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Factors such as non-uniform definitions of mortality, uncertainty in disease prevalence, and biased
sampling complicate the quantification of fatality during an epidemic. Regardless of the employed
fatality measure, the infected population and the number of infection-caused deaths need to be
consistently estimated for comparing mortality across regions. We combine historical and current
mortality data, a statistical testing model, and an SIR epidemic model, to improve estimation of
mortality. We find that the average excess death across the entire US is 13% higher than the number
of reported COVID-19 deaths. In some areas, such as New York City, the number of weekly deaths is
about eight times higher than in previous years. Other countries such as Peru, Ecuador, Mexico, and
Spain exhibit excess deaths significantly higher than their reported COVID-19 deaths. Conversely,
we find negligible or negative excess deaths for part and all of 2020 for Denmark, Germany, and
Norway.

Introduction

The novel severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) first identified in Wuhan, China
in December 2019 quickly spread across the globe, lead-
ing to the declaration of a pandemic on March 11,
2020 [1]. The emerging disease was termed COVID-19.
As of this January 2020 writing, more than 86 million
people have been infected, and more than 1.8 million
deaths from COVID-19 in more than 218 countries [2]
have been confirmed. About 61 million people have re-
covered globally.

Properly estimating the severity of any infectious dis-
ease is crucial for identifying near-future scenarios, and
designing intervention strategies. This is especially true
for SARS-CoV-2 given the relative ease with which it
spreads, due to long incubation periods, asymptomatic
carriers, and stealth transmissions [3]. Most measures
of severity are derived from the number of deaths, the
number of confirmed and unconfirmed infections, and the
number of secondary cases generated by a single primary
infection, to name a few. Measuring these quantities,
determining how they evolve in a population, and how
they are to be compared across groups, and over time, is
challenging due to many confounding variables and un-
certainties.

For example, quantifying COVID-19 deaths across ju-
risdictions must take into account the existence of differ-
ent protocols in assigning cause of death, cataloging co-
morbidities [4], and lag time reporting [5]. Inconsisten-
cies also arise in the way deaths are recorded, especially
when COVID-19 is not the direct cause of death, rather
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a co-factor leading to complications such as pneumonia
and other respiratory ailments [6]. In Italy, the clini-
cian’s best judgment is called upon to classify the cause
of death of an untested person who manifests COVID-19
symptoms. In some cases, such persons are given post-
mortem tests, and if results are positive, added to the
statistics. Criteria vary from region to region [7]. In
Germany, postmortem testing is not routinely employed,
possibly explaining the large difference in mortality be-
tween the two countries. In the US, current guidelines
state that if typical symptoms are observed, the patient’s
death can be registered as due to COVID-19 even with-
out a positive test [8]. Certain jurisdictions will list dates
on which deaths actually occurred, others list dates on
which they were reported, leading to potential lag-times.
Other countries tally COVID-19 related deaths only if
they occur in hospital settings, while others also include
those that occur in private and/or nursing homes.

In addition to the difficulty in obtaining accurate and
uniform fatality counts, estimating the prevalence of the
disease is also a challenging task. Large-scale testing of
a population where a fraction of individuals is infected,
relies on unbiased sampling, reliable tests, and accurate
recording of results. One of the main sources of system-
atic bias arises from the tested subpopulation: due to
shortages in testing resources, or in response to public
health guidelines, COVID-19 tests have more often been
conducted on symptomatic persons, the elderly, front-
line workers and/or those returning from hot-spots. Such
non-random testing overestimates the infected fraction of
the population.

Different types of tests also probe different infected
subpopulations. Tests based on reverse-transcription
polymerase chain reaction (RT-PCR), whereby viral ge-
netic material is detected primarily in the upper respira-
tory tract and amplified, probe individuals who are ac-
tively infected. Serological tests (such as enzyme-linked
immunosorbent assay, ELISA) detect antiviral antibod-

ar
X

iv
:2

10
1.

03
46

7v
1 

 [
q-

bi
o.

Q
M

] 
 1

0 
Ja

n 
20

21

mailto:lucasb@ucla.edu
mailto:dorsogna@csun.edu
mailto:tomchou@ucla.edu


2

ies and thus measure individuals who have been infected,
including those who have recovered.

Finally, different types of tests exhibit significantly dif-
ferent “Type I” (false positive) and “Type II” (false nega-
tive) error rates. The accuracy of RT-PCR tests depends
on viral load which may be too low to be detected in in-
dividuals at the early stages of the infection, and may
also depend on which sampling site in the body is cho-
sen. Within serological testing, the kinetics of antibody
response are still largely unknown and it is not possible
to determine if and for how long a person may be immune
from reinfection. Instrumentation errors and sample con-
tamination may also result in a considerable number of
false positives and/or false negatives. These errors con-
found the inference of the infected fraction. Specifically,
at low prevalence, Type I false positive errors can signif-
icantly bias the estimation of the IFR.

Other quantities that are useful in tracking the dy-
namics of a pandemic include the number of recov-
ered individuals, tested, or untested. These quanti-
ties may not be easily inferred from data and need to
be estimated from fitting mathematical models such as
SIR-type ODEs [9], age-structured PDEs [10], or net-
work/contact models [11–13].

Administration of tests and estimation of all quanti-
ties above can vary widely across jurisdictions, making
it difficult to properly compare numbers across them.
In this paper, we incorporate excess death data, testing
statistics, and mathematical modeling to self-consistently
compute and compare mortality across different jurisdic-
tions. In particular, we will use excess mortality statis-
tics [14–16] to infer the number of COVID-19-induced
deaths across different regions. We then present a sta-
tistical testing model to estimate jurisdiction-specific in-
fected fractions and mortalities, their uncertainty, and
their dependence on testing bias and errors. Our statis-
tical analyses and source codes are available at [17].

Methods

Mortality measures

Many different fatality rate measures have been de-
fined to quantify epidemic outbreaks [18]. One of the
most common is the case fatality ratio (CFR) defined as
the ratio between the number of confirmed “infection-
caused” deaths Dc in a specified time window and the
number of infections Nc confirmed within the same time
window, CFR = Dc/Nc [19]. Depending on how deaths
Dc are counted and how infected individuals Nc are de-
fined, the operational CFR may vary. It may even exceed
one, unless all deaths are tested and included in Nc.

Another frequently used measure is the infection fatal-
ity ratio (IFR) defined as the true number of “infection-
caused” deaths D = Dc +Du divided by the actual num-
ber of cumulative infections to date, Nc + Nu. Here,
Du is the number of unreported infection-caused deaths

within a specified period, and Nu denotes the untested
or unreported infections during the same period. Thus,
IFR = D/(Nc +Nu).

One major issue of both CFR and IFR is that they
do not account for the time delay between infection and
resolution. Both measures may be quite inaccurate early
in an outbreak when the number of cases grows faster
than the number of deaths and recoveries [10]. An alter-
native measure that avoids case-resolution delays is the
confirmed resolved mortality M = Dc/(Dc + Rc) [10],
where Rc is the cumulative number of confirmed recov-
ered cases evaluated in the same specified time window
over which Dc is counted. One may also define the true
resolved mortality via M = D/(D + R), the proportion
of the actual number of deaths relative to the total num-
ber of deaths and recovered individuals during a specified
time period. If we decompose R = Rc+Ru, where Rc are
the confirmed and Ru, the unreported recovered cases,
M = (Dc + Du)/(Dc + Du + Rc + Ru). The total con-
firmed population is defined as Nc = Dc +Rc + Ic, where
Ic the number of living confirmed infecteds. Applying
these definitions to any specified time period (typically
from the “start” of an epidemic to the date with the
most recent case numbers), we observe that CFR ≤ M
and IFR ≤ M. After the epidemic has long past, when
the number of currently infected individuals I approach
zero, the two fatality ratios and mortality measures con-
verge if the component quantities are defined and mea-
sured consistently, limt→∞CFR(t) = limt→∞M(t) and
limt→∞ IFR(t) = limt→∞M(t) [10].

The mathematical definitions of the four basic mor-
tality measures Z = CFR, IFR,M,M defined above are
given in Table I and fall into two categories, confirmed
and total. Confirmed measures (CFR and M) rely only
on positive test counts, while total measures (IFR and
M) rely on projections to estimate the number of in-
fected persons in the total population N . Of the mea-
sures listed in Table I, the fatality ratio CFR and con-
firmed resolved mortality M do not require estimates of
unreported infections, recoveries, and deaths and can be
directly derived from the available confirmed counts Dc,
Nc, and Rc [20]. Estimation of IFR and the true resolved
mortality M requires the additional knowledge on the
unconfirmed quantities Du, Nu, and Ru. We describe the
possible ways to estimate these quantities, along with the
associated sources of bias and uncertainty below.

Excess deaths data

An unbiased way to estimate D = Dc +Du, the cumu-
lative number of deaths, is to compare total deaths within
a time window in the current year to those in the same
time window of previous years, before the pandemic. If
the epidemic is widespread and has appreciable fatality,
one may reasonably expect that the excess deaths can be
attributed to the pandemic [21–25]. Within each affected
region, these “excess” deaths De relative to “historical”
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hhhhhhhhhhhhhSubpopulation
Measure Z

Fatality Ratios Resolved Mortality Excess Death Indices

Confirmed CFR =
Dc

Nc
M =

Dc

Dc +Rc
De per 100,000:

Dc +Du

100, 000

Total IFR =
Dc +Du

Nc +Nu
M =

Dc +Du

Dc +Du +Rc +Ru
relative: r =

∑
i

[
d(0)(i)− 1

J

∑J
j d

(j)(i)
]

1
J

∑J
j

∑
i d

(j)(i)

TABLE I: Definitions of mortality measures. Quantities with subscript “c” and “u” denote confirmed (i.e., positively
tested) and unconfirmed populations. For instance, Dc, Rc, and Nc denote the total number of confirmed dead, recovered,

and infected individuals, respectively. d(j)(i) is the number of individuals who have died in the ith time window (e.g., day,
week) of the jth previous year. The mean number of excess deaths between the periods ks and k this year D̄e is thus∑k
i=ks

[
d(0)(i)− 1

J

∑J
j=1 d

(j)(i)
]
. Where the total number of infection-caused deaths Dc + Du appears,it can be estimated

using the excess deaths D̄e over as detailed in the main text. We have also included raw death numbers/100,000 and the mean
excess deaths r relative to the mean number of deaths over the same period of time from past years (see Eqs. (1)).

deaths, are independent of testing limitations and do not
suffer from highly variable definitions of virus-induced
death. Thus, within the context of the COVID-19 pan-
demic, De is a more inclusive measure of virus-induced
deaths than Dc and can be used to estimate the to-
tal number of deaths, De ' D

c
+ Du. Moreover, us-

ing data from multiple past years, one can also estimate
the uncertainty in De. In practice, deaths are typically
tallied daily, weekly [21, 28], or sometimes aggregated
monthly [27, 29] with historical records dating back J
years so that for every period i there are a total of J + 1
death values. We denote by d(j)(i) the total number of
deaths recorded in period i from the jth previous year
where 0 ≤ j ≤ J and where j = 0 indicates the cur-
rent year. In this notation, D = Dc + Du =

∑
i d

(0)(i),
where the summation tallies deaths over several periods
of interest within the pandemic. Note that we can de-

compose d(0)(i) = d
(0)
c (i) + d

(0)
u (i), to include the con-

tribution from the confirmed and unconfirmed deaths
during each period i, respectively. To quantify the to-
tal cumulative excess deaths we derive excess deaths
d
(j)
e (i) = d(0)(i) − d(j)(i) per week relative to the jth

previous year. Since d(0)(i) is the total number of deaths

in week i of the current year, by definition d
(0)
e (i) ≡ 0.

The excess deaths during week i, d̄e(i), averaged over J
past years and the associated, unbiased variance σe(i) are
given by

d̄e(i) =
1

J

J∑
j=1

d(j)e (i),

σ2
e (i) =

1

J − 1

J∑
j=1

[
d(j)e (i)− d̄e(i)

]2
. (1)

The corresponding quantities accumulated over k weeks
define the mean and variance of the cumulative excess
deaths D̄e(k) and Σe(k)

D̄e(k) =
1

J

J∑
j=1

k∑
i=1

d(j)e (i),

Σ2
e(k) =

1

J − 1

J∑
j=1

[
k∑
i=1

d(j)e (i)− D̄e(k)

]2
, (2)

where deaths are accumulated from the first to the kth

week of the pandemic. The variance in Eqs. (1) and (2)
arise from the variability in the baseline number of deaths
from the same time period in J previous years.

We gathered excess death statistics from over 23 coun-
tries and all US states. Some of the data derive from
open-source online repositories as listed by official statis-
tical bureaus and health ministries [21–25, 29]; other data
are elaborated and tabulated in Ref. [27]. In some coun-
tries excess death statistics are available only for a lim-
ited number of states or jurisdictions (e.g., Brazil). The
US death statistics that we use in this study is based
on weekly death data between 2015–2019 [29]. For all
other countries, the data collection periods are summa-
rized in Ref. [27]. Fig. A1(a-b) shows historical death
data for NYC and Germany, while Fig. A1(c-d) plots the
confirmed and excess deaths and their confidence lev-
els computed from Eqs. (1) and (2). We assumed that
the cumulative summation is performed from the start of
2020 to the current week k = K so that D̄e(K) ≡ D̄e in-
dicates excess deaths at the time of writing. Significant
numbers of excess deaths are clearly evident for NYC,
while Germany thus far has not experienced significant
excess deaths.

To evaluate CFR and M , data on only Dc, Nc, and
Rc are required, which are are tabulated by many ju-
risdictions. To estimate the numerators of IFR and M,
we approximate Dc + Du ≈ D̄e using Eq. (2). For the
denominators, estimates of the unconfirmed infected Nu

and unconfirmed recovered populations Ru are required.
In the next two sections we propose methods to estimate
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(a)
(c)

(d)
(b)

FIG. 1: Examples of seasonal mortality and excess deaths. The evolution of weekly deaths in (a) New York City
(six years) and (b) Germany (five years) derived from data in Refs. [26, 27]. Grey solid lines and shaded regions represent
the historical numbers of deaths and corresponding confidence intervals defined in Eq. (1). Blue solid lines indicate weekly
deaths, and weekly deaths that lie outside the confidence intervals are indicated by solid red lines. The red shaded regions

represent statistically significant mean cumulative excess deaths De. The reported weekly confirmed deaths d
(0)
c (i) (dashed

black curves), reported cumulative confirmed deaths Dc(k) (dashed dark red curves), weekly excess deaths d̄e(i) (solid grey
curves), and cumulative excess deaths D̄e(k) (solid red curves) are plotted in units of per 100,000 in (c) and (d) for NYC and
Germany, respectively. The excess deaths and the associated 95% confidence intervals given by the error bars are constructed
from historical death data in (a-b) and defined in Eqs. (1) and (2). In NYC there is clearly a significant number of excess deaths
that can be safely attributed to COVID-19, while to date in Germany, there have been no significant excess deaths. Excess
death data from other jurisdictions are shown in the Supplementary Information and typically show excess deaths greater than
reported confirmed deaths (with Germany an exception as shown in (d)).

Nu using a statistical testing model and Ru using com-
partmental population model.

Statistical testing model with bias and testing errors

The total number of confirmed and unconfirmed in-
fected individuals Nc + Nu appears in the denominator
of the IFR. To better estimate the infected population
we present a statistical model for testing in the pres-
ence of bias in administration and testing errors. Al-
though Nc +Nu used to estimate the IFR includes those
who have died, depending on the type of test, it may or
may not include those who have recovered. If S, I,R,D
are the numbers of susceptible, currently infected, recov-
ered, and deceased individuals, the total population is
N = S + I + R + D and the infected fraction can be
defined as f = (Nc +Nu)/N = (I + R +D)/N for tests
that include recovered and deceased individuals (e.g., an-
tibody tests), or f = (Nc +Nu)/N = (I+D)/N for tests
that only count currently infected individuals (e.g., RT-
PCR tests). If we assume that the total population N
can be inferred from census estimates, the problem of
identifying the number of unconfirmed infected persons
Nu is mapped onto the problem of identifying the true
fraction f of the population that has been infected.

Typically, f is determined by testing a representative

sample and measuring the proportion of infected persons
within the sample. Besides the statistics of sampling, two
main sources of systematic errors arise: the non-random
selection of individuals to be tested and errors intrinsic to
the tests themselves. Biased sampling arises when test-
ing policies focus on symptomatic or at-risk individuals,
leading to over-representation of infected individuals.

Figure 2 shows a schematic of a hypothetical initial
total population of N = 54 individuals in a specified ju-
risdiction. Without loss of generality we assume there
are no unconfirmed deaths, Du = 0, and that all con-
firmed deaths are equivalent to excess deaths, so that
D̄e = Dc = 5 in the jurisdiction represented by Fig. 2.
Apart from the number of deceased, we also show the
number of infected and uninfected subpopulations and
label them as true positives, false positives, and false
negatives. The true number of infected individuals is
Nc + Nu = 16 which yields the true f = 16/54 = 0.27
and an IFR = 5/16 = 0.312 within the jurisdiction.

Also shown in Fig. 2 are two examples of sampling. Bi-
ased sampling and testing is depicted by the blue contour
in which 6 of the 15 are alive and infected, 2 are deceased,
and the remaining 7 are healthy. For simplicity, we start
by assuming no testing errors. This measured infected
fraction of this sample 8/15 = 0.533 > f = 0.296 is
biased since it includes a higher proportion of infected
persons, both alive and deceased, than that of the entire
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FIG. 2: Biased and unbiased testing of a population. A hypothetical scenario of testing a population (total N = 54
individuals) within a jurisdiction (solid black boundary). Filled red circles represent the true number of infected individuals who
tested positive and the black-filled red circles indicate individuals who have died from the infection. Open red circles denote
uninfected individuals who were tested positive (false positives) while filled red circles with dark gray borders are infected
individuals who were tested negative (false negatives). In the jurisdiction of interest 5 have died of the infection while 16 are
truly infected. The true fraction f of infected in the entire population is thus f = 16/54 and the true IFR=5/16. However, under

testing (green and blue) samples, a false positive is shown to arise. If the apparent positive fraction f̃b is derived from a biased
sample (blue), the estimated apparent IFR can be quite different from the true one. For a less biased (more random) testing

sample (green sample), a more accurate estimate of the total number of infected individuals is Nc+Nu = f̃bN = (5/14)×54 ≈ 19

when the single false positive in this sample is included, and f̃bN = (4/14)× 54 ≈ 15 when the false positive is excluded, and
allows us to more accurately infer the IFR. Note that CFR is defined according to the tested quantities Dc/Nc which are
precisely 2/9 and 2/5 for the blue and green sample, respectively, if false positives are considered. When false negatives are
known and factored out CFR = 2/8 and 2/4, for the blue and green samples, respectively.

jurisdiction. Using this biased measured infected frac-
tion of 8/15 yields IFR = 5/(0.533 · 54) ≈ 0.174, which
significantly underestimates the true IFR = 0.312. A
relatively unbiased sample, shown by the green contour,
yields an infected fraction of 4/14 ≈ 0.286 and an ap-
parent IFR ≈ 0.324 which are much closer to the true
fraction f and IFR. In both samples discussed above we
neglected testing errors such as false positives indicated
in Fig. 2. Tests that are unable to distinguish false pos-
itives as negatives would yield a larger Nc, resulting in
an apparent infected fraction 9/15 and an even smaller
apparent IFR ≈ 0.154. By contrast, the false positive
testing errors on the green sample would yield an appar-
ent infected fraction 5/15 = 0.333 and IFR= 0.259.

Given that test administration can be biased, we pro-
pose a parametric form for the apparent or measured
infected fraction

fb = fb(f, b) ≡ feb

f(eb − 1) + 1
, (3)

to connect the apparent (biased sampling) infected frac-
tion fb with the true underlying infection fraction. The
bias parameter −∞ < b < ∞ describes how an infected
or uninfected individual might be preferentially selected
for testing, with b < 0 (and fb < f) indicating under-
testing of infected individuals, and b > 0 (and fb > f)

representing over-testing of infecteds. A truly random,
unbiased sampling arises only when b = 0 where fb = f .
Given Q (possibly biased) tests to date, testing errors,
and ground-truth infected fraction f , we derive in the SI
the likelihood of observing a positive fraction f̃b = Q̃+/Q

(where Q̃+ is the number of recorded positive tests):

P (f̃b|θ) ≈
1√

2πσT
exp

[
− (f̃b − µ)2

2σ2
T

]
, (4)

in which

µ ≡ fb(f, b)(1− FNR) + (1− fb(f, b))FPR,

σ2
T ≡ µ(1− µ)/Q. (5)

Here, µ is the expected value of the measured and biased
fraction f̃b and σ2

T is its variance. Note that the param-
eters θ = {Q, f, b,FPR,FNR} may be time-dependent
and change from sample to sample. Along with the like-
lihood function P (f̃b|f, θ), one can also propose a prior
distribution P (θ|α) with hyperparameters α, and apply
Bayesian methods to infer θ (see SI).

To evaluate IFR, we must now estimate f given f̃b =
Q̃+/Q and possible values for FPR, FNR, and/or b, or
the hyperparameters α defining their uncertainty. The
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simplest maximum likelihood estimate of f can be found
by maximizing P (f̃b|θ) with respect to f given a mea-

sured value f̃b and all other parameter values θ specified:

f̂ ≈ f̃b − FPR

eb(1− FNR− f̃b) + f̃b − FPR
. (6)

Note that although FNRs are typically larger than FPRs,

small values of f and f̃b imply that f̂ and µ are more
sensitive to the FPR, as indicated by Eqs. (5) and (6).

If time series data for f̃b = Q̃+/Q are available, one can
evaluate the corrected testing fractions in Eq. (6) for each
time interval. Assuming that serological tests can iden-
tify infected individuals long after symptom onset, the

latest value of f̂ would suffice to estimate corresponding
mortality metrics such as the IFR. For RT-PCR testing,
one generally needs to track how f̃b evolves in time. A
rough estimate would be to use the mean of f̃b over the
whole pandemic period to provide a lower bound of the

estimated prevalence f̂ .
The measured f̃b yields only the apparent IFR =

D̄e/(f̃bN), but Eq. (6) can then be used to evaluate

the corrected IFR ≈ D̄e/(f̂N) which will be a better
estimate of the true IFR. For example, under moder-
ate bias |b| . 1 and assuming FNR, FPR, f̃b . 1
Eq. (6) relates the apparent and corrected IFRs through

D̄e/(f̃bN) ∼ D̄e/((f̂ e
b + FPR)N).

Another commonly used representation of the IFR is
IFR = p(Dc + Du)/Nc = pD̄e/Nc. This expression is
equivalent to our IFR = D̄e/(fN) if p = Nc/(Nc+Nu) ≈
Q̃+/(fN) is defined as the fraction of infected individuals
that are confirmed [30, 31]. In this alternative representa-
tion, the p factor implicitly contains the effects of biased
testing. Our approach allows the true infected fraction f
to be directly estimated from Q̃+ and N .

While the estimate f̂ depends strongly on b and FPR,
and weakly on FNR, the uncertainty in f will depend on
the uncertainty in the values of b, FPR, and FNR. A
Bayesian framework is presented in the SI, but under a
a Gaussian approximation for all distributions, the un-
certainty in the testing parameters can be propagated

to the squared coeffcient σ2
f/f̂

2 of variation of the esti-

mated infected fraction f̂ , as explicitly computed in the
SI. Moreover, the uncertainties in the mortality indices
Z decomposed into the uncertainties of their individual
components are listed in Table II.

Using compartmental models to estimate resolved
mortalities

Since the number of unreported recovered individu-
als Ru required to calculate M is not directly related
to excess deaths nor to positive-tested populations, we
use an SIR-type compartmental model to relate Ru to
other inferable quantities [9]. Both unconfirmed recov-
ered individuals and unconfirmed deaths are related to

unconfirmed infected individuals who recover at rate γu
and die at rate µu. The equations for the cumulative
numbers of unconfirmed recovered individuals and un-
confirmed deaths,

dRu(t)

dt
= γu(t)Iu(t),

dDu(t)

dt
= µu(t)Iu(t), (7)

can be directly integrated to find Ru(t) =∫ t
0
γu(t′)Iu(t′)dt′ and Du(t) =

∫ t
0
µu(t′)Iu(t′)dt′. The

rates γu and µu may differ from those averaged over the
entire population since testing may be biased towards
subpopulations with different values of γu and µu. If one
assumes γu and µu are approximately constant over the
period of interest, we find Ru/Du ≈ γu/µu ≡ γ. We now
use Du = D̄e −Dc, where both D̄e and Dc are given by
data, to estimate Ru ≈ γ(D̄e −Dc) and write M as

M =
D̄e

D̄e +Rc + γ(D̄e −Dc)
. (8)

Thus, a simple SIR model transforms the problem of de-
termining the number of unreported death and recovered
cases in M to the problem of identifying the recovery
and death rates in the untested population. Alterna-
tively, we can make use of the fact that both the IFR
and resolved mortality M should have comparable val-
ues and matchM to IFR ≈ 0.1−1.5% [31–33] by setting
γ ≡ γu/µu ≈ 100− 1000 (see SI for further information).
Note that inaccuracies in confirming deaths may give rise
to Dc > D̄e. Since by definition, infection-caused excess
deaths must be greater than the confirmed deaths, we set
D̄e − Dc = 0 whenever data happens to indicate D̄e to
be less than Dc.

Results

Here, we present much of the available worldwide fa-
tality data, construct the excess death statistics, and
compute mortalities and compare them across jurisdic-
tions. We show that standard mortality measures sig-
nificantly underestimate the death toll of COVID-19 for
most regions (see Figs. A1 and A2). We also use the data
to estimate uncertainties in the mortality measures and
relate them uncertainties of the underlying components
and model parameters.

Excess and confirmed deaths

We find that in New York City for example, the num-
ber of confirmed COVID-19 deaths between March 10,
2020 and December 10, 2020 is 19,694 [34] and thus sig-
nificantly lower than the 27,938 (95% CI 26,516–29,360)
reported excess mortality cases [21]. From March 25,
2020 until December 10, 2020, Spain counts 65,673 (99%
confidence interval [CI] 91,816–37,061) excess deaths [22],
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FIG. 3: Excess deaths versus confirmed deaths across
different countries/states. The number of excess deaths
in 2020 versus confirmed deaths across different countries (a)
and US states (b). The black solid lines in both panels have
slope 1. In (a) the blue solid line is a guide-line with slope
3; in (b) the blue solid line is a least-squares fit of the data
with slope 1.132 (95% CI 1.096–1.168; blue shaded region).
All data were updated on December 10, 2020 [20, 27, 29, 36].

a number that is substantially larger than the officially
reported 47,019 COVID-19 deaths [35]. The large dif-
ference between excess deaths and reported COVID-19
deaths in Spain and New York City is also observed in
Lombardia, one of the most affected regions in Italy.
From February 23, 2020 until April 4, 2020, Lombar-
dia reported 8,656 reported COVID-19 deaths [35] but
13,003 (95% 12,335–13,673) excess deaths [25]. Starting
April 5 2020, mortality data in Lombardia stopped be-
ing reported in a weekly format. In England/Wales, the
number of excess deaths from the onset of the COVID-19
outbreak on March 1, 2020 until November 27, 2020 is
70,563 (95% CI 52,250–88,877) whereas the number of
reported COVID-19 deaths in the same time interval is
66,197 [26]. In Switzerland, the number of excess deaths
from March 1, 2020 until November 29, 2020 is 5,664
(95% CI 4,281–7,047) [24], slightly larger than the corre-
sponding 4,932 reported COVID-19 deaths [35].

To illustrate the significant differences between excess
deaths and reported COVID-19 deaths in various juris-
dictions, we plot the excess deaths against confirmed
deaths for various countries and US states as of Decem-
ber 10, 2020 in Fig. 3. We observe in Fig. 3(a) that the
number of excess deaths in countries like Mexico, Russia,
Spain, Peru, and Ecuador is significantly larger than the

corresponding number of confirmed COVID-19 deaths.
In particular, in Russia, Ecuador, and Spain the num-
ber of excess deaths is about three times larger than the
number of reported COVID-19 deaths. As described in
the Methods section, for certain countries (e.g., Brazil)
excess death data is not available for all states [27]. For
the majority of US states the number of excess deaths
is also larger than the number of reported COVID-19
deaths, as shown in Fig. 3(b). We performed a least-
square fit to calculate the proportionality factor m aris-
ing in D̄e = mDc and found m ≈ 1.132 (95% CI 1.096–
1.168). That is, across all US states, the number of excess
deaths is about 13% larger than the number of confirmed
COVID-19 deaths.

Estimation of mortality measures and their
uncertainties

We now use excess death data and the statistical and
modeling procedures to estimate mortality measures Z =
IFR, CFR, M , M across different jurisdictions, includ-
ing all US states and more than two dozen countries.1.
Accurate estimates of the confirmed Nc and dead Dc in-
fected are needed to evaluate the CFR. Values for the
parameters Q, FPR, FNR, and b are needed to estimate
Nc+Nu = fN in the denominator of the IFR, while D̄e is
needed to estimate the number of infection-caused deaths
Dc + Du that appear in the numerator of the IFR and
M. Finally, since we evaluate the resolved mortalityM,
through Eq. 8, estimates of D̄e, Dc, Rc, γ, and FPR, FNR
(to correct for testing inaccuracies in Dc and Rc) are nec-
essary. Whenever uncertainties are available or inferable
from data, we also include them in our analyses.

Estimates of excess deaths and infected populations
themselves suffer from uncertainty encoded in the vari-
ances Σ2

e and σ2
f . These uncertainties depend on uncer-

tainties arising from finite sampling sizes, uncertainty in
bias b and uncertainty in test sensitivity and specificity,
which are denoted σ2

b , σ2
I , and σ2

II, respectively. We use
Σ2 to denote population variances and σ2 to denote pa-
rameter variances; covariances with respect to any two
variables X,Y are denoted as ΣX,Y . Variances in the
confirmed populations are denoted Σ2

Nc
, Σ2

Rc
, and Σ2

Dc

and also depend on uncertainties in testing parameters
σ2
I and σ2

II. The most general approach would be to de-
fine a probability distribution or likelihood for observing
some value of the mortality index in [Z,Z + dZ]. As
outlined in the SI, these probabilities can depend on the
mean and variances of the components of the mortali-
ties, which in turn may depend on hyperparameters that
determine these means and variances. Here, we simply

1 We provide an online dashboard that shows the real-time evolu-
tion of CFR and M at https://submit.epidemicdatathon.com/
#/dashboard

https://submit.epidemicdatathon.com/#/dashboard
https://submit.epidemicdatathon.com/#/dashboard
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FIG. 4: Different mortality measures across different
regions. (a) The apparent (dashed lines) and corrected (solid
lines) IFR in the US, as of November 1, 2020, estimated us-

ing excess mortality data. We set f̃b = 0.093, 0.15 (black,red),
FPR = 0.05, FNR = 0.2, and N = 330 million. For the cor-
rected IFR, we use f̂ as defined in Eq. (6). Unbiased testing
corresponds to setting b = 0. For b > 0 (positive testing
bias), infected individuals are overrepresented in the sample
population. Hence, the corrected IFR is larger than the ap-
parent IFR. If b is sufficiently small (negative testing bias),
the corrected IFR may be smaller than the apparent IFR. (b)
The coefficient of variation of De (dashed line) and IFR (solid
lines) with σI = 0.02, σII = 0.05, and σb = 0.2 (see Tab. II).

assume uncertainties that are propagated to the mortal-
ity indices through variances in the model parameters
and hyperparameters [37]. The squared coefficients of
variation of the mortalities are found by linearizing them
about the mean values of the underlying components and
are listed in Table II.

To illustrate the influence of different biases b on
the IFR we use f̂ from Eq. (6) in the corrected

IFR ≈ D̄e/(f̂N). We model RT-PCR-certified COVID-
19 deaths [38] by setting the FPR = 0.05 [39] and the
FNR = 0.2 [40, 41]. The observed, possibly biased, frac-

tion of positive tests f̃b = Q̃+/Q can be directly obtained
from corresponding empirical data. As of November 1,
2020, the average of f̃b over all tests and across all US
states is about 9.3% [42]. The corresponding number of
excess deaths is D̄e = 294, 700 [27] and the US population
is about N ≈ 330 million [43]. To study the influence of

variations in f̃b, in addition to f̃b = 0.093, we also use
a slightly larger f̃b = 0.15 in our analysis. In Fig. 4
we show the apparent and corrected IFRs for two values
of f̃b [Fig. 4(a)] and the coefficient of variation CVIFR

[Fig. 4(b)] as a function of the bias b and as made ex-
plicit in Table I. For unbiased testing [b = 0 in Fig. 4(a)],

the corrected IFR in the US is 1.9% assuming f̃b = 0.093
and 0.8% assuming f̃b = 0.15. If b > 0, there is a testing
bias towards the infected population, hence, the appar-
ent IFR = D̄e/(f̃bN) is smaller than the corrected IFR as
can be seen by comparing the solid (corrected IFR) and
the dashed (apparent IFR) lines in Fig. 4(a). For testing
biased towards the uninfected population (b < 0), the
corrected IFR may be smaller than the apparent IFR.
To illustrate how uncertainty in FPR, FNR, and b af-
fect uncertainty in IFR, we evaluate CVIFR as given in
Table II.

The first term in uncertainty σ2
f/f̂

2 given in Eq. (A6)

is proportional to 1/Q and can be assumed to be neg-
ligibly small, given the large number Q of tests admin-
istered. The other terms in Eq. (A6) are evaluated by
assuming σb = 0.2, σI = 0.02, and σII = 0.05 and by
keeping FPR = 0.05 and FNR = 0.2. Finally, we in-
fer Σe from empirical data, neglect correlations between
De and N , and assume that the variation in N is neg-
ligible so that Σe,N = ΣN ≈ 0. Fig. 4(b) plots CVIFR

and CVDe
in the US as a function of the underlying bias

b. The coefficient of variation CVDe
is about 1%, much

smaller than CVIFR, and independent of b. For the val-
ues of b shown in Fig. 4(b), CVIFR is between 47–64%

for f̃b = 0.093 and between 20–27% for f̃b = 0.15.
Next, we compared the mortality measures Z =IFR,

CFR, M , M and the relative excess deaths r listed in
Tab. I across numerous jurisdictions. To determine the
CFR, we use the COVID-19 data of Refs. [20, 36]. For the
apparent IFR, we use the representation IFR = pD̄e/Nc

discussed above. Although p may depend on the stage
of the pandemic, typical estimates range from 4% [44] to
10% [31]. We set p = 0.1 over the lifetime of the pan-
demic. We can also use the apparent IFR = D̄e/(fN),
however estimating the corrected IFR requires evaluat-
ing the bias b. In Fig. 5(a), we show the values of the
relative excess deaths r, the CFR, the apparent IFR, the
confirmed resolved mortality M , and the true resolved
mortalityM for different (unlabeled) regions. In all cases
we set p = 0.1, γ = 100. As illustrated in Fig. 5(b), some
mortality measures suggest that COVID-induced fatal-
ities are lower in certain countries compared to others,
whereas other measures indicate the opposite. For ex-
ample, the total resolved mortalityM for Brazil is larger
than for Russia and Mexico, most likely due to the rel-
atively low number of reported excess deaths as can be
seen from Fig. 3 (a). On the other hand, Brazil’s values
of CFR, IFR, and M are substantially smaller than those
of Mexico [see Fig. 5(b)].

The distributions of all measures Z and relative ex-
cess deaths r across jurisdictions are shown Fig. 5(c–g)
and encode the global uncertainty of these indices. We
also calculate the corresponding mean values across ju-
risdictions, and use the empirical cumulative distribu-
tion functions to determine confidence intervals. The
mean values across all jurisdictions are r= 0.08 (95% CI

0.0025–0.7800), CFR = 0.020 (95% CI 0.0000–0.0565),

IFR = 0.0024 (95% CI 0.0000–0.0150), M = 0.038 (95%
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Mortality Z Uncertainties CV2 =
Σ2
Z

Z2

CFR =
Dc

Nc
Σ2
Dc

, Σ2
Nc

, ΣDc,Nc

Σ2
Dc

D2
c

+
Σ2
Nc

N2
c

− 2
ΣDc,Nc

DcNc

IFR =
Dc +Du

Nc +Nu
≈ D̄e

fN
Σ2

e ,Σ
2
N ,Σe,N , σ

2
f

σ2
f

f̂2
+

Σ2
e

D̄2
e

+
Σ2
N

N2
− 2Σe,N

D̄eN

M =
Dc

Dc +Rc
Σ2
Dc
,Σ2

Rc
,ΣDc,Rc M2

(
Rc

Dc

)2 [Σ2
Dc

D2
c

+
Σ2
Rc

R2
c

− 2ΣRc,Dc

RcDc

]

M =
D̄e

D̄e +Rc +Ru
Σ2

e ,Σ
2
Rc
,Σ2

Ru
,ΣRc,Ru (1−M)2

Σ2
e

D̄2
e

+
Σ2
Rc

Γ2
+

Σ2
Ru

Γ2
− 2ΣRc,Ru

Γ2

M =
D̄e

D̄e +Rc + γ(D̄e −Dc)
Σ2
Rc
,Σ2

e ,ΣRc,γ , σ
2
γ (1−M)2

Σ2
e

D̄2
e

+
Σ2
Rc

Γ2
+

(D̄e −Dc)
2σ2
γ

Γ2
− 2(D̄e −Dc)ΣRc,γ

Γ2

TABLE II: Uncertainty propagation for different mortality measures. Table of squared coefficients of variation CV2 =
Σ2
Z/Z

2 for the different mortality indices Z derived using standard error propagation expansions [37]. We use Σ2
N ,Σ

2
Nc

, Σ2
Rc

,
and Σ2

Dc
to denote the uncertainties in the total population, confirmed cases, recoveries, and deaths, respectively. The variance

of the number of excess deaths is Σ2
e , which feature in the IFR and M. The uncertainty in the infected fraction σ2

f that
contributes to the uncertainty in IFR depends on uncertainties in testing bias and testing errors as shown in Eq. (A6). The
term ΣDc,Nc represents the covariance between Dc, Nc, and similarly for all other covariances Σe,N , ΣDc,Rc , ΣRc,Ru , ΣRc,γ .
Since variations in De arise from fluctuations in past-year baselines and not from current intrinsic uncertainty, we can neglect
correlations between variations in De and uncertainty in Rc, Ru. In the last two rows, representingM expressed in two different
ways, Γ ≡ D̄e +Rc +Ru and D̄e +Rc + γ(D̄e −Dc), respectively. Moreover, when using the SIR model to replace Du and Ru

with D̄e −Dc ≥ 0, there is no uncertainty associated with Du and Ru in a deterministic model. Thus, covariances cannot be
defined except through the uncertainty in the parameter γ = γu/µu.

CI 0.0000–0.236), andM= 0.027 (95% CI 0.000–0.193).

For calculating M and M, we excluded countries with
incomplete recovery data. The distributions plotted in
Fig. 5(c–g) can be used to inform our analyses of un-
certainty or heterogeneity as summarized in Tab. II. For
example, the overall variance Σ2

Z can be determined by
fitting the corresponding empirical Z distribution shown
in Fig. 5(c–g). Table II displays how the related CV2

Z

can be decomposed into separate terms, each arising from
the variances associated to the components in the defi-
nition of Z. For concreteness, from Fig. 5(e) we obtain

CV2
IFR = Σ2

IFR/IFR
2
≈ 1.16 which allows us to place an

upper bound on σ2
b using Eq. (A6), the results of Tab. II,

and

σ2
b <

(f̃b − FPR)2

f̂2(1− f̂)2
CV2

IFR ≈
(f̃b − FPR)2

f̂2(1− f̂)2
1.16 (9)

or on σ2
I using (1− f̂)2σ2

I < (f̃b − FPR)2CV2
IFR.

Finally, to provide more insight into the correlations
between different mortality measures, we plot M against
CFR and M against IFR in Fig. 6. For most regions,
we observe similar values of M and CFR in Fig. 6(a).
Althouigh we expect M → CFR and M → IFR to-
wards the end of an epidemic, in some regions such as
the UK, Sweden, Netherlands, and Serbia, M � CFR
due to unreported or incomplete reporting of recovered
cases. About 50% of the regions that we show in Fig. 6(b)

have an IFR that is approximately equal to M. Again,
for regions such as Sweden and the Netherlands, M is
substantially larger than IFR because of incomplete re-
porting of recovered cases.

Discussion

Relevance

In the first few weeks of the initial COVID-19 out-
break in March and April 2020 in the US, the reported
death numbers captured only about two thirds of the to-
tal excess deaths [15]. This mismatch may have arisen
from reporting delays, attribution of COVID-19 related
deaths to other respiratory illnesses, and secondary pan-
demic mortality resulting from delays in necessary treat-
ment and reduced access to health care [15]. We also
observe that the number of excess deaths in the Fall
months of 2020 have been significantly higher than the
corresponding reported COVID-19 deaths in many US
states and countries. The weekly numbers of deaths in
regions with a high COVID-19 prevalence were up to 8
times higher than in previous years. Among the coun-
tries that were analyzed in this study, the five coun-
tries with the largest numbers of excess deaths since the
beginning of the COVID-19 outbreak (all numbers per
100,000) are Peru (256), Ecuador (199), Mexico (151),
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FIG. 5: Mortality characteristics in different countries and states. (a) The values of relative excess deaths r, the CFR,
the IFR = pD̄e/Nc with p = Nc/(Nc +Nu) = 0.1 [31], the confirmed resolved mortality M , and the true resolved mortalityM
(using γ = 100) are plotted for various jurisdictions. (b) Different mortality measures provide ambiguous characterizations of
disease severeness. (c–g) The probability density functions (PDFs) of the mortality measures shown in (a) and (b). Note that
there are only very incomplete recovery data available for certain countries (e.g., US and UK). For countries without recovery
data, we could not determine M and M. The number of jurisdictions that we used in (a) and (c–g) are 77, 246, 73, 191, and
21 for the respective mortality measures (from left to right). All data were updated December 10, 2020 [20, 27, 29, 36].

Spain (136), and Belgium (120). The five countries with
the lowest numbers of excess deaths since the beginning
of the COVID-19 outbreak are Denmark (2), Norway
(6), Germany (8), Austria (31), and Switzerland (33) [27]
2. If one includes the months before the outbreak, the
numbers of excess deaths per 100,000 in 2020 in Ger-
many, Denmark, and Norway are -3209, -707, and -34,
respectively. In the early stages of the COVID-19 pan-
demic, testing capabilities were often insufficient to re-
solve rapidly-increasing case and death numbers. This
is still the case in some parts of the world, in particular
in many developing countries [45]. Standard mortality
measures such as the IFR and CFR thus suffer from a
time-lag problem.

2 Note that Switzerland experienced a rapid growth in excess
deaths in recent weeks. More recent estimates of the number
of excess deaths per 100,000 suggest a value of 64 [26], which
is similar to the corresponding excess death value observed in
Sweden.

Strengths and limitations

The proposed use of excess deaths in standard mor-
tality measures may provide more accurate estimates of
infection-caused deaths, while errors in the estimates of
the fraction of infected individuals in a population from
testing can be corrected by estimating the testing bias
and testing specificity and sensitivity. One could sharpen
estimates of the true COVID-19 deaths by systematically
analyzing the statistics of deaths from all reported causes
using a standard protocol such as ICD-10 [46]. For exam-
ple, the mean traffic deaths per month in Spain between
2011-2016 is about 174 persons [47], so any pandemic-
related changes to traffic volumes would have little im-
pact considering the much larger number of COVID-19
deaths.

Different mortality measures are sensitive to different
sources of uncertainty. Under the assumption that all
excess deaths are caused by a given infectious disease
(e.g., COVID-19), the underlying error in the determined
number of excess deaths can be estimated using historical
death statistics from the same jurisdiction. Uncertainties
in mortality measures can also be decomposed into the
uncertainties of their component quantities, including the
positive-tested fraction f that depend on uncertainties in
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FIG. 6: Different mortality measures across different
regions. We show the values of M and CFR (a) and M
(using γ = 100) and IFR = pD̄e/Nc with p = Nc/(Nc+Nu) =
0.1 [31] (b) for different regions. The black solid lines have
slope 1. If jurisdictions do not report the number of recovered
individuals, Rc = 0 and M = 1 [light red disks in (a)]. In
jurisdictions for which the data indicate D̄e < Dc, we set
γ(D̄e − Dc) = 0 in the denominator of M which prevents it
from becoming negative as long as D̄e ≥ 0. All data were
updated on December 10, 2020 [20, 27, 29, 36].

the testing parameters.
As for all epidemic forecasting and surveillance, our

methodology depends on the quality of excess death and
COVID-19 case data and knowledge of testing parame-
ters. For many countries, the lack of binding interna-
tional reporting guidelines, testing limitations, and pos-
sible data tampering [48] complicates the application of
our framework. A striking example of variability is the
large discrepancy between excess deaths De and con-
firmed deaths Dc across many jurisdictions which ren-
der mortalities that rely on Dc suspect. More research
is necessary to disentangle the excess deaths that are di-
rectly caused by SARS-CoV-2 infections from those that
result from postponed medical treatment [15], increased
suicide rates [49], and other indirect factors contributing
to an increase in excess mortality. Even if the numbers
of excess deaths were accurately reported and known to
be caused by a given disease, inferring the corresponding
number of unreported cases (e.g., asymptomatic infec-
tions), which appears in the definition of the IFR andM
(see Tab. I), is challenging and only possible if additional
models and assumptions are introduced.

Another complication may arise if the number of ex-
cess deaths is not significantly larger than the historical

mean. Then, excess-death-based mortality estimates suf-
fer from large uncertainty/variability and may be mean-
ingless. While we have considered only the average or
last values of f̃b, our framework can be straightforwardly
extended and dynamically applied across successive time
windows, using e.g., Bayesian or Kalman filtering ap-
proaches.

Finally, we have not resolved the excess deaths or mor-
talities with respect to age or other attributes such as
sex, co-morbidities, occupation, etc. We expect that age-
structured excess deaths better resolve a jurisdiction’s
overall mortality. By expanding our testing and model-
ing approaches on stratified data, one can also straight-
forwardly infer stratified mortality measures Z, providing
additional informative indices for comparison.

Conclusions

Based on the data presented in Figs. 5 and 6, we
conclude that the mortality measures r, CFR, IFR, M ,
andM may provide different characterizations of disease
severity in certain jurisdictions due to testing limitations
and bias, differences in reporting guidelines, reporting
delays, etc. The propagation of uncertainty and coeffi-
cients of variation that we summarize in Tab. II can help
quantify and compare errors arising in different mortal-
ity measures, thus informing our understanding of the
actual death toll of COVID-19. Depending on the stage
of an outbreak and the currently available disease moni-
toring data, certain mortality measures are preferable to
others. If the number of recovered individuals is being
monitored, the resolved mortalities M andM should be
preferred over CFR and IFR, since the latter suffer from
errors associated with the time-lag between infection and
resolution [10]. For estimating IFR and M, we propose
using excess death data and an epidemic model. In situ-
ations in which case numbers cannot be estimated accu-
rately, the relative excess deaths r provides a complemen-
tary measure to monitor disease severity. Our analyses
of different mortality measures reveal that

• The CFR and M are defined directly from con-
firmed deaths Dc and suffers from variability in
its reporting. Moreover, the CFR does not con-
sider resolved cases and is expected to evolve during
an epidemic. Although M includes resolved cases,
its additionally required confirmed recovered cases
Rc add to its variability across jurisdictions. Test-
ing errors affect both Dc and Rc, but if the FNR
and FPR are known, they can be controlled using
Eq. (A3) given in the SI.

• The IFR requires knowledge of the true cumula-
tive number of disease-caused deaths as well as the
true number of infected individuals (recovered or
not) in a population. We show how these can be
estimated from excess deaths and testing, respec-
tively. Thus, the IFR will be sensitive to the in-
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ferred excess deaths and from the testing (particu-
larly from the bias in the testing). Across all coun-
tries analyzed in this study, we found a mean IFR
of about 0.24% (95% CI 0.0–1.5%), which is similar
to the previously reported values between 0.1 and
1.5% [31–33].

• In order to estimate the resolved true mortalityM,
an additional relationship is required to estimate
the unconfirmed recovered population Ru. In this
paper, we propose a simple SIR-type model in or-
der to relate Ru to measured excess and confirmed
deaths through the ratio of the recovery rate to the
death rate. The variability in reporting Dc across
different jurisdictions generates uncertainty in M
and reduces its reliability when compared across
jurisdictions.

• The mortality measures that can most reliably be
compared across jurisdictions should not depend on
reported data which are subject to different pro-
tocols, errors, and manipulation/intentional omis-
sion. Thus, the per capital excess deaths and rela-
tive excess deaths r (see last column of Table I) are
the measures that provide the most consistent com-
parisons of disease mortality across jurisdictions
(provided total deaths are accurately tabulated).
However, they are the least informative in terms of
disease severity and individual risk, for which M
and M are better.

• Uncertainty in all mortalities Z can be decomposed

into the uncertainties in component quantities such
as the excess death or testing bias. We can use
global data to estimate the means and variances in
Z, allowing us to put bounds on the variances of
the component quantities and/or parameters.

Parts of our framework can be readily integrated into
or combined with mortality surveillance platforms such
as the European Mortality Monitor (EURO MOMO)
project [28] and the Mortality Surveillance System of the
National Center for Health Statistics [21] to assess dis-
ease burden in terms of different mortality measures and
their associated uncertainty.

Data availability

All datasets used in this study are available from
Refs. [21–25]. The source codes used in our analyses are
publicly available at [17].
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[11] Lucas Böttcher, Jan Nagler, and Hans J Herrmann. Critical behaviors in contagion dynamics. Physical Review Letters,
118(8):088301, 2017.
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Supplementary Information

Examples of excess death data

FIG. A1: Mortality evolution in different countries. The evolution of weekly deaths in New York City, Spain, Eng-
land/Wales, and Switzerland for different age classes (where available). Grey solid lines and shaded regions represent the
historical mean numbers of deaths and corresponding confidence intervals. Blue solid lines indicate weekly deaths and weekly
deaths that lie outside the confidence intervals are indicated by solid red lines. For England/Wales and Switzerland, weekly
means and 95% confidence intervals are based on data from 2015–2019. In the case of Spain, we show the reported COVID-19
deaths across all age classes [35] in the inset and use the 99% confidence intervals that are directly provided in the corresponding
data [26]. The red shaded regions represent the mean cumulative excess deaths De. The data are derived from Refs. [21–25].

We tally weekly deaths according to Eq. (1) for each week i starting from the first week of 2020, and cumulative
excess deaths as in Eq. (2) adding all weekly contributions from the first week of 2020 onwards. Note that some
governmental agencies tabulate weekly deaths starting on the Sunday closest to January 1 2020 (December 29 2019,
such as the United States), others instead use January 1 2020 as the first day of the week (such as Germany). A detailed
list of how each country bins weekly deaths is included in Ref. [27]. The final week k up to which the cumulative count
is taken depends on data availability, since some countries have larger reporting delays than others. In the majority
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FIG. A2: Weekly and cumulative death rates in different countries and regions. We compare the evolution of

confirmed weekly deaths d
(0)
c (i) (dashed black curves) and cumulative deaths Dc(k) (dashed dark red curves) with weekly

excess deaths d̄e(i) (solid grey curves) and cumulative excess deaths D̄e(k) (solid red curves). The deaths are plotted in units of
per 100,000 in different countries and regions. The data are derived from Ref. [27] and the error bars for the excess deaths are
derived from Eqs. (1) and (2). For Spain, we used the 99% confidence intervals that are directly provided in the corresponding
data [26] to approximate the 95% confidence intervals. Typically, we find D̄e(k) > Dc(k).

of cases k is beyond the fourth week of November 2020. Quantities are calculated from data that include deaths from

typically J = 5 previous years [27]. In Fig. A2 we plot the weekly confirmed deaths d
(0)
c (i), the cumulative deaths

Dc(k) =
∑k
i=1 d

(0)
c (i), and the mean weekly and cumulative excess deaths d̄e(i) for 2020 as available from data. We
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also show D̄e(k) per 100,000 persons from the start of 2020 using Eqs. (1) and (2). The corresponding error bars
in Fig. A2 indicate 95% confidence intervals defined by d̄e(i)± 1.96σe(i) and D̄e(k)± 1.96 Σe(k) in Eqs. (1) and (2),
respectively. For Spain, we used the 99% confidence intervals that are directly provided in the corresponding data [26]
to approximate the 95% confidence intervals. Excess death statistics evolve differently across different countries and
regions. For example, in France excess deaths were negative until the end of March 2020, quickly increasing in April
2020. In Ecuador and Peru, the number of excess deaths is more than 2.5 times larger than the corresponding number
of confirmed COVID-19 deaths.

Statistical testing model

Given biases in sampling and testing errors, it is important to use a statistical testing model that takes them into
account when estimating the fraction f of a population N that are infected. Testing biases arises, for example, if
symptomatic individuals are more likely to seek testing. Thus, the probability fb that an individual who chooses to
be tested is positive may be different from f the probability that a randomly selected individual is positive, as defined
in Eq. (3). If all tests are error-free, the probability that Q+ positive results arise from the Q ≥ Q+ administered
tests is given by

Ptrue(Q
+|Q, fb) =

(
Q

Q+

)
fQ

+

b (1− fb)Q−Q
+

. (A1)

Eq. (A1) is derived under the assumption that once individuals are tested, they are “replaced” in the population
and can be tested again. The analogous distribution Ptrue(Q

+|Q, fb) for testing “without replacement” can be
straightforwardly derived and yields results quantitatively close to Eq. (A1) provided Q/N . 0.3.

Eq. (A1) also assumes flawless testing. Tests with Type I (false positives) and Type II (false negatives) may wrongly
catalog uninfected individuals as infected (with rate FPR) while missing some infected individuals (with rate FNR).
For serological COVID-19 tests, such as antibody tests, the estimated percentages of false positives and false negatives
are typically low, with FPR ≈ 0.03− 0.07 and FNR ≈ 0.1 [39, 50, 51]. For RT-PCR tests, the FNRs depend strongly
on the actual assay method [52, 53] and typically lie between 0.1 and 0.3 [40, 41] but might be as high as FNR ≈ 0.68
if throat swabs are used [39, 41]. FNRs can also vary significantly depending on how long after initial infection the test
is administered [54]. A systematic review conducted worldwide found FNR ≈ 0.54 at initial testing [55], underlying
the need for retesting. Reported percentages of false positives in RT-PCR tests are about FPR ≈ 0.05 [39]. A large
meta-analysis of serological tests estimates FPR ≈ 0.02 and FNR ≈ 0.02− 0.16 [54]. These testing errors can lead to
inaccurate estimates of disease prevalence; uncertainty in FPR, FNR will thus lead to uncertainty in the estimate of
prevalence.

As illustrated through Fig. 2, errors in testing may result in the recorded number Q̃+ of positive tests to be different
from the Q+ that would be obtained under perfect testing. The probability that Q̃+ positive tests are returned due
to testing errors can be described in terms of Q+, FPR, and FNR and the corresponding probability distribution
Perr(Q̃

+|Q+,FPR,FNR) is given by

Perr(Q̃
+|Q+,FPR,FNR) =

Q̃+∑
p+=0

(
Q+

p+

)
(1− FNR)p+(FNR)Q

+−p+
(
Q−

q+

)
(FPR)q+(1− FPR)Q

−−q+ . (A2)

where q+ ≡ Q̃+ − p+. By convolving Perr(Q̃
+|Q+,FPR,FNR) with Ptrue(Q

+|Q, fb) we derive the overall like-

lihood distribution for the measured number Q̃+ of true and false positives given a set of specified parameters
θ = {Q, f, b,FPR,FNR} describing the population and testing

P (Q̃+|Q, f, b,FPR,FNR) =

Q∑
Q+=0

Perr(Q̃
+|Q+,FPR,FNR)Ptrue(Q

+|Q, fb(f, b)). (A3)

When Q+, Q̃+, and Q� 1, we can approximate Ptrue, Perr, and P by normal distributions and rewrite P as a function
of the observed positive fraction f̃b ≡ Q̃+/Q (Eqs. (4) and (5)).

Using Bayes’ rule, we can then formally define the likelihood of θ given a measured f̃b,

P (θ|f̃b, α) =
P (f̃b|θ)P0(θ|α)∑
θ P (f̃b|θ)P0(θ|α)

, (A4)
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where α = {θ̄, σθ} are hyperparameters defining the prior P0(θ|α), such as their means θ̄ = {D̄e,FPR,FNR, b̄, N̄} and
standard deviations σθ = {Σe, σI, σII, b, σb, σN}. Formally, the probability of measuring a value of a mortality measure
Z = CFR, IFR,M,M, or r, can be computed from

P (Z|α) =

∫
P (Z|θ)P (θ|α)dθ, (A5)

where P (Z|θ) defines the statistical model of the mortality measure given the components and parameters θ and
the hyperparameters α defining the distribution over θ. For example, if Z is the value of the IFR, θ = {De, f,N}
and α = {(D̄e,Σe), (b̄,FPR,FNR, σb, σI, σII), (N̄ ,ΣN )} are the mean and standard deviation of excess deaths, testing
parameters, and the total population, respectively.

A simpler way to incorporate uncertainty in the infected fraction f is to assume a Gaussian approximation for all
distributions and propagate the uncertainty in testing parameters. The squared coefficient of variation CV2

f is then
decomposed into the parameter variances according to

σ2
f

f̂2
≈ (1− (1− eb)f̂)2

X2Q
f̃b(1− f̃b) +

(1− f̂)2

X2
σ2
I +

e2bf̂2

X2
σ2
II +

f̂2(1− f̂)2

X2
σ2
b , (A6)

where X ≡ f̃b − FPR. The values of b, FPR, FNR above are mean or maximum likelihood estimates of the bias and
testing errors, and σ2

b , σ2
I , and σ2

II are their associated uncertainties. The means and variances {b̄,FPR,FNR, σ2
b , σ

2
I , σ

2
II}

represent hyperparameters associated with testing (see SI). Our result for σ2
f in Eq. (A6) assumes {b,FPR,FNR} are

uncorrelated. Since Q � 1 is typically large, we expect the first contribution to the uncertainty, arising from
stochasticity in the sampling and proportional to f̃b(1− f̃b)/Q to be negligible. Uncertainties in other quantities will
ultimately contribute to uncertainty in the mortalities Z, as listed in Table II.

Modeling of resolved mortality

In Fig. A3, we show the evolution of M for Spain and Lombardia, using different effective recovery rates of
unreported cases γ. We compute M according to Eq. (8) and use excess mortality data of Fig. A1 to determine D̄e.
The corresponding data for confirmed recovered and deceased individuals, Rc and Dc, is taken from Ref. [26]. Current
estimates of the IFR are 0.1− 1.5% [31–33]. To obtain a value of M in a similar range, we vary γ from 1− 1000 and
find that M≈ 0.1− 1% is consistent with γ = 100− 1000.
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FIG. A3: Evolution of resolved mortality. We show the evolution ofM(t) for different values of effective recovery rates of
unreported cases γ. The data are derived from Refs. [22, 25].
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