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When studying how people search for objects in scenes,
the inhomogeneity of the visual field is often ignored.
Due to physiological limitations, peripheral vision is
blurred and mainly uses coarse-grained information (i.e.,
low spatial frequencies) for selecting saccade targets,
whereas high-acuity central vision uses fine-grained
information (i.e., high spatial frequencies) for analysis of
details. Here we investigated how spatial frequencies
and color affect object search in real-world scenes. Using
gaze-contingent filters, we attenuated high or low
frequencies in central or peripheral vision while viewers
searched color or grayscale scenes. Results showed that
peripheral filters and central high-pass filters hardly
affected search accuracy, whereas accuracy dropped
drastically with central low-pass filters. Peripheral
filtering increased the time to localize the target by
decreasing saccade amplitudes and increasing number
and duration of fixations. The use of coarse-grained
information in the periphery was limited to color scenes.
Central filtering increased the time to verify target
identity instead, especially with low-pass filters. We
conclude that peripheral vision is critical for object
localization and central vision is critical for object
identification. Visual guidance during peripheral object
localization is dominated by low-frequency color
information, whereas high-frequency information,
relatively independent of color, is most important for
object identification in central vision.

Introduction

Searching for an object in a visual scene is a vital task
we perform countless times in our daily lives. During
search, we make about three eye movements per second
called saccades, which rapidly shift our gaze to new
points of interest in the scene. This is necessary because
high-acuity vision is only achieved in the fovea, the

central 2° around fixation; toward the visual periphery,
resolution falls off rapidly (Jones & Higgins, 1947;
Wertheim, 1894). Thus, fine-grained scene information,
which is carried by high spatial frequencies, is processed
best in central vision (from the point of fixation up to
about 4–5° eccentricity, cf. Larson & Loschky, 2009).
Central vision is necessary for analyzing details in a
scene, identifying objects (Henderson & Hollingworth,
1999; Henderson et al., 2003), and establishing object
memory (Geringswald et al., 2016). Low-resolution
peripheral vision, on the other hand, is best suited for
processing coarse-grained information, which is carried
by low spatial frequencies. Peripheral vision is mainly
used for rapid reorienting and selecting new regions of
interest as saccade targets. Central and peripheral vision
can therefore be considered to serve different tasks
(Gilchrist, 2011). However, there are not many studies
directly testing the consequences of the inhomogeneity
of the visual field for scene perception, and not much is
known about the different contributions of central and
peripheral vision to object search in real-world scenes
(but see, e.g., Nuthmann, 2013, 2014; Nuthmann &
Malcolm, 2016).

The present study investigates central and peripheral
vision during object-in-scene search. We were interested
in whether the two parts of the visual field differ in
the use of fine- and coarse-grained information and
whether color or brightness contrasts modulate its
use. To this end, we attenuated high or low spatial
frequencies in central or peripheral vision during
search using gaze-contingent low-pass or high-pass
filters, respectively. Given the different sensitivities
of the central and peripheral visual field to certain
spatial-frequency bands (e.g., Hilz & Cavonius, 1974),
differences in search performance and eye-movement
behavior can be expected depending on which
frequencies are filtered in central and peripheral
vision.

Citation: Cajar, A., Engbert, R., & Laubrock, J. (2020). How spatial frequencies and color drive object search in real-world scenes:
A new eye-movement corpus. Journal of Vision, 20(7):8, 1–16, https://doi.org/10.1167/jov.20.7.8.

https://doi.org/10.1167/jov.20.7.8 Received October 2, 2019; published July 13, 2020 ISSN 1534-7362 Copyright 2020, The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

mailto:anke.cajar@uni-potsdam.de
mailto:ralf.engbert@uni-potsdam.de
mailto:jochen.laubrock@uni-potsdam.de
https://doi.org/10.1167/jov.20.7.8
https://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Vision (2020) 20(7):8, 1–16 Cajar, Engbert, & Laubrock 2

Previous studies show that saccade target selection
during scene viewing is modulated by the available
spatial-frequency information across the visual field:
Saccades preferentially target unfiltered scene regions,
as peripheral filtering decreases and central filtering
increases saccade amplitudes (Cajar et al., 2016, 2016;
Foulsham et al., 2011; Laubrock et al., 2013; Loschky
& McConkie, 2002; Loschky et al., 2005; Nuthmann,
2013, 2014). These saccadic changes have been
shown to reflect attentional modulations: Peripheral
filtering induces tunnel vision with a narrowing of
the attentional focus, and central filtering induces an
attentional bias toward the periphery (Cajar et al.,
2016). In scene memorization tasks, these saccadic
modulations were larger when spatial frequencies that
the respective part of the visual field is most sensitive
to were attenuated, that is, with central low-pass
and peripheral high-pass filtering (Cajar et al., 2016,
2016; Laubrock et al., 2013). Fixation durations, on
the other hand, did not increase as much or even
decrease compared with unfiltered scene viewing in
these conditions. Durations increased more with central
high-pass and peripheral low-pass filtering, which
preserve critical spatial frequencies, suggesting that
fixation durations only prolong when the available
information can be processed in a reasonable amount
of time (Cajar et al., 2016, 2016; Laubrock et al., 2013).
This behavior can be explained by a computational
model for fixation durations during scene viewing that
assumes parallel processing of central and peripheral
information during fixation with dynamical interactions
between central and peripheral processing (Laubrock
et al., 2013).

These previous findings imply greater scene
processing difficulty when high spatial frequencies are
attenuated in central vision and low spatial frequencies
are attenuated in peripheral vision. The results derive
from scene memorization tasks, however, with hardly
any effects of filter type on task performance (Cajar
et al., 2016; Laubrock et al., 2013). Although we assume
that viewers adjust their fixation duration in order to
maintain a given performance criterion, we therefore
cannot be sure to what extent the available information
in central and peripheral vision was actually used
or needed for the task. With object-in-scene search,
Nuthmann (2013, 2014) showed that fixation durations
increase both with central and peripheral low-pass
filtering, suggesting that high frequencies are needed
in both scene regions for efficient search. Thus, in the
present experiment, object-in-scene search was given as
a task as well, which implies more top-down control
and predictability of what viewers do during each
fixation (Henderson et al., 2009; Tatler et al., 2011).
Search involves two processes that possibly occur in
parallel. First, viewers need to analyze the fixated
stimulus to decide whether it is the target. This process
involves object identification at least to the degree that

a rejection decision is possible. Second, if the fixated
stimulus is not the target, viewers need to analyze the
peripheral stimulus to choose a new fixation location
that likely contains the search target (van Diepen et al.,
1998). The importance of different spatial frequencies
for accomplishing these tasks during fixation is assessed
better with a search than a memorization task.

Search studies show that viewers locate scene regions
with features similar to the search target (Hwang
et al., 2009) or regions likely containing the target
according to scene context (Neider & Zelinsky, 2006;
Spotorno et al., 2014). Consequently, search is more
efficient when the target is cued with pictures rather
than words (Malcolm & Henderson, 2009; Nuthmann
& Malcolm, 2016) and when targets are located at
predictable compared with unpredictable locations with
respect to scene context (Malcolm and Henderson,
2010). Higher search efficiency in these studies was
reflected in both shorter scanning times and shorter
verification times. Scanning time reflects the time it
takes to locate the target in the scene (i.e., fixate it for
the first time), and verification time reflects the time it
takes to verify the identity of the target once it has been
fixated. Nuthmann and Malcolm (2016) also showed
that removing color from the scene increases scanning
and verification times and impairs performance by
decreasing search accuracy and increasing search
times. Castelhano et al. (2008) reported that target
typicality only modulated verification times but not
scanning times in object search arrays, with faster
verification when targets were more (proto)typical
for their object category. Moreover, attenuating high
spatial frequencies has been shown to impede search
performance differently when applied to central or
peripheral vision, with peripheral low-pass filtering
increasing scanning times and central low-pass filtering
increasing verification times (Nuthmann, 2013, 2014).
These results suggest that peripheral vision aids
object localization, whereas central vision aids object
verification.

The present work aims to extend the findings by
Nuthmann (2013, 2014) by qualifying whether low or
high spatial frequencies are more important in central
and peripheral vision for object-in-scene search. To this
end, we applied gaze-contingent high-pass or low-pass
filters to central or peripheral vision while viewers
searched for target objects that were either present
or absent in the scenes. Additionally, we investigated
search in both color and grayscale scenes to assess the
effect of color on the importance of low or high spatial
frequencies in different parts of the visual field, thus
extending the findings by Nuthmann and Malcolm
(2016) on the contributions of color in central and
peripheral vision during scene search.

We expected high frequencies, which are best resolved
in central vision, to be critical for object identification,
as they aid object–background segregation and analysis
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Figure 1. Illustration of the five filter conditions. The red cross indicates the current gaze position. In this example, the target stimulus
is the watering can (which stands on the lawn in front of the shed with the predictable location condition and on the roof of the shed
with the unpredictable location condition). The top panel shows the original stimulus in the unfiltered control condition. Below, the
four filter conditions are illustrated with cropped and zoomed-in versions of the original stimulus (indicated by the red frame) to
better illustrate the filter effects. (Middle row, left) Central low-pass filter. (Middle row, right) Peripheral low-pass filter. (Bottom row,
left) Central high-pass filter. (Bottom row, right) Peripheral high-pass filter. Unfiltered image retrieved from
http://info.ni.tu-berlin.de/photodb/ (see Mohr et al., 2016).

of detail. Search performance and eye-movement
behavior should thus be more impaired by central
low-pass filtering than central high-pass filtering. This
hypothesis is challenged by the fact that high-pass

filtering inherently attenuates features like luminance,
color, and contrast in addition to low spatial frequencies
(see Figure 1); thus, to the naive observer, high-pass
filtering might appear more artificial and disruptive
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for processing than low-pass filtering. When applying
spatial-frequency filters only to central vision, however,
research indicates that high-pass filtering is more
beneficial for scene categorization (Peyrin et al., 2003)
and for eye-movement control (e.g., Cajar et al., 2016)
than low-pass filtering. Object verification should take
substantially longer with central filtering, especially
low-pass filtering, whereas peripheral filtering should
not impair target verification once the target has been
located.

In contrast, we assume that peripheral vision is
critical for object localization. We thus expected
scanning times to prolong only slightly with central
filtering, which slows down object rejection, but
to prolong severely with peripheral filtering, which
impairs saccade target selection. Since high frequencies
can hardly be resolved in peripheral vision, search
performance and eye-movement behavior should be
more impaired with peripheral high-pass than low-pass
filtering.

Because color is an important feature for object
search and identification (Hwang et al., 2007), we
expected search to be more difficult in grayscale
scenes than color scenes. Although color sensitivity
decreases with increasing eccentricity, cones are spread
throughout the retina, with their density not decreasing
much beyond 10 degrees (Wells-Gray et al., 2016),
so that color can still be used quite effectively in the
periphery (e.g., Abramov et al., 1991; Hansen et al.,
2009; Johnson, 1986; see also Nuthmann & Malcolm,
2016). The absence of color in peripheral vision should
therefore increase scanning times, and its absence in
central vision should increase verification times. In
grayscale scenes, the inherent attenuation of color with
high-pass filtering plays no role, so high-pass filtering
was expected to be less impairing than low-pass filtering
compared with color scenes. On the other hand, search
with low-pass filtering should be more difficult per
se when color is missing as a feature. We therefore
expected smaller differences between filter types in
peripheral vision and larger differences in central vision
when searching grayscale scenes compared with color
scenes.

Methods

The search experiment was part of a large scene
corpus study with N = 200 participants, where each
participant inspected 90 scenes for a memorization
task in one session and 120 different scenes for an
object-in-scene search task in another session (data
and analyses scripts are available on Open Science
Framework, DOI:10.17605/OSF.IO/JQ56S). Session
order was counterbalanced.

Participants

The two hundred participants (38 male, mean age:
22.6 years, range: 16 to 40 years) were students at
the University of Potsdam or pupils at local schools.
Participants had normal or corrected-to-normal vision
and normal color discrimination. They were naive
as to the purpose of the experiment and received
course credit or monetary compensation for their
participation. The experiment conformed to the
Declaration of Helsinki. Participants gave their written
informed consent prior to the experiment.

Apparatus

Stimuli were presented on an iiyamaVisionMasterPro
514 monitor with a resolution of 1,024 × 768 pixels
and a refresh rate of 150 Hz. Stimuli and response
collection were controlled with MATLAB (The
Mathworks, Natick, MA) using the Psychophysics
Toolbox (Brainard, 1997; Kleiner et al., 2007) and the
Eyelink Toolbox (Cornelissen et al., 2002). Viewers were
seated 60 cm (23.6 in.) away from the monitor with their
head stabilized by a head-chin rest. Gaze position of
the dominant eye was tracked during binocular viewing
with the EyeLink 1000 system (SR Research, Ontario,
Canada).

Stimuli and design

Stimuli were 120 images of real-world scenes from
the BOiS database (Mohr et al., 2016) resized to 1,024
× 768 pixels, subtending a visual angle of 38.2° × 28.6°.
Of these images, 99 depicted indoor and 21 depicted
outdoor scenes. Each scene could be presented in one
of three versions: with the target object present at a
predictable location regarding scene context (e.g., a
watering can standing on the lawn in a garden; see
Figure 1), an unpredictable location (e.g., a watering
can standing on the roof of a shed), or absent from the
scene.

For each scene, low-pass and high-pass filtered
versions were prepared in advance. Filtering was
realized in the Fourier domain with Gaussian filters.
Cutoff frequencies for low-pass and high-pass filters
were 1 c/° and 9 c/° respectively (cutoffs were defined
as the half power point, where the filter response is
reduced to 0.5, that is, −3 dB in the power spectrum,
which corresponds to 1/

√
2 in the amplitude spectrum).

Thus, low-pass filtering attenuated spatial frequencies
above 1 c/° and high-pass filtering attenuated spatial
frequencies below 9 c/°. These cutoffs are near the
maximal sensitivities of magno- and parvocellular
cells, respectively, in the lateral geniculate nucleus

http://doi.org/10.17605/OSF.IO/JQ56S
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(Derrington & Lennie, 1984). To give the reader a
rough estimate of how far off into the periphery
the cutoff frequencies were visible, we calculated the
maximal eccentricities they were visible at according
to the cortical magnification principle. On the superior
(worst contrast sensitivity) and temporal (best contrast
sensitivity) half-meridian of the visual field, the cutoff
frequencies should become invisible at the eccentricities
of 41.5° and 73.3° respectively for spatial frequencies of
1 c/° and 6.8° and 9.9° for spatial frequencies of 9 c/°.
For details about how these values were calculated, we
refer to Cajar et al. (2016, p. 188).

For gaze-contingent filtering in the central or
peripheral visual field, a foreground and a background
image were merged in real time using alpha blending.
With central high-pass filtering, for example, the
foreground image was the high-pass filtered version of
the scene and the background image was the original
scene. A two-dimensional hyperbolic tangent with a
slope of 0.06 served as a blending function for creating
the alpha mask. The inflection point of the function
corresponded to the radius of the gaze-contingent
window, which was 5°, roughly dividing central from
peripheral vision (see also Larson & Loschky, 2009;
Loschky & McConkie, 2002; Nuthmann & Malcolm,
2016). The alpha mask was centered at the current gaze
position and defined the transparency value, which
constitutes the weighting of the central foreground
image at each point. At the point of fixation, only
the foreground image was visible; with increasing
eccentricity, the peripheral background image was
weighted more strongly until it was fully visible.

Two filter locations (central/peripheral visual field)
were crossed with two filter types (low pass/high pass),
yielding four filter conditions: central low pass, central
high pass, peripheral low pass, and peripheral high
pass (for example stimuli, see Figure 1). A control
condition without filtering served as a baseline. This
resulted in 24 trials per condition in the search task.
Half of those trials were target-absent and the other
half target-present trials; of the latter, half of the trials
presented the target at a predictable and the other
half at an unpredictable location. For half of the
participants, scenes were presented in their original
color version; for the other half of the participants, the
same scenes were presented in grayscale.

A Latin square design ensured counterbalancing of
condition–scene–target location assignments across
participants. Scenes were presented in random order.

Procedure

At the beginning of the experiment and after every
15 trials, a 9-point calibration was performed. Each
trial started with a fixation check where a fixation point
was presented at the center of the screen. The viewer’s

gaze had to stay within an area of 1.5° × 1.5° around
the fixation point for 200 ms to pass the fixation check.
After a successful check, the actual trial started; if the
check failed three times, a recalibration was scheduled.

Three example trials familiarized participants with
the task and the gaze-contingent window procedure.
Each trial started with a picture cue of the target object
on a black background presented for 2 s. After that, a
black cross was presented in the center of the screen to
ensure viewers always started exploring in the center
of the image. After the cross was fixated, the scene
was revealed. Viewers were instructed to search for
the target object in the scene and to decide as fast as
possible whether the object was present or absent in
the scene by pressing the left or right button of the
computer mouse, respectively. The response deadline of
60 s was never actually reached in the experiment.

Data preparation

Saccades were detected in the raw time series of gaze
positions using a velocity-based algorithm (Engbert &
Kliegl, 2003; Engbert & Mergenthaler, 2006) with a
relative velocity threshold of six standard deviations
and a minimum duration of eight data samples. A
total of 68 trials (0.28%) were removed owing to poor
calibration or too much data loss. Single fixations and
saccades were removed if they neighbored eye blinks
or were outside the monitor area. If the first or last
trial event was an ongoing saccade, it was also removed.
Since the present study focuses on target present trials,
target-absent trials were excluded from analyses. Thus,
11,966 trials remained for analyses of task performance,
and 115,390 fixations and 105,915 saccades remained
for eye-movement analyses. For analyzing fixation
durations, the last ongoing fixation of each trial was
excluded.

Data analyses

Data from trials with target objects at contextually
predictable and unpredictable locations were collapsed
for all analyses. For effects of target predictability on
search performance and eye movements, see Figures 4
to 6 in the Appendix.

Separate models were run for color and grayscale
scene data. Search times and eye movements were
analyzed with linear mixed-effects models (LMMs) and
search accuracy was analyzed with binomial generalized
linear mixed-effects models (GLMMs) with a logit link
function. Both LMMs and GLMMs are implemented
in the lme4 package (Bates et al., 2015), which is
supplied in the R system for statistical computing
(version 3.6.0; R Core Team, 2018). Besides fixed effects
for the experimental manipulations, (G)LMMs account
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for random effects (i.e., variance components) due to
differences between participants and scenes, which
reduces unexplained variance. We assumed random
intercepts for participants and scenes for all models.
Fixed-effects parameters were estimated via treatment
contrasts, testing the effects of each of the four filter
conditions against the unfiltered control condition.
Selected comparisons between filter conditions were
done post hoc using paired t tests. To test interactions
between spatial frequency and color filtering, we ran
supplementary analyses with color as an additional
fixed effect in the LMMs, providing main effects for
color versus grayscale scenes and interactions between
color and spatial-frequency filtering effects. For the
GLMM on search accuracies, only a main effect
of color was added to the model, as a model with
additional interactions yielded no stable estimates. In
order to keep the presentation succinct, we only report
significant effects from these supplementary analyses in
the Results section.

All GLMM analyses yield regression coefficients,
standard errors, z values, and p values for fixed effects.
LMM analyses only yield regression coefficients,
standard errors, and t values, because the degrees of
freedom are not known exactly for LMMs. For large
data sets, however, the t distribution has converged
to the standard normal distribution for all practical
purposes (Baayen et al., 2008, Note 1). Thus, t statistics
exceeding an absolute value of 1.96 were considered
statistically significant at the two-tailed 5% level.

Since the distributions of all eye-movement variables
and search times were positively skewed, variables
were transformed before model fitting to approximate
normally distributed model residuals. To find a suitable
transformation, the optimal λ-coefficient for the
Box-Cox power transformation (Box & Cox, 1964)
was estimated with the boxcox function of the MASS
package (Venables & Ripley, 2002), with y(λ) = (yλ −
1)/λ, if λ �= 0 and log (y), if λ = 0. For all variables
except saccade amplitudes, λ was near zero and the
log-transformation was chosen; for saccade amplitudes,
the exact λ was chosen as a transformation (λ = 0.22
for both color and grayscale scene data), yielding
considerably better distributions of model residuals
compared with log-transformed data.

Results

Search performance

In general, a similar pattern of results was observed
with color and grayscale scenes regarding the effects
of spatial-frequency filtering on search accuracy and
search times (see Figure 2). Performance was overall
better, however, when searching color scenes than

grayscale scenes, reflected in higher accuracies (b =
0.62, SE = 0.09, t = 6.88, p < .001) and shorter search
times (b = −0.22, SE = 0.04, t = −5.39).

Search accuracies
In the unfiltered control condition, mean search

accuracy was 83% with color scenes and 78% with
grayscale scenes. These mean accuracies are rather low,
as they reflect collapsed data from search trials with
targets at predictable and unpredictable locations, and
viewers performed worse with the latter (see Figure 4 in
the Appendix). When searching color scenes, accuracy
decreased with all filter conditions. The decrease was
pronounced with central low-pass filtering (b = −1.45,
SE = 0.11, z = −12.92, p < .001) and mild in all other
conditions (b = −0.38, SE = 0.12, z = −3.20, p = .001
for peripheral low-pass filtering; b = −0.38, SE = 0.12,
z = −3.24, p = .001 for peripheral high-pass filtering;
b = −0.37, SE = 0.12, z = −3.14, p = .002 for central
high-pass filtering). The decrease in accuracy with
central low-pass filtering seemed even more dramatic
when viewers searched grayscale scenes (b = −1.78, SE
= 0.11, z = −16.27, p < .001), where accuracy dropped
to chance performance. With all other filter conditions
in grayscale scenes, accuracy did not differ from the
control condition (b = −0.13, SE = 0.11, z = −1.17, p
= .240 for peripheral low-pass filtering; b = −0.13, SE
= 0.11, z = −0.18, p = .854 for peripheral high-pass
filtering; b = −0.18, SE = 0.11, z = −1.56, p = .119 for
central high-pass filtering).

Search times
With all filter conditions, search times increased

compared with the unfiltered control condition,
showing similar patterns for color and grayscale scenes.
The increase in search times was weakest with central
high-pass filtering (b = 0.16, SE = 0.02, t = 8.40 for
color scenes and b = 0.12, SE = 0.02, t = 6.15 for
grayscale scenes) and strongest with central low-pass
filtering (b = 0.43, SE = 0.02, t = 22.18 for color scenes
and b = 0.55, SE = 0.02, t = 28.20 for grayscale scenes).
The increase in search times with central low-pass
filtering was considerably higher when searching
grayscale than color scenes (b = −0.13, SE = 0.03, t =
−4.17), complementing the stronger decrease in search
accuracy with grayscale scenes. The increase of search
times with peripheral filters was intermediate between
the increase with central low-pass and high-pass filters
(b = 0.25, SE = 0.02, t = 13.12 and b = 0.34, SE =
0.02, t = 17.72 for peripheral low-pass and high-pass
filters in color scenes, respectively; b = 0.22, SE =
0.02, t = 10.96 and b = 0.22, SE = 0.02, t = 11.41 for
peripheral low-pass and high-pass filters in grayscale
scenes, respectively). The increase in search times
with peripheral high-pass filtering was stronger when
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Figure 2. Search performance for color and grayscale scenes. (Top row)Mean search accuracies. (Bottom row)Mean search times.
Error bars represent within-subjects 95% confidence intervals with Cousineau-Morey correction (Cousineau, 2005; Morey, 2008).

searching color scenes compared with grayscale scenes
(b = 0.12, SE = 0.03, t = 3.88). Post hoc comparisons
showed a significant difference between filter types with
peripheral filtering in color scenes (t(99) = 4.04, p <
.001, d = 0.09) but not in grayscale scenes (t(99) = 0.38,
p = .702, d = 0.01).

Search epochs

In order to better understand the effects of spatial-
frequency filtering on subprocesses of search and thus
the effects on task performance, we decomposed the
search process into scanning time (time until first
fixation on the target) and verification time (time from
first fixation on the target until manual response).
Scanning time reflects target localization, that is, the
actual search process, and verification time reflects
target identification plus the manual response (see
also Castelhano & Henderson, 2008; Malcolm &
Henderson, 2009, 2010; Nuthmann, 2013, 2014). For

classifying fixations as being on the target object or
not, a polygon was drawn outlining the target and
then enlarged by 1°. Thus, fixations landing 1° to the
edge of the object still counted as target fixations,
which accounts for oculomotor errors and eye tracker
inaccuracies but ensures that near-foveal processing of
the target is still possible.

As with search accuracies and search times, search
epochs showed a similar pattern for color and grayscale
scenes but somewhat worse performance when
searching grayscale scenes, reflected in longer scanning
and verification times (see Figure 3).

Scanning times
Overall, scanning times were slightly shorter when

searching color scenes compared with grayscale scenes
(b = −0.08, SE = 0.04, t = −2.04). With both color and
grayscale scenes, scanning times increased considerably
with peripheral filtering but only slightly with central
filtering compared with the unfiltered control condition.
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Figure 3. Search epochs and eye movements with the five filter conditions for color and grayscale scenes. (Top row)Mean scanning
times (left) and mean verification times (right). (Middle row)Mean fixation durations (left) and mean number of fixations (right). The
inset figures with number of fixations display the mean number of fixations during verification time only. (Bottom row, left)Mean
saccade amplitudes. Error bars represent within-subjects 95% confidence intervals with Cosineau-Morey correction (Cousineau,
2005; Morey, 2008). (Bottom row, right) Changes in saccade direction in angular degrees between successive saccades during
verification time only. Changes of 0° and 180° reflect forward and backward saccades, respectively; positive and negative changes
reflect upward and downward saccades, respectively.

In color scenes, scanning times did not increase with
central low-pass filtering (b = 0.02, SE = 0.03, t = 0.77)
and only slightly with central high-pass filtering (b =
0.06, SE = 0.03, t = 2.10). With peripheral filtering,
however, scanning times increased strongly (b = 0.43,
SE = 0.03, t = 15.41 for peripheral low-pass filtering; b
= 0.56, SE = 0.03, t = 20.15 for peripheral high-pass
filtering), with significantly longer scanning times for

peripheral high-pass filtering than low-pass filtering
(t(99) = 3.61, p < .001, d = 0.13). Similar effects
emerged with searching grayscale scenes. Scanning
times increased slightly with both central low-pass
and high-pass filtering (b = 0.06, SE = 0.03, t = 2.13
and b = 0.08, SE = 0.03, t = 2.82, respectively) but
increased more strongly with peripheral filtering (b
= 0.40, SE = 0.03, t = 13.67 for peripheral low-pass
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filtering; b = 0.35, SE = 0.03, t = 12.09 for peripheral
high-pass filtering). The increase in scanning times
with peripheral high-pass filtering was stronger in color
scenes than grayscale scenes (b = 0.20, SE = 0.05, t =
4.36). Contrary to searching color scenes, there was no
effect of filter type on scanning times when searching
grayscale scenes, neither with central nor peripheral
filtering (see Figure 3, top left graph).

Verification times
Verification times were rather long in the present

experiment, because scenes were complex, targets were
located at unpredictable locations in half of the trials,
and verification times included the manual response to
the target.

Verification times increased in most filter conditions
compared with search in unfiltered scenes. Overall,
verification times were shorter when searching color
compared with grayscale scenes (b = −0.20, SE = 0.05,
t = −3.71). For search in color scenes, verification times
increased slightly with peripheral filtering (b = 0.06,
SE = 0.03, t = 2.08 for peripheral low-pass filtering; b
= 0.07, SE = 0.03, t = 2.34 for peripheral high-pass
filtering). Verification times increased more strongly
with central high-pass filtering (b = 0.19, SE = 0.03, t
= 6.62) and drastically with central low-pass filtering
(b = 0.69, SE = 0.03, t = 24.12). This pattern was
similar when searching grayscale scenes, with no effect
of peripheral low-pass filtering on verification times (b
= 0.03, SE = 0.03, t = 1.11) and a moderate increase of
verification times with high-pass filtering in central and
peripheral vision (b = 0.11, SE = 0.03, t = 3.94 and b
= 0.09, SE = 0.03, t = 3.28, respectively). The strong
increase of verification times with central low-pass
filtering compared with the control condition (b = 0.86,
SE = 0.03, t = 28.97) was even higher when searching
grayscale scenes than color scenes (b = −0.17, SE =
0.04, t = −4.06). Post hoc comparisons showed no
difference in verification times between peripheral filter
types with grayscale scenes (t(99) = 1.88, p = .006, d =
0.06).

Eye movements

As with task performance and search epochs, effects
of filtering on eye-movement behavior were similar
with search in color and grayscale scenes, with stronger
modulations of behavior when searching grayscale
scenes (see Figure 3).

Fixation durations
In both color and grayscale scenes, mean fixation

durations increased with all filter conditions compared
with the unfiltered control condition. Central filtering

led to a stronger increase of fixation durations than
peripheral filtering. For search in color scenes, central
low-pass and high-pass filtering prolonged fixation
durations similarly (b = 0.09, SE = 0.01, t = 13.34
and b = 0.10, SE = 0.01, t = 14.50, respectively).
Numerically, the increase was stronger with high-pass
than low-pass filtering, but the difference between
central filter types was only marginally significant (t(99)
= 1.79, p = .076, d = 0.02). The increase of fixation
durations with peripheral filtering compared to the
control condition was stronger with peripheral low-pass
filtering (b = 0.06, SE = 0.01, t = 9.17) than with
peripheral high-pass filtering (b = 0.04, SE = 0.01, t =
6.67). This difference between peripheral filter types was
statistically significant (t(99) = 2.51, p = .014, d = 0.02).
When searching grayscale scenes, there was no effect of
filter type on fixation durations (see Figure 3), which
increased similarly with central low-pass and high-pass
filtering (b = 0.07, SE = 0.01, t = 12.70 and b = 0.08,
SE = 0.01, t = 13.20, respectively) and with peripheral
low-pass and high-pass filtering (b = 0.06, SE = 0.01, t
= 8.93 and b = 0.06, SE = 0.01, t = 9.18, respectively).
There was no main effect of color and there were no
interaction effects between spatial-frequency filtering
and color on fixation durations.

Number of fixations
Viewers needed fewer fixations to find the target

in color than in grayscale scenes (b = −0.22, SE =
0.03, t = −6.23). With color scenes, mean number of
fixations was highest with central low-pass filtering (b
= 0.28, SE = 0.02, t = 13.72) and peripheral high-pass
filtering (b = 0.30, SE = 0.02, t = 14.89), with no
significant difference between the two (t(99) = 0.73,
p = .465, d = 0.02). Peripheral low-pass filtering also
increased the number of fixations considerably (b =
0.20, SE = 0.02, t = 9.90), whereas central high-pass
filtering increased number of fixations only slightly
(b = 0.04, SE = 0.02, t = 2.06) compared with the
unfiltered control condition. With grayscale scenes, a
similar pattern emerged. Central high-pass filtering
increased the number of fixations only slightly (b =
0.04, SE = 0.02, t = 2.01), whereas central low-pass
filtering increased the number of fixations strongly (b
= 0.43, SE = 0.02, t = 21.50), the increase being a lot
higher than with color scenes (b = −0.16, SE = 0.03,
t = −5.03). Also contrary to searching color scenes,
the increase in the number of fixations with peripheral
filters was similar with low-pass and high-pass filters (b
= 0.18, SE = 0.02, t = 8.90 and b = 0.17, SE = 0.02,
t = 8.67, respectively). Peripheral high-pass filtering
did not increase the number of fixations as strongly
compared with the control condition as it did in color
scenes (b = 0.12, SE = 0.03, t = 3.99).

The inset figures for mean number of fixations
(see Figure 3) show the mean number of fixations
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during verification time. It appears that viewers make
considerably more fixations during object verification
with central low-pass filtering than with any of the other
filter conditions, especially when searching grayscale
scenes.

Saccade amplitudes
The modulation of saccade amplitudes by spatial-

frequency filtering was similar with color and grayscale
scenes, although overall, amplitudes were shorter
when searching color scenes (−0.02, SE = 0.01, t =
−3.96). Saccade amplitudes were not affected by central
high-pass filtering (b = 0.01, SE = 0.004, t = 1.94 for
color scenes and b = −0.001, SE = 0.004, t = −0.26
for grayscale scenes) but strongly increased with central
low-pass filtering (b = 0.14, SE = 0.004, t = 36.55 for
color scenes and b = 0.16, SE = 0.003, t = 47.29 for
grayscale scenes). Peripheral filtering, on the other
hand, shortened saccade amplitudes compared with
the control condition: For searching color scenes, the
decrease in saccade amplitudes was slightly stronger
with high-pass (b = −0.06, SE = 0.004, t = −14.78)
than with low-pass filtering (b = −0.05, SE = 0.004,
t = −11.63). This difference between peripheral filter
types was statistically significant (t(99) = 2.50, p =
.014, d = 0.01). For searching grayscale scenes, saccade
amplitudes also decreased (b = −0.05, SE = 0.004,
t = −15.01 for low-pass filtering and b = −0.05, SE
= 0.004, t = −13.23 for high-pass filtering), but the
difference between peripheral filter types was not
significant (t(99) = −1.59, p = .116, d = −0.01).

Changes in saccade direction
We expected target verification to be more difficult

when central vision was impaired by spatial-frequency
filters (especially low-pass filters) than when central
vision was left intact. Viewers might therefore adopt
different strategies for identifying the potential target
object in the different filter conditions. To reveal viewers’
exploration strategies during target verification, we
inspected changes in saccade direction in the different
filter conditions, that is, saccadic angles between
two successive saccades. The bottom right graph in
Figure 3 shows the distributions of changes in saccade
direction for the different filter conditions during target
verification. Angles of 0° reflect forward saccades and
angles of 180° reflect backward or return saccades;
positive angles reflect upward and negative angles
reflect downward saccades. Distributions show that
central low-pass filtering involved a considerably higher
amount of return saccades during target verification
than the other filter conditions and the control
condition, especially with search in grayscale scenes. To
a weaker extent, this effect also emerged with central
high-pass filtering.

Discussion

In the present study, we investigated the importance
of spatial frequencies and color in central and peripheral
vision for eye-movement control during scene search.
Results show considerable differences in both search
performance and eye-movement behavior between high
and low spatial-frequency filters, especially with search
in color scenes and filters in central vision. Overall,
performance and eye-movement behavior were impaired
more strongly when searching grayscale scenes than
color scenes (see also Nuthmann & Malcolm, 2016).
Interestingly, color information was particularly impor-
tant in the low-frequency band in peripheral vision.

Peripheral filtering

Compared with searching unfiltered scenes,
peripheral spatial-frequency filtering slightly decreased
search accuracies with color scenes but not at all with
grayscale scenes. Search times, however, increased
considerably with both color and grayscale scenes. This
effect mainly derives from an increase in scanning times,
indicating that it took longer to locate the target object
in the scene. Object verification time, once the target
object was located, was hardly affected by peripheral
filtering. This finding is not surprising given that central
vision is critical for object identification (Henderson
et al., 2003) and information in the central visual field
was unaltered. The increase in scanning times was
caused by a combination of shorter saccade amplitudes
and more as well as longer fixations. The decrease in
saccade amplitudes replicates previous findings (Cajar
et al., 2016, 2016; Foulsham et al., 2011; Laubrock
et al., 2013; Loschky &McConkie, 2002; Loschky et al.,
2005; Nuthmann, 2013) and likely reflects a shrinkage
of the attentional focus to the unfiltered central region
(Cajar et al., 2016). This tunnel-vision effect also
accounts for the higher number of fixations (see also
Foulsham et al., 2011; Nuthmann, 2013, 2014), as the
scene is scanned for the target in smaller steps. Fixation
durations increased because saccade target selection
took longer with higher peripheral processing difficulty.
In color scenes, as expected, search performance and
eye-movement behavior were affected more severely
by high-pass than by low-pass filtering, reflected in
longer search and scanning times, a higher number
of fixations, and slightly shorter saccade amplitudes.
Fixation durations were longer with low-pass filtering,
suggesting that more time was invested for selecting
a new peripheral saccade target when the available
information was easier to process (see also Cajar et al.,
2016, 2016; Laubrock et al., 2013).

Surprisingly, the benefit for low spatial frequencies in
peripheral vision disappeared completely in all search



Journal of Vision (2020) 20(7):8, 1–16 Cajar, Engbert, & Laubrock 11

and eye-movement parameters when viewers searched
grayscale scenes. This result suggests that the benefit
for object search with peripheral low-pass filtering
mainly arose from the availability of coarse-grained
color information (which is strongly attenuated with
high-pass filtering) rather than the availability of
coarse-grained luminance information. This result
is compatible with Hwang et al. (2007), who found
that color dominates visual guidance when searching
for scene patches and reduces the guidance by other
stimulus dimensions such as intensity or contrast.
However, a strong influence of color in peripheral vision
might be specific to scene search, since in a previous
study with scene memorization and peripheral object
detection in grayscale scenes, we found considerable
differences in task performance and eye-movement
behavior between peripheral low-pass and high-pass
filters (Cajar et al., 2016).

Central filtering

With spatial-frequency filtering in central vision,
effects were rather different. First, object localization
was hardly affected, whereas effects on object
identification were pronounced (see also Nuthmann,
2014). Second, search performance and eye-movement
behavior depended strongly on filter type in both
color and grayscale scenes. With central high-pass
filtering, search accuracies were not affected at all in
grayscale scenes and only slightly decreased in color
scenes compared with the unfiltered control. Search
times did increase with high-pass filtering but with
the least increase of the four filter conditions. The
longer search times derive from a combination of slight
to moderate increases of scanning and verification
times. Saccade amplitudes were not affected at all by
high-pass filtering, and the number of fixations hardly
increased. Higher processing difficulty with high-pass
filtering was mainly counteracted by increasing fixation
durations, thus taking more time to process the fixated
stimulus. Overall, performance and eye-movement
behavior with central high-pass filtering were nearest to
normal. Although high-pass filters inherently attenuate
luminance, contrast, and color in the scene, they
affected object localization and verification only slightly
when applied to central vision, which is an interesting
new finding of the present study.

Central low-pass filtering, on the other hand, turned
out to be the most detrimental filter condition. Search
accuracies decreased drastically and even dropped
to chance performance when searching grayscale
scenes. Search times also increased more than in all
other conditions. It appears that this decrease in
search performance originates from the difficulty
of identifying the target object once it had been
found: Scanning times increased only slightly, as with

central high-pass filtering, but target verification times
increased drastically compared with the control and
all other filter conditions. The effect was larger when
searching grayscale scenes. Eye-movement behavior was
also modulated strongly by central low-pass filtering,
with increased fixation durations, number of fixations,
and saccade amplitudes. The increase in saccade
amplitudes replicates previous findings (Cajar et al.,
2016, 2016; Laubrock et al., 2013; Nuthmann, 2014),
suggesting that viewers show an attentional bias toward
the visual periphery with a low-pass filtered center
(Cajar et al., 2016). The number of fixations increased
with central low-pass filtering mainly because more
fixations were made during target verification than in
all other conditions, especially with grayscale scenes.
Furthermore, a higher amount of return saccades
during target verification was observed compared with
the other conditions, as was reported by Henderson
et al. (1997) with a central scotoma in an array of
line drawings of objects. These findings likely reflect a
strategy of saccading back and forth between the target
object in the strongly blurred center and neighboring
scene regions to try and confirm object identity with
the help of the less blurred periphery. Almost all effects
were stronger when searching grayscale scenes, where
search performance dropped down to chance level.
Thus, object identification without high and medium
spatial frequencies was extremely challenging and nearly
impossible when color was unavailable as a diagnostic
object feature.

In contrast with peripheral filtering, where effects of
filter type completely disappeared with grayscale scenes,
differences between central filter types were even larger
with grayscale than color scenes. Thus, the specific
spatial-frequency content in central vision became even
more important when color was removed from the
scene. This new result of the present study suggests that
the proposed dominance of color over other stimulus
dimensions during search (Hwang et al., 2007) might
hold for the process of object localization in peripheral
vision but not for object identification in central vision.

Conclusions

The present work demonstrates that object
identification in central vision mainly depends on
high spatial frequencies and is nearly impossible
when based solely on low frequencies. For object
localization in peripheral vision, the type of available
spatial-frequency information seems less important,
whereas color information is critical for facilitating
search. We corroborate previous findings that central
vision is critical for object identification and peripheral
vision is critical for object localization. Our results
highlight the different roles of central and peripheral
vision to object-in-scene search and provide a basis
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for characterizing the contributions of different
spatial-frequency bands for search.

Keywords: scene viewing, eye movements, object
search, central and peripheral vision, spatial frequencies,
color, gaze-contingent displays

Acknowledgments

This work was funded by Deutsche Forschungsge-
meinschaft (Grants LA 2884/1 to J.L. and EN 471/10 to
R.E.). The authors thank Petra Schienmann and their
student assistants for their help during data collection
and Lisa Buchwald for object annotations in the scenes.

Commercial relationships: none.
Corresponding author: Anke Cajar.
Email: anke.cajar@uni-potsdam.de.
Address: Department Psychologie, Universität
Potsdam, Potsdam, Germany.

References

Abramov, I., Gordon, J., & Chan, H. (1991).
Color appearance in the peripheral retina:
Effects of stimulus size. Journal of the
Optical Society of America A, 8, 404–414,
https://doi.org/10.1364/JOSA8.000404.

Baayen, R. H., Davidson, D. J., & Bates, D. M.
(2008). Mixed-effects modeling with crossed
random effects for subjects and items. Journal
of Memory and Language, 59, 390–412,
https://doi.org/10.1016/j.jml.2007.12.005.

Bates, D., Maechler, M., Bolker, B., & Walker, S.
(2015). Fitting linear mixed-effects models using
lme4. Journal of Statistical Software, 67, 1–48,
https://doi.org/10.18637/jss.v067.i01.

Box, G. E. P., & Cox, D. R. (1964). An analysis
of transformations. Journal of the Royal
Statistical Society, 26B, 211–252, https:
//doi.org/10.1111/j.2517-6161.1964.tb00553.x.

Brainard, D. H. (1997). The Psychophysics
Toolbox. Spatial Vision, 10, 433–436, https:
//doi.org/10.1163/156856897x00357.

Cajar, A., Engbert, R., & Laubrock, J. (2016).
Spatial frequency processing in the central
and peripheral visual field during scene
viewing. Vision Research, 127, 186–197,
https://doi.org/10.1016/j.visres.2016.05.008.

Cajar, A., Schneewei, P., Engbert, R., & Laubrock,
J. (2016). Coupling of attention and saccades
when viewing scenes with central and peripheral

degradation. Journal of Vision, 16(2):8, 1–19,
https://doi.org/10.1167/16.2.8.

Castelhano, M. S., & Henderson, J. M. (2008).
The influence of color on the perception of
scene gist. Journal of Experimental Psychology:
Human Perception and Performance, 34, 660–675,
https://doi.org/10.1037/0096-1523.34.3.660.

Castelhano, M. S., Pollatsek, A., & Cave, K. R. (2008).
Typicality aids search for an unspecified target,
but only in identification and not in attentional
guidance. Psychonomic Bulletin & Review, 15,
795–801, https://doi.org/10.3758/PBR.15.4.795.

Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002).
The Eyelink Toolbox: Eye tracking with MATLAB
and the Psychophysics Toolbox. Behavioral
Research Methods, Instruments, & Computers, 34,
613–617, https://doi.org/10.3758/BF03195489.

Cousineau, D. (2005). Confidence intervals in
within-subject designs: A simpler solution
to Loftus and Masson’s method. Tutorial in
Quantitative Methods for Psychology, 1, 71–75,
http://tqmp.org/Content/vol01-1/p042/p042.pdf.

Derrington, M., & Lennie, P. (1984). Spatial and
temporal contrast sensitivities of neurones
in lateral geniculate nucleus of macaque.
The Journal of Physiology, 357, 219–240,
https://doi.org/10.1113/jphysiol.1984.sp015498.

Engbert, R., & Kliegl, R. (2003). Microsaccades
uncover the orientation of covert attention.
Vision Research, 43, 1035–1045, https:
//doi.org/10.1016/S0042-6989(03)00084-1.

Engbert, R., & Mergenthaler, K. (2006). Microsaccades
are triggered by low level retinal image slip.
Proceedings of the National Academy of Sciences
of the United States of America, 103, 7192–7197,
https://doi.org/10.1073/pnas.0509557103.

Foulsham, T., Teszka, R., & Kingstone, A. (2011).
Saccade control in natural images is shaped by
the information visible at fixation: Evidence
from asymmetric gaze-contingent windows.
Attention, Perception, & Psychophysics, 73, 266–283,
https://doi.org/10.3758/s13414-010-0014-5.

Geringswald, F., Porracin, E., & Pollmann, S. (2016).
Impairment of visual memory for objects in natural
scenes by simulated central scotoma. Journal of
Vision, 16(2), 61–72, https://doi.org/10.1167/16.2.6.

Gilchrist, I. D. (2011). Saccades. In S. P. Liversedge,
I. D. Gilchrist, & S. Everling (Eds.), The Oxford
handbook of eye movements (pp. 85–94). Oxford,
UK: Oxford University Press.

Hansen, T., Pracejus, L., & Gegenfurtner, K. R. (2009).
Color perception in the intermediate periphery of
the visual field. Journal of Vision, 9(4):26, 1–12,
https://doi.org/10.1167/9.4.26.

https://doi.org/10.1364/JOSA8.000404
https://doi.org/10.1016/j.jml.2007.12.005
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.1163/156856897x00357
https://doi.org/10.1016/j.visres.2016.05.008
https://doi.org/10.1167/16.2.8
https://doi.org/10.1037/0096-1523.34.3.660
https://doi.org/10.3758/PBR.15.4.795
https://doi.org/10.3758/BF03195489
http://tqmp.org/Content/vol01-1/p042/p042.pdf
https://doi.org/10.1113/jphysiol.1984.sp015498
https://doi.org/10.1016/S0042-6989(03)00084-1
https://doi.org/10.1073/pnas.0509557103
https://doi.org/10.3758/s13414-010-0014-5
https://doi.org/10.1167/16.2.6
https://doi.org/10.1167/9.4.26


Journal of Vision (2020) 20(7):8, 1–16 Cajar, Engbert, & Laubrock 13

Henderson, J., & Hollingworth, M. (1999). The role
of fixation position in detecting scene changes
across saccades. Psychological Science, 10, 438–443,
https://doi.org/10.1111/1467-9280.00183.

Henderson, J. M., Malcolm, G. L., & Schandl,
C. (2009). Searching in the dark: Cognitive
relevance drives attention in real-world scenes.
Psychonomic Bulletin & Review, 16, 850–856,
https://doi.org/10.3758/PBR.16.5.850.

Henderson, J. M., McClure, K. K., Pierce, S., &
Schrock, G. (1997). Object identification without
foveal vision: Evidence from an artificial scotoma
paradigm. Perception & Psychophysics, 59, 323–346,
https://doi.org/10.3758/BF03211901.

Henderson, J. M., Williams, C. C., Castelhano,
M. S., & Falk, R. J. (2003). Eye movements
and picture processing during recognition.
Perception & Psychophysics, 65, 725–734,
https://doi.org/10.3758/BF03194809.

Hilz, R., & Cavonius, C. R. (1974). Functional
organization of the peripheral retina: Sensitivity to
periodic stimuli. Vision Research, 14, 1333–1337,
https://doi.org/10.1016/0042-6989(74)90006-6.

Hwang, D., Higgins, E. C., & Pomplun, M. (2007).
How chromaticity guides visual search in real-world
scenes. In Proceedings of the Annual Meeting of the
Cognitive Science Society Proceedings of the Annual
Meeting of the Cognitive Science Society (Vol 29),
371–378, Austin, TX: Cognitive Science Society

Hwang, D., Higgins, E. C., & Pomplun, M. (2009).
A model of top-down attentional control during
visual search in complex scenes. Journal of Vision,
9(5):25, 1–18, https://doi.org/10.1167/9.5.25.

Johnson, M. (1986). Color vision in the peripheral
retina. American Journal of Optometry &
Physiological Optics, 63, 97–103, https:
//doi.org/10.1097/00006324-198602000-00003.

Jones, L., & Higgins, G. C. (1947). Photographic
granularity and graininess: III. Some characteristics
of the visual system of importance in the
evaluation of graininess and granularity. Journal
of the Optical Society of America, 37, 217–263,
https://doi.org/10.1364/JOS37.000217.

Kleiner, M., Brainard, D. H., & Pelli, D. G. (2007).
What’s new in Psychtoolbox-3? Perception, 36, 14.

Larson, M., & Loschky, L. C. (2009). The contributions
of central versus peripheral vision to scene gist
recognition. Journal of Vision, 9(10):6, 1–16,
https://doi.org/10.1167/9.10.6.

Laubrock, J., Cajar, A., & Engbert, R. (2013).
Control of fixation duration during scene
viewing by interaction of foveal and peripheral
processing. Journal of Vision, 13(12):11, 1–20,
https://doi.org/10.1167/13.12.11.

Loschky, L. C., &McConkie, G.W. (2002). Investigating
spatial vision and dynamic attentional selection
using a gaze-contingent multiresolutional display.
Journal of Experimental Psychology: Applied, 8,
99–117, https://doi.org/10.1037//1076-898X.8.2.99.

Loschky, L. C., McConkie, G. W., Yang, J., & Miller,
M. E. (2005). The limits of visual resolution in
natural scene viewing. Visual Cognition, 12,
1057–1092, https://doi.org/10.1080/
13506280444000652.

Malcolm, G. L., & Henderson, J. M. (2009). The
effects of target template specificity on visual
search in real-world scenes: Evidence from eye
movements. Journal of Vision, 9(11):8, 1–13,
https://doi.org/10.1167/9.11.8.

Malcolm, G. L., & Henderson, J. M. (2010). Combining
top-down processes to guide eye movements during
real-world scene search. Journal of Vision, 10(2):4,
1–11, https://doi.org/10.1167/10.2.4.

Mohr, J., Seyfarth, J., Lueschow, A., Weber, J.
E., Wichmann, F., & Obermayer, K. (2016).
BOiS–Berlin Object in Scene database:
Controlled photographic images for visual
search experiments with quantified contextual
priors. Frontiers in Psychology, 7, 749,
https://doi.org/10.3389/fpsyg.2016.00749.

Morey, R. D. (2008). Confidence intervals from
normalized data: A correction to Cousineau (2005).
Tutorial in Quantitative Methods for Psychology,
42, 61–64, http://pcl.missouri.edu/sites/default/files/
morey.2008.pdf.

Neider, M. B., & Zelinsky, G. J. (2006). Scene
context guides eye movements during visual
search. Vision Research, 10, 614–621, https:
//doi.org/10.1016/j.visres.2005.08.025.

Nuthmann, A. (2013). On the visual span during object
search in real-world scenes. Visual Cognition, 21,
803–837, https://doi.org/10.1080/13506285.2013.
832449.

Nuthmann, A. (2014). How do the regions of
the visual field contribute to object search in
real-world scenes? Evidence from eye movements.
Journal of Experimental Psychology: Human
Perception and Performance, 40, 342–360,
https://doi.org/10.1037/a0033854.

Nuthmann, A., & Malcolm, G. L. (2016). Eye-guidance
during real-world scene search: The role color plays
in central and peripheral vision. Journal of Vision,
16(2):3, 1–16, https://doi.org/10.1167/16.2.3.

Peyrin, C., Chauvin, A., Chokron, S., & Marendaz,
C. (2003). Hemispheric specialization for spatial
frequency processing in the analysis of natural
scenes. Brain and Cognition, 53, 278–282,
https://doi.org/10.1016/S0278-2626(03)00126-X.

https://doi.org/10.1111/1467-9280.00183
https://doi.org/10.3758/PBR.16.5.850
https://doi.org/10.3758/BF03211901
https://doi.org/10.3758/BF03194809
https://doi.org/10.1016/0042-6989(74)90006-6
https://doi.org/10.1167/9.5.25
https://doi.org/10.1097/00006324-198602000-00003
https://doi.org/10.1364/JOS37.000217
https://doi.org/10.1167/9.10.6
https://doi.org/10.1167/13.12.11
https://doi.org/10.1037//1076-898X.8.2.99
https://doi.org/10.1080/13506280444000652
https://doi.org/10.1167/9.11.8
https://doi.org/10.1167/10.2.4
https://doi.org/10.3389/fpsyg.2016.00749
http://pcl.missouri.edu/sites/default/files/morey.2008.pdf
https://doi.org/10.1016/j.visres.2005.08.025
https://doi.org/10.1080/13506285.2013.832449
https://doi.org/10.1037/a0033854
https://doi.org/10.1167/16.2.3
https://doi.org/10.1016/S0278-2626(03)00126-X


Journal of Vision (2020) 20(7):8, 1–16 Cajar, Engbert, & Laubrock 14

R, Core Team. (2018). R: A language and environment
for statistical computing [Computer software
manual]. Vienna, Austria: R Foundation for
Statistical Computing, https://www.R-project.
org.

Spotorno, S., Malcolm, G. L., & Tatler, B. W. (2014).
How context information and target information
guide the eyes from the first epoch of search in
real-world scenes. Journal of Vision, 14(2):7, 1–21,
https://doi.org/10.1167/14.2.7.

Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard,
D. H. (2011). Eye guidance in natural vision:
Reinterpreting salience. Journal of Vision, 11, 1–23,
https://doi.org/10.1167/11.5.5.

van Diepen, P. M. J., Wampers, M., & d’Ydewalle,
G. (1998). Functional division of the visual field:
Moving masks and moving windows. In G. D. M.
Underwood (Ed.), Eye guidance in reading and scene
perception (pp. 337–355). Oxford, UK: Elsevier
Science Ltd.

Venables, W. N., & Ripley, B. D. (2002).Modern applied
statistics with S Modern applied statistics with S.
New York, NY: Springer.

Wells-Gray, E. M., Choi, S. S., Bries, A., & Doble,
N. (2016). Variation in rod and cone density
from the fovea to the mid-periphery in healthy
human retinas using adaptive optics scanning
laser ophtalmoscopy. Eye, 30, 1135–1143,
https://doi.org/10.1038/eye.2016.107.

Wertheim, T. (1894). Über die indirekte Sehschärfe.
Zeitschrift für Psychologie und Physiologie der
Sinnesorgane, 7, 121–187.

Appendix

The following figures show the effects of target
predictability (i.e., target location is either contextually
predictable or unpredictable) on search performance
(Figure 4), search epochs (Figure 5), and eye movements
(Figure 6).

Figure 4. Search accuracies (upper row) and search times (lower row) for the five filter conditions in color scenes (left) and grayscale
scenes (right), with targets at contextually predictable or unpredictable locations. Error bars represent within-subjects 95%
confidence intervals with Cousineau-Morey correction (Cousineau, 2005; Morey, 2008).
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Figure 5. Scanning times (upper row) and verification times (lower row) for the five filter conditions in color scenes (left) and grayscale
scenes (right), with targets at contextually predictable or unpredictable locations. Error bars represent within-subjects 95%
confidence intervals with Cousineau-Morey correction (Cousineau, 2005; Morey, 2008).
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Figure 6. Fixation durations (top row), number of fixations (middle row), and saccade amplitudes (bottom row) in the five filter
conditions for color scenes (left) and grayscale scenes (right), with targets at contextually predictable or unpredictable locations. Error
bars represent within-subjects 95% confidence intervals with Cousineau-Morey correction (Cousineau, 2005; Morey, 2008).


