passing sequences were trimmed of the
forward primer, and evaluated for chimeras with UCHIME (de novomode) [42], and subse-
quently filtered for host-related contaminant including chloroplast DNA using the RDP Bayes-
ian classifier [43]. Next a large-scale BLASTN search of the GreenGenes database (v13_05) was
performed to identify unknown contaminant sequences. Sequences without a database match
of at least 70% identity along 60% of their length were removed. Identified contaminants
included a substantial number of mitochondrial DNA. This resulted in an average of 160,000
raw reads per independent replicate with an average length of 221 bases. A full table of
sequences throughout stages of quality screening is available in S1 Table.

The final dataset of high-quality 16S rRNA gene amplicon sequences were characterized for
diversity and taxonomic composition using QIIME with the GreenGenes database. Sequences
were clustered into operational taxonomic units (OTUs) using UCLUST (de novo) [44] with a
97% identity threshold. Representative sequences of each cluster were assigned to a taxonomic
lineage by the RDP classifier (trained on the GreenGenes 16S database, v13_05) using a mini-
mum threshold of 0.50. Representatives were input to PYNAST [45] to generate a multiple
sequence alignment, which was subsequently used to construct a neighbor-joining phyloge-
netic tree with FastTree [46]. After full characterization of the clean sequence dataset, sampling
depth was normalized by rarefaction to 2,500 sequences per sample to include as many inde-
pendent replicates as possible. The rarefied 16S sequence set was further evaluated by the
Resphera Insight protocol to obtain high-resolution taxonomic assignments (Baltimore, MD;
www.respherabio.com).

Statistical analysis

Beta-diversity distance metrics (Bray-Curtis) were computed from rarefiedOTU tables and
visualized using principal coordinate analysis in QIIME[40]. Hierarchical clustering and visu-
alization were performed in R (v.2.12.0). The false discovery rate (FDR) was employed to con-
trol for false positives in comparative statistical testing[34]. nMDS ordination plots were
created by applying nonmetricmultidimensional scaling to the Bray-Curtis Dissimilarity
matrix for the samples. nMDS ordination was achieved by the metaMDS wrapper function
from the vegan package (http://CRAN.R-project.org/package=vegan), which uses the
monoMDS function from the same package. The ordination was applied such that the data
was scaled down to two dimensions. In addition (with a random seed of 246), 20 starting point
iterations were performedwithin the metaMDS function call, leading to a minimum stress
level of 0.1575973. Once the ordination was applied, the data was graphed using the ggplot2
package in R. The ellipses seen in the plots are crated using the stat_ellipse function from the
ggplot2 package, which assumes a multivariate t distribution[47]. The ellipse is the upper 95th

percentile limit of the assumed distribution (95% confidence ellipse).
To test the global null hypothesis of independence for covariate variables (store, phyllo,

enviro, and timepoints: T0, T1, T2, T3) and associated response variables (MDS1 and 2), the
ctree() function in the party package of R was used to model a conditional inference regression
tree onto the data after nMDS scaling. If the null hypothesis cannot be rejected, the process
ends. If the null hypothesis is rejected, the covariate with the strongest association (determined
using Bonferroni corrected p-values from permutation tests) is selected. A binary split is
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subsequently performed on the selected covariate. These steps are repeated until all possible
nodes are generated using a p value set at 0.1 as a cutoff [31]. An analysis of multivariate homo-
geneity of group dispersions was also performed using the Vegan R package (betadisper) to
provide permutation-based tests of dispersion homogeneity. Additionally, the Bray-Curtis dis-
tance matrix was used with ADONIS in R to perform a two-factor PERMANOVA analysis
evaluating both time point and environment type (Control/Phyllo). ADONIS identified both
time and type as significantly associated with total community composition (P< 0.001), with
time influencing composition more so than type.

To evaluate differences in microbial networks among control and phyllosphere communi-
ties, we computed Spearman’s correlation coefficients for all defined genera and their corre-
sponding statistical significance, corrected using FDR[34]. Those correlations with significant
P-values (P< 0.05) were included for comparative analysis and visualized using Cytoscape v3.
x (www.cytoscape.org).

Data Submission

All 16S rRNA gene fastq files have been deposited in the SRA of NCBI associated with acces-
sion number [SRP043640]. All metadata has been submitted according to MIMARKS (mini-
mum information about a marker gene sequence)[48].

Supporting Information

S1 Fig. Bacterial Families in Control and Phyllosphere.Most abundant bacterial families
identified using 16S rRNA gene amplicons for all independent replicates of control (C) and
phyllosphere (P) at all time-points. Taxonomy was assigned using the RDP classifier trained on
the GreenGenes database.
(TIF)

S2 Fig. Multivariate Homogeneity of Group Dispersions.Permutation-based tests of disper-
sion homogeneity were performed using the Vegan R package (betadisper). Significant differ-
ences in dispersion were identified betweenT0 compared to T1 and T1 compared to T2
(P<0.007 for each comparison; permutest in Vegan package). No significant differences in dis-
persions among time-points within each environment were identified (most likely due to lim-
ited group sizes).
(TIF)

S1 Table. Raw SequenceData and PreprocessingDetails. Full report of pre-processing and
quality screening of sequences used for downstream analyses.
(XLSX)
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